The document summarizes a master's thesis presentation on a new watershed algorithm for color image segmentation. The thesis addresses issues with existing watershed algorithms like over-segmentation and sensitivity to noise. The contributions of the thesis include an adaptive masking and thresholding mechanism to overcome over-segmentation and perform well on noisy images. The thesis is evaluated using five image quality assessment metrics on 20 classes of images, showing the proposed method performs better and has lower computational complexity than other algorithms. In conclusions, the adaptive watershed algorithm ensures accurate segmentation and is suitable for real-time applications.