SlideShare a Scribd company logo
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org
ISSN (e): 2250-3021, ISSN (p): 2278-8719
Vol. 05, Issue 09 (September. 2015), ||V2|| PP 01-09
International organization of Scientific Research 1 | P a g e
Random Fixed Point TheoremsIn Metric Space
Balaji R Wadkar1
, Ramakant Bhardwaj2
, Basantkumar Singh3
1
(Dept. of Mathematics, “S R C O E” Lonikand, Pune & Research scholar of “AISECT University”, Bhopal,
India) wbrlatur@gmail.com
2
(Dept. of Mathematics, “TIT Group of Institutes (TIT &E)” Bhopal (M.P), India) rkbhardwaj100@gmail.com
3
(Principal, “AISECT University”, Bhopal-Chiklod Road, Near BangrasiaChouraha, Bhopal, (M.P), India)
dr.basantsingh73@gmail.com
Abstract: - The present paper deals with some fixed point theorem for Random operator in metric spaces. We
find unique Random fixed point operator in closed subsets of metric spaces by considering a sequence of
measurable functions.
AMS Subject Classification: 47H10, 54H25.
Keywords: Fixed point,Common fixed point,Metric space, Borelsubset, Random Operator.
I. INTRODUCTION
Fixed point theory is one of the most dynamic research subjects in nonlinear sciences. Regarding the
feasibility of application of it to the various disciplines, a number of authors have contributed to this theory with
a number of publications. The most impressing result in this direction was given by Banach, called the Banach
contraction mapping principle: Every contraction in a complete metric space has a unique fixed point. In fact,
Banach demonstrated how to find the desired fixed point by offering a smart and plain technique. This
elementary technique leads to increasing of the possibility of solving various problems in different research
fields. This celebrated result has been generalized in many abstract spaces for distinct operators.
Random fixed point theory is playing an important role in mathematics and applied sciences. At present it
received considerable attentation due to enormous applications in many important areas such as nonlinear
analysis, probability theory and for thestudy of Random equations arising in various applied areas.
In recent years, the study of random fixed point has attracted much attention some of the recent
literature in random fixed point may be noted in [1, 5, 6, 8]. The aimof this paper is to prove some random
fixed point theorem.Before presenting our results we need some preliminaries that include relevant definition.
II. PRELIMINARIES
Throughout this paper, (Ω,Σ)denotes a measurable space, X be a metric space andC is non-empty subset of X.
Definition 2.1: A function f:Ω→C is said to be measurable if f '(B∩C)∈ Σfor every Borelsubset B of X.
Definition 2.2: A function f:Ω×C →C is said to be random operator, iff (.,X):Ω→C is measurable for every X
∈ C.
Definition 2.3: A random operator f:Ω×C →C is said to be continuous if for fixedt ∈ Ω,f(t,.):C×C is continuous.
Definition 2.4: A measurable function g:Ω→C is said to be random fixed pointof the random operator f:Ω×C
→C, if f (t, g(t) )=g(t), ∀ t ∈ Ω.
III. Main Results
Theorem (3.1): Let (X, d) be a complete metric space and E be a continuous self-mappings such that
    
   ])}(,{),()}(,{),([
)}(,{),()}(,{),(


gEhdhEgd
hEhdgEgd


     
     
     

















)}(,{),()}(,{),(])(),([
2
)}(,{),()}(,{),()(),(
)}(,{),()}(,{),()}(,{),(
)})(,{)},(,{(




hEhdhEgdhgd
hEhdgEhdhgd
hEgdhEhdgEgd
hEgEd
Random Fixed Point TheoremInMetric Spaces
International organization of Scientific Research 2 | P a g e
   
 
 ])(),([
)(),(
)}(,{),()}(,{),(




hgd
hgd
hEhdgEgd


(3.1.1)
Forall )(g ) and Xh )( with )()(  hg  , where )1,0[:,,,, 

R are such that
122   , then E has a unique fixed point in X.
Proof:Let {gn}be a sequence, define d as follows
)}(
1
,{}{  g n
Eg n 
 , n = 1,2,3,4…
If }{
1
}{  g ng n 
 for some n then the result follows immediately.
So let )()( 1   nn gg for all n then
   )}(,{)},(,{)(),( 11  nnnn gEgEdggd  
     
     
      




















)}(,{),()}(,{),()(),(
)}(,{),()}(,{),()(),(
)}(,{),()}(,{),()}(,{),(
1
2
1
11
111




nnnnnn
nnnnnn
nnnnnn
gEgdgEgdggd
gEgdgEgdggd
gEgdgEgdgEgd
    
    )}(,{),()}(,{),(
)}(,{),()}(,{),(
11
11






nnnn
nnnn
gEgdgEgd
gEgdgEgd
   
 
 )(),(.
)(),(
)}(,{),()}(,{),(
1
1
11




nn
nn
nnnn
ggd
ggd
gEgdgEgd





     
     
      




















)(),()(),()(),(
)(),()(),()(),(
)(),()(),()(),(
111
2
1
11
1111




nnnnnn
nnnnnn
nnnnnn
ggdggdggd
ggdggdggd
ggdggdggd
    
    )(),()(),(
)(),()(),(
11
11


nnnn
nnnn
ggdggd
ggdggd




   
 
 )(),(.
)(),(
)(),()(),(
1
1
11




nn
nn
nnnn
ggd
ggd
ggdggd





     
   









)(),()(),(
)(),()(),()(),(
111
1111



nnnn
nnnnnn
ggdggd
ggdggdggd
    
    )(),()(),(
)(),()(),(
11
11






nnnn
nnnn
ggdggd
ggdggd
 
 )(),(.
)(),(.
1
1


nn
nn
ggd
ggd




Random Fixed Point TheoremInMetric Spaces
International organization of Scientific Research 3 | P a g e
       
      
 )(),(.
)(),(.)(),()(),(
)(),()(),()(),(
1
111
111



nn
nnnnnn
nnnnnn
ggd
ggdggdggd
ggdggdggd






   )(),()()(),().( 11    nnnn ggdggd
    )(),().()(),()1( 11  nnnn ggdggd  
    )(),(
)1(
).(
)(),( 11 


 nnnn ggdggd 



 )(),(
)1(
).(
............
10 


ggd



Thus by triangle inequality, we have for nm 
       
 )(),()....(
)(),(.......)(),()(),()(),(
10
121
1211


ggdssss
ggdggdggdggd
mnnn
mmnnnnmn




Where 1
)1(
).(






s since 122  
Therefore
    

 nmggd
s
s
ggd
n
mn ,as,0)(),(
1
)(),( 10  . Hence the sequence {gn}is a Cauchy sequence, X
being complete, there exist some Xp  such that
)()(lim)}(,{.lim)(lim))(,( 1  uggEgEuE n
n
n
n
n
n






 

Therefore )(u is a fixed point of E.
Uniqueness:Let if possible there exist another fixed point )(v of E in X, such that )()(  vu  then from
(3.1.1) we have
   )}(,{)},(,{)(),(  vEuEdvud 
     
     
     

















)}(,{),()}(,{),(])(),([
)}(,{),()}(,{),()(),(
)}(,{),()}(,{),()}(,{),(
2




vEvdvEudvud
vEvduEvdvud
vEudvEvduEud
    
    )}(,{),()}(,{),(
)}(,{),()}(,{),(


uEvdvEud
vEvduEud


   
 
 )(),(.
)(),(
)}(,{),()}(,{),(




vud
vud
vEvduEud


      
 )(),()2(
)(),(.)(),()(),(


vud
vuduvdvud


   )(),()2()(),(  vudvud 
Since 12122   
    )(),()(),(  vudvud 
This is contradiction, so )()(  vu  .
This completes the proof of the theorem (3.1.1). We now prove another theorem.
Random Fixed Point TheoremInMetric Spaces
International organization of Scientific Research 4 | P a g e
Theorem (3.2): Let Ebe a self-mapping of a complete metric space (X, d), if for some positive integer p, p
E is
continuous, then E has unique fixed point in X.
Proof:Let  ng be sequence which converges to some. Xu  . Therefore its subsequence kn
g also converges
to u also
  )()(lim)(,lim)(lim))(,(
1
 ugg
p
Eg
p
Eu
p
E
kkk n
k
n
k
n
k



Therefore )(u is a fixed point of E
p , we now show that )())(,(  uuE  .
Let m be the smallest positive integer such that 11),(and)())(,(  mquEuuE
qm
 , If m>1 then
by (3.1.1) we get,
   
 )}(,{)}),(,{(
)}(,{)},(,{)}(,{),(
1


uEuEEd
uEuEduEud
m
m



     
     
      






















)}(,{),()}(,{)},(,{)()},(,{
)}(,{),()}(,{),(.)()},(,{
)}(,{)},(,{.)}(,{),(.)}(,{)},(,{
121
1
11




uEuduEuEduuEd
uEuduEuduuEd
uEuEduEuduEuEd
mm
mm
mmm
    
    )}(,{),()}(,{)},(,{
)}(,{),()}(,{)},(,{
1
1


uEuduEuEd
uEuduEuEd
mm
mm




   
 
  )()},(,{
)()},(,{
)}(,{),()}(,{)},(,{
1
1
1




uuEd
uuEd
uEuduEuEd
m
m
mm













     
     
      






















)}(,{),()}(,{)},(,{)()},(,{
)}(,{),(.)(),(.)()},(,{
)}(,{)},(,{.)}(,{),(.)()},(,{
121
1
11




uEuduEuEduuEd
uEuduuduuEd
uEuEduEuduuEd
mm
m
mm
    
    )(),()}(,{)},(,{
)}(,{),()()},(,{
1
1


uuduEuEd
uEuduuEd
m
m




   
 
  )()},(,{
)()},(,{
)}(,{),(.)()},(,{
1
1
1




uuEd
uuEd
uEuduuEd
m
m
m













  )()},(,{
1
 uuEd
m 

    
    )}(,{),(.)(()},(,{
)}(,{),()()},(,{
1
1


uEududuEd
uEuduuEd
m
m




  
  )()},(,{
)}(,{),(
1


uuEd
uEud
m 


Random Fixed Point TheoremInMetric Spaces
International organization of Scientific Research 5 | P a g e
   )}(,{),()()()},(,{)(
1
 uEuduuEd
m


   )()},(,{)()}(,{),()1(
1
 uuEduEud
m 

    )()},(,{
)1(
)(
)}(,{),(
1



 uuEduEud
m 



    )()},(,{.)}(,{),(
1
 uuEdsuEud
m 
 where 1
)1(
)(






s
Further,
   
 
 )}(,{),(
........................
)}(,{)},(,{.
)}(,{)},(,{)()},(,{
1
21
11



uEuds
uEuEds
uEuEduuEd
m
mm
mmm






Therefore
   
 )}(,{),(
)}(,{),()}(,{),(


uEud
uEudsuEud
m


Which is contradiction, therefore )(u is fixed point of E.That is )}(,{)(  uEu  .This completes the proof.
Theorem (3.3): Let E be a self-mapping of a complete metric space X such that for some positive integer m,
m
E Satisfies
 
     
     
      


















 .
)}(,{),(.)}(,{),()(),(
)}(,{),(.)}(,{),(.)(),(
)}(,{),(.)}(,{),(.)}(,{),(
)}(,{)},(,{
2





hEhdhEgdhgd
hEhdgEhdhgd
hEgdhEhdgEgd
hEgEd
mm
mm
mmm
mm
    
    )}(,{),()}(,{),(
)}(,{),()}(,{),(


gEhdhEgd
hEhdgEgd
mm
mm


   
 
  )(),(
)(),(
)}(,{),()}(,{),(




hgd
hgd
hEhdgEgd
mm










(3.3.1)
For all )(g ) and Xh )( with )()(  hg  , where )1,0[:,,,, 

R are such that
122   ,if for some positive integer m,Em
is continuous, then E has a unique fixed point in X.
Proof:
m
E has unique fixed point )(u in X follows from theorem (3.2).
)}(,{)))(,(()}(,{  uEEuEEuE
mm
 , Which implies that )}(,{  uE is fixed point of
m
E but has
unique fixed point )(u , so )()}(,{  uuE  .
Since any fixed point of E is also a fixed point of
m
E . It follows that )(u is unique fixed point of E. This
completes the proof of (3.3).We now prove another theorem.
Theorem 3.4: Let E & F be a pair of self-mappings of a complete metric space X, satisfying the following
conditions:
 )}(,{)},(,{  hFgEd
Random Fixed Point TheoremInMetric Spaces
International organization of Scientific Research 6 | P a g e
     
     
     

















)}(,{),(.)}(,{),(])(),([
)}(,{),(.)}(,{),(.)(),(
)}(,{),(.)}(,{),(.)}(,{),(
2




hFhdhFgdhgd
hFhdgEhdhgd
hFgdhFhdgEgd
    
    )}(,{),()}(,{),(
)}(,{),()}(,{),(


gEhdhFgd
hFhdgEgd


   
 
 )(),(.
)(),(
)}(,{),()}(,{),(




hgd
hgd
hFhdgEgd


(3.4.1)
For all )(g ), Xh )( with )()(  hg  ,where )1,0[:,,,, 

R are such that 122  
,if E & F are continuous on X , then E& F have a unique fixed point in X.
Proof:Let  ng be a continuous sequence defined as
 
 
{
evenisn)(,
oddisn)(,
1
1
)(






n
n
gE
gF
ng and }{}{ 1   nn gg for all n.
Now    )}(,{)},(,{)(),( 212122  nnnn gFgEdggd  
     
     
      




















.)}(,{),(.)}(,{),()(),(
)}(,{),()}(,{),(.)(),(
)}(,{),(.)}(,{),(.)}(,{),(
22212
2
212
22122212
212221212




nnnnnn
nnnnnn
nnnnnn
gFgdgFgdggd
gFgdgEgdggd
gFgdgFgdgEgd
    
    )}(,{),()}(,{),(
)}(,{),(.)}(,{),(
122212
221212






nnnn
nnnn
gEgdgEgd
gFgdgEgd
   
 
 )(),(.
)(),(
)}(,{),(.)}(,{),(
212
212
221212




nn
nn
nnnn
ggd
ggd
gFgdgEgd





     
     
      




















)(),(.)(),()(),(
)(),()(),(.)(),(
)(),(.)(),(.)(),(
1221212
2
212
12222212
1212122212




nnnnnn
nnnnnn
nnnnnn
ggdggdggd
ggdggdggd
ggdggdggd
    
    )(),()(),(
)(),()(),(
221212
122212


nnnn
nnnn
ggdggd
ggdggd




   
 
 )(),(.
)(),(
)(),(.)(),(
212
212
122212




nn
nn
nnnn
ggd
ggd
ggdggd





  
    
    )(),()(),(
)(),()(),(
)(),(
122212
122212
212









nnnn
nnnn
nn
ggdggd
ggdggd
gg
Random Fixed Point TheoremInMetric Spaces
International organization of Scientific Research 7 | P a g e
   )(),(.)(),(. 212122  nnnn ggdggd  
   )(),()()(),()( 122212    nnnn ggdggd
   )(),()()(),()1( 212122  nnnn ggdggd  
   )(),(
)1(
)(
)(),( 212122 


 nnnn ggdggd 



    )(),(.)(),( 212122  nnnn ggdsggd   1
)1(
)(
where 





s
Similarly
   
 )(),(
...............................
............................
)(),(.)(),(
10
.2
1222
2
122


ggds
ggdsggd
n
nnnn

 
Hence    )(),()(),( 10
.12
2212  ggdsggd
n
nn

 
Hence the sequence { n
g } is a Cauchy sequence in X and X being complete, therefore there exist )(u in X
such that )()(lim  ug n
n


the subsequence )(ug nk 
Now, if EF is continuous on X then
)()(lim)}(lim{))(,(
1
 uggEFuEF
kk n
k
n
k



Thus )()}(,{  uuEF  i.e. )(u is fixed point of EF.
Now we show that )()}(,{  uuF  . If )()}(,{  uuF  , then
   )}(,{)},(,{)}(,{),(  uFuEFduFud 
     
     
      

















)}(,{),()}(,{)},(,{)()},(,{
)(,{),()}(,{),()()},(,{
)}(,{)},(,{)}(,{),()}(,{)},(,{
2




uFuduFuFduuFd
uFuduEFuduuFd
uFuFduFuduEFuFd
    
    )(,{),()}(,{)},(,{
)}(,{),()}(,{)},(,{


uEFuduFuFd
uFuduEFuFd


   
 
  )()},(,{
)()},(,{
)}(,{),()}(,{)},(,{




uuFd
uuFd
uFuduEFuFd


     
     
      

















)}(,{),()}(,{)},(,{)()},(,{
)(,{),()}(),()()},(,{
)}(,{)},(,{)}(,{),()()},(,{
2




uFuduFuFduuFd
uFuduuduuFd
uFuFduFuduuFd
    
    )(),()}(,{)},(,{
)}(,{),()()},(,{


uuduFuFd
uFuduuFd


Random Fixed Point TheoremInMetric Spaces
International organization of Scientific Research 8 | P a g e
   
 
  )()},(,{
)()},(,{
)}(,{),()()},(,{




uuFd
uuFd
uFuduuFd


     
   








2
)()},(,{
)}(,{)},(,{)}(,{),()()},(,{



uuFd
uFuFduFuduuFd
         )()},(,{)()},(,{.0)()},(,{2  uuFduuFduuFd 
   )()},(,{2  uuFd
     
 )()},(,{
)()},(,{2)()},(,{


uuFd
uuFduuFd


Since 122   implies that   12  
Hence )()}(,{  uuF  .
Further    )()},(,{)()},(,{  uuEduuEd  implies that )()}(,{  uuE  .
So u is common fixed point of E & F
Uniqueness:
Let )(v is another common fixed point of E & F we have
   )}(,{)},(,{)(),(  vFuEdvud 
     
     
      

















)}(,{),()}(,{),()(),(
)}(,{),()}(,{),()(),(
)}(,{),()}(,{),()}(,{),(
2




vFvdvFudvud
vFvduEvdvud
vFudvFvduEud
    
    
   
 
  )(),(
)(),(
)}(,{),()}(,{),(
)}(,{),()}(,{),(
)}(,{),()}(,{),(






vud
vud
vFvduEud
uEvdvFud
vFvduEud




           
       










)(),()(),()(),(
)(),()}(),()(),()(),()(),()(),(
2



vvdvudvud
vvduvdvudvudvvduud
    
    )(),()(),(
)(),()(),(


uvdvud
vvduud


   
 
  )(),(
)(),(
)(),()(),(




vud
vud
vvduud


   )(),(2  vud
     
 )(),(
)(),(2)(),(


vud
vudvud


Because   12   . This implies )()(  vu  .This completes the proof of (3.4)
Random Fixed Point TheoremInMetric Spaces
International organization of Scientific Research 9 | P a g e
REFERENCES
[1]. Beg, I. and Shahzad, N. “Random approximations and random fixed point theorems,” J. Appl. Math.
Stochastic Anal. 7(1994). No.2, 145-150.
[2]. Bharucha-Reid, A.T. “Fixed point theorems in probabilistic analysis,” Bull. Amer. Math. Soc. 82(1976),
641-657.
[3]. Choudhary B.S. and Ray,M. “Convergence of an iteration leading to a solution of a random operator
equation,”J. Appl. Stochastic Anal. 12(1999). No. 2, 161-168.
[4]. Dhagat V.B., Sharma A. and BhardwajR.K. “Fixed point theorems for random operators in Hilbert
spaces,” International Journal of Math. Anal.2(2008).No.12,557-561.
[5]. O’Regan,D. “A continuous type result for random operators,” Proc. Amer. Math, Soc. 126(1998), 1963-
1971.
[6]. SehgalV.M. andWaters,C. “Some random fixed point theorems for condensing operators,” Proc. Amer.
Math. Soc. 90(1984). No.3, 425-429.
[7]. SushantkumarMohanta “Random fixed point in Banach spaces” Inter. J of Math Analysis Vol. 5 (2011)
No. 10, 451-461.
[8]. B. R wadkar,Ramakant Bhardwaj, Rajesh Shrivastava, “Some NewResult In Topological Space For Non-
Symmetric RationalExpression Concerning Banach Space” ,International Journal of Theoretical and
Applied Science 3(2): 65-78(2011).

More Related Content

PDF
The existence of common fixed point theorems of generalized contractive mappi...
PDF
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
PDF
On fixed point theorems in fuzzy metric spaces in integral type
PDF
Common fixed theorems for weakly compatible mappings via an
PDF
Stability criterion of periodic oscillations in a (14)
PDF
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
PDF
He laplace method for special nonlinear partial differential equations
PDF
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
The existence of common fixed point theorems of generalized contractive mappi...
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
On fixed point theorems in fuzzy metric spaces in integral type
Common fixed theorems for weakly compatible mappings via an
Stability criterion of periodic oscillations in a (14)
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
He laplace method for special nonlinear partial differential equations
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...

What's hot (18)

PDF
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
PDF
Fixed point theorem in fuzzy metric space with e.a property
PDF
Fixed Point Theorem in Fuzzy Metric Space
PDF
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
PDF
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
PDF
A unique common fixed point theorem for four
PDF
FUZZY IDEALS AND FUZZY DOT IDEALS ON BH-ALGEBRAS
PDF
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
PDF
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
PDF
2014 04 22 wits presentation oqw
PDF
Bc4301300308
PDF
Compatible Mapping and Common Fixed Point Theorem
PDF
Regularity and complexity in dynamical systems
PDF
On fixed point theorems in fuzzy metric spaces
PDF
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
PDF
B043007014
PDF
A common fixed point theorem in cone metric spaces
PDF
Common Fixed Point Theorems in Uniform Spaces
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Fixed point theorem in fuzzy metric space with e.a property
Fixed Point Theorem in Fuzzy Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
A unique common fixed point theorem for four
FUZZY IDEALS AND FUZZY DOT IDEALS ON BH-ALGEBRAS
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
2014 04 22 wits presentation oqw
Bc4301300308
Compatible Mapping and Common Fixed Point Theorem
Regularity and complexity in dynamical systems
On fixed point theorems in fuzzy metric spaces
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
B043007014
A common fixed point theorem in cone metric spaces
Common Fixed Point Theorems in Uniform Spaces
Ad

Similar to A05920109 (20)

PDF
A common random fixed point theorem for rational inequality in hilbert space
PDF
Fixed point theorems for random variables in complete metric spaces
PDF
Fixed point result in menger space with ea property
PDF
Fixed point result in probabilistic metric space
PDF
A common fixed point theorem for two random operators using random mann itera...
PDF
Some properties of two-fuzzy Nor med spaces
PDF
Stability of Iteration for Some General Operators in b-Metric
PDF
Some fixed point theorems in fuzzy mappings
PDF
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
PDF
Common random fixed point theorems of contractions in
PDF
Estimating structured vector autoregressive models
PDF
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
PDF
Common fixed point theorems with continuously subcompatible mappings in fuzz...
PDF
D242228
PDF
International Refereed Journal of Engineering and Science (IRJES)
PDF
Common fixed point theorems of integral type in menger pm spaces
DOCX
2. Prasad_Komal JNU2015 (1)
PDF
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
PDF
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
PDF
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
A common random fixed point theorem for rational inequality in hilbert space
Fixed point theorems for random variables in complete metric spaces
Fixed point result in menger space with ea property
Fixed point result in probabilistic metric space
A common fixed point theorem for two random operators using random mann itera...
Some properties of two-fuzzy Nor med spaces
Stability of Iteration for Some General Operators in b-Metric
Some fixed point theorems in fuzzy mappings
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
Common random fixed point theorems of contractions in
Estimating structured vector autoregressive models
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
Common fixed point theorems with continuously subcompatible mappings in fuzz...
D242228
International Refereed Journal of Engineering and Science (IRJES)
Common fixed point theorems of integral type in menger pm spaces
2. Prasad_Komal JNU2015 (1)
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
Ad

More from IOSR-JEN (20)

PDF
C05921721
PDF
B05921016
PDF
J05915457
PDF
I05914153
PDF
H05913540
PDF
G05913234
PDF
F05912731
PDF
E05912226
PDF
D05911621
PDF
C05911315
PDF
B05910712
PDF
A05910106
PDF
B05840510
PDF
I05844759
PDF
H05844346
PDF
G05843942
PDF
F05843238
PDF
E05842831
PDF
D05842227
PDF
C05841121
C05921721
B05921016
J05915457
I05914153
H05913540
G05913234
F05912731
E05912226
D05911621
C05911315
B05910712
A05910106
B05840510
I05844759
H05844346
G05843942
F05843238
E05842831
D05842227
C05841121

Recently uploaded (20)

PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
A Presentation on Artificial Intelligence
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PPTX
Spectroscopy.pptx food analysis technology
PDF
Heart disease approach using modified random forest and particle swarm optimi...
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
Tartificialntelligence_presentation.pptx
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Empathic Computing: Creating Shared Understanding
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
A Presentation on Artificial Intelligence
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
NewMind AI Weekly Chronicles - August'25-Week II
Building Integrated photovoltaic BIPV_UPV.pdf
SOPHOS-XG Firewall Administrator PPT.pptx
TLE Review Electricity (Electricity).pptx
Assigned Numbers - 2025 - Bluetooth® Document
Spectroscopy.pptx food analysis technology
Heart disease approach using modified random forest and particle swarm optimi...
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Group 1 Presentation -Planning and Decision Making .pptx
Encapsulation_ Review paper, used for researhc scholars
MIND Revenue Release Quarter 2 2025 Press Release
Advanced methodologies resolving dimensionality complications for autism neur...
Tartificialntelligence_presentation.pptx
Programs and apps: productivity, graphics, security and other tools
Empathic Computing: Creating Shared Understanding
Mobile App Security Testing_ A Comprehensive Guide.pdf
Digital-Transformation-Roadmap-for-Companies.pptx

A05920109

  • 1. IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 09 (September. 2015), ||V2|| PP 01-09 International organization of Scientific Research 1 | P a g e Random Fixed Point TheoremsIn Metric Space Balaji R Wadkar1 , Ramakant Bhardwaj2 , Basantkumar Singh3 1 (Dept. of Mathematics, “S R C O E” Lonikand, Pune & Research scholar of “AISECT University”, Bhopal, India) [email protected] 2 (Dept. of Mathematics, “TIT Group of Institutes (TIT &E)” Bhopal (M.P), India) [email protected] 3 (Principal, “AISECT University”, Bhopal-Chiklod Road, Near BangrasiaChouraha, Bhopal, (M.P), India) [email protected] Abstract: - The present paper deals with some fixed point theorem for Random operator in metric spaces. We find unique Random fixed point operator in closed subsets of metric spaces by considering a sequence of measurable functions. AMS Subject Classification: 47H10, 54H25. Keywords: Fixed point,Common fixed point,Metric space, Borelsubset, Random Operator. I. INTRODUCTION Fixed point theory is one of the most dynamic research subjects in nonlinear sciences. Regarding the feasibility of application of it to the various disciplines, a number of authors have contributed to this theory with a number of publications. The most impressing result in this direction was given by Banach, called the Banach contraction mapping principle: Every contraction in a complete metric space has a unique fixed point. In fact, Banach demonstrated how to find the desired fixed point by offering a smart and plain technique. This elementary technique leads to increasing of the possibility of solving various problems in different research fields. This celebrated result has been generalized in many abstract spaces for distinct operators. Random fixed point theory is playing an important role in mathematics and applied sciences. At present it received considerable attentation due to enormous applications in many important areas such as nonlinear analysis, probability theory and for thestudy of Random equations arising in various applied areas. In recent years, the study of random fixed point has attracted much attention some of the recent literature in random fixed point may be noted in [1, 5, 6, 8]. The aimof this paper is to prove some random fixed point theorem.Before presenting our results we need some preliminaries that include relevant definition. II. PRELIMINARIES Throughout this paper, (Ω,Σ)denotes a measurable space, X be a metric space andC is non-empty subset of X. Definition 2.1: A function f:Ω→C is said to be measurable if f '(B∩C)∈ Σfor every Borelsubset B of X. Definition 2.2: A function f:Ω×C →C is said to be random operator, iff (.,X):Ω→C is measurable for every X ∈ C. Definition 2.3: A random operator f:Ω×C →C is said to be continuous if for fixedt ∈ Ω,f(t,.):C×C is continuous. Definition 2.4: A measurable function g:Ω→C is said to be random fixed pointof the random operator f:Ω×C →C, if f (t, g(t) )=g(t), ∀ t ∈ Ω. III. Main Results Theorem (3.1): Let (X, d) be a complete metric space and E be a continuous self-mappings such that         ])}(,{),()}(,{),([ )}(,{),()}(,{),(   gEhdhEgd hEhdgEgd                                      )}(,{),()}(,{),(])(),([ 2 )}(,{),()}(,{),()(),( )}(,{),()}(,{),()}(,{),( )})(,{)},(,{(     hEhdhEgdhgd hEhdgEhdhgd hEgdhEhdgEgd hEgEd
  • 2. Random Fixed Point TheoremInMetric Spaces International organization of Scientific Research 2 | P a g e        ])(),([ )(),( )}(,{),()}(,{),(     hgd hgd hEhdgEgd   (3.1.1) Forall )(g ) and Xh )( with )()(  hg  , where )1,0[:,,,,   R are such that 122   , then E has a unique fixed point in X. Proof:Let {gn}be a sequence, define d as follows )}( 1 ,{}{  g n Eg n   , n = 1,2,3,4… If }{ 1 }{  g ng n   for some n then the result follows immediately. So let )()( 1   nn gg for all n then    )}(,{)},(,{)(),( 11  nnnn gEgEdggd                                          )}(,{),()}(,{),()(),( )}(,{),()}(,{),()(),( )}(,{),()}(,{),()}(,{),( 1 2 1 11 111     nnnnnn nnnnnn nnnnnn gEgdgEgdggd gEgdgEgdggd gEgdgEgdgEgd          )}(,{),()}(,{),( )}(,{),()}(,{),( 11 11       nnnn nnnn gEgdgEgd gEgdgEgd        )(),(. )(),( )}(,{),()}(,{),( 1 1 11     nn nn nnnn ggd ggd gEgdgEgd                                             )(),()(),()(),( )(),()(),()(),( )(),()(),()(),( 111 2 1 11 1111     nnnnnn nnnnnn nnnnnn ggdggdggd ggdggdggd ggdggdggd          )(),()(),( )(),()(),( 11 11   nnnn nnnn ggdggd ggdggd            )(),(. )(),( )(),()(),( 1 1 11     nn nn nnnn ggd ggd ggdggd                         )(),()(),( )(),()(),()(),( 111 1111    nnnn nnnnnn ggdggd ggdggdggd          )(),()(),( )(),()(),( 11 11       nnnn nnnn ggdggd ggdggd    )(),(. )(),(. 1 1   nn nn ggd ggd    
  • 3. Random Fixed Point TheoremInMetric Spaces International organization of Scientific Research 3 | P a g e                 )(),(. )(),(.)(),()(),( )(),()(),()(),( 1 111 111    nn nnnnnn nnnnnn ggd ggdggdggd ggdggdggd          )(),()()(),().( 11    nnnn ggdggd     )(),().()(),()1( 11  nnnn ggdggd       )(),( )1( ).( )(),( 11     nnnn ggdggd      )(),( )1( ).( ............ 10    ggd    Thus by triangle inequality, we have for nm           )(),()....( )(),(.......)(),()(),()(),( 10 121 1211   ggdssss ggdggdggdggd mnnn mmnnnnmn     Where 1 )1( ).(       s since 122   Therefore        nmggd s s ggd n mn ,as,0)(),( 1 )(),( 10  . Hence the sequence {gn}is a Cauchy sequence, X being complete, there exist some Xp  such that )()(lim)}(,{.lim)(lim))(,( 1  uggEgEuE n n n n n n          Therefore )(u is a fixed point of E. Uniqueness:Let if possible there exist another fixed point )(v of E in X, such that )()(  vu  then from (3.1.1) we have    )}(,{)},(,{)(),(  vEuEdvud                                     )}(,{),()}(,{),(])(),([ )}(,{),()}(,{),()(),( )}(,{),()}(,{),()}(,{),( 2     vEvdvEudvud vEvduEvdvud vEudvEvduEud          )}(,{),()}(,{),( )}(,{),()}(,{),(   uEvdvEud vEvduEud          )(),(. )(),( )}(,{),()}(,{),(     vud vud vEvduEud           )(),()2( )(),(.)(),()(),(   vud vuduvdvud      )(),()2()(),(  vudvud  Since 12122        )(),()(),(  vudvud  This is contradiction, so )()(  vu  . This completes the proof of the theorem (3.1.1). We now prove another theorem.
  • 4. Random Fixed Point TheoremInMetric Spaces International organization of Scientific Research 4 | P a g e Theorem (3.2): Let Ebe a self-mapping of a complete metric space (X, d), if for some positive integer p, p E is continuous, then E has unique fixed point in X. Proof:Let  ng be sequence which converges to some. Xu  . Therefore its subsequence kn g also converges to u also   )()(lim)(,lim)(lim))(,( 1  ugg p Eg p Eu p E kkk n k n k n k    Therefore )(u is a fixed point of E p , we now show that )())(,(  uuE  . Let m be the smallest positive integer such that 11),(and)())(,(  mquEuuE qm  , If m>1 then by (3.1.1) we get,      )}(,{)}),(,{( )}(,{)},(,{)}(,{),( 1   uEuEEd uEuEduEud m m                                             )}(,{),()}(,{)},(,{)()},(,{ )}(,{),()}(,{),(.)()},(,{ )}(,{)},(,{.)}(,{),(.)}(,{)},(,{ 121 1 11     uEuduEuEduuEd uEuduEuduuEd uEuEduEuduEuEd mm mm mmm          )}(,{),()}(,{)},(,{ )}(,{),()}(,{)},(,{ 1 1   uEuduEuEd uEuduEuEd mm mm             )()},(,{ )()},(,{ )}(,{),()}(,{)},(,{ 1 1 1     uuEd uuEd uEuduEuEd m m mm                                                       )}(,{),()}(,{)},(,{)()},(,{ )}(,{),(.)(),(.)()},(,{ )}(,{)},(,{.)}(,{),(.)()},(,{ 121 1 11     uEuduEuEduuEd uEuduuduuEd uEuEduEuduuEd mm m mm          )(),()}(,{)},(,{ )}(,{),()()},(,{ 1 1   uuduEuEd uEuduuEd m m             )()},(,{ )()},(,{ )}(,{),(.)()},(,{ 1 1 1     uuEd uuEd uEuduuEd m m m                )()},(,{ 1  uuEd m            )}(,{),(.)(()},(,{ )}(,{),()()},(,{ 1 1   uEududuEd uEuduuEd m m          )()},(,{ )}(,{),( 1   uuEd uEud m   
  • 5. Random Fixed Point TheoremInMetric Spaces International organization of Scientific Research 5 | P a g e    )}(,{),()()()},(,{)( 1  uEuduuEd m      )()},(,{)()}(,{),()1( 1  uuEduEud m       )()},(,{ )1( )( )}(,{),( 1     uuEduEud m         )()},(,{.)}(,{),( 1  uuEdsuEud m   where 1 )1( )(       s Further,        )}(,{),( ........................ )}(,{)},(,{. )}(,{)},(,{)()},(,{ 1 21 11    uEuds uEuEds uEuEduuEd m mm mmm       Therefore      )}(,{),( )}(,{),()}(,{),(   uEud uEudsuEud m   Which is contradiction, therefore )(u is fixed point of E.That is )}(,{)(  uEu  .This completes the proof. Theorem (3.3): Let E be a self-mapping of a complete metric space X such that for some positive integer m, m E Satisfies                                         . )}(,{),(.)}(,{),()(),( )}(,{),(.)}(,{),(.)(),( )}(,{),(.)}(,{),(.)}(,{),( )}(,{)},(,{ 2      hEhdhEgdhgd hEhdgEhdhgd hEgdhEhdgEgd hEgEd mm mm mmm mm          )}(,{),()}(,{),( )}(,{),()}(,{),(   gEhdhEgd hEhdgEgd mm mm           )(),( )(),( )}(,{),()}(,{),(     hgd hgd hEhdgEgd mm           (3.3.1) For all )(g ) and Xh )( with )()(  hg  , where )1,0[:,,,,   R are such that 122   ,if for some positive integer m,Em is continuous, then E has a unique fixed point in X. Proof: m E has unique fixed point )(u in X follows from theorem (3.2). )}(,{)))(,(()}(,{  uEEuEEuE mm  , Which implies that )}(,{  uE is fixed point of m E but has unique fixed point )(u , so )()}(,{  uuE  . Since any fixed point of E is also a fixed point of m E . It follows that )(u is unique fixed point of E. This completes the proof of (3.3).We now prove another theorem. Theorem 3.4: Let E & F be a pair of self-mappings of a complete metric space X, satisfying the following conditions:  )}(,{)},(,{  hFgEd
  • 6. Random Fixed Point TheoremInMetric Spaces International organization of Scientific Research 6 | P a g e                                    )}(,{),(.)}(,{),(])(),([ )}(,{),(.)}(,{),(.)(),( )}(,{),(.)}(,{),(.)}(,{),( 2     hFhdhFgdhgd hFhdgEhdhgd hFgdhFhdgEgd          )}(,{),()}(,{),( )}(,{),()}(,{),(   gEhdhFgd hFhdgEgd          )(),(. )(),( )}(,{),()}(,{),(     hgd hgd hFhdgEgd   (3.4.1) For all )(g ), Xh )( with )()(  hg  ,where )1,0[:,,,,   R are such that 122   ,if E & F are continuous on X , then E& F have a unique fixed point in X. Proof:Let  ng be a continuous sequence defined as     { evenisn)(, oddisn)(, 1 1 )(       n n gE gF ng and }{}{ 1   nn gg for all n. Now    )}(,{)},(,{)(),( 212122  nnnn gFgEdggd                                          .)}(,{),(.)}(,{),()(),( )}(,{),()}(,{),(.)(),( )}(,{),(.)}(,{),(.)}(,{),( 22212 2 212 22122212 212221212     nnnnnn nnnnnn nnnnnn gFgdgFgdggd gFgdgEgdggd gFgdgFgdgEgd          )}(,{),()}(,{),( )}(,{),(.)}(,{),( 122212 221212       nnnn nnnn gEgdgEgd gFgdgEgd        )(),(. )(),( )}(,{),(.)}(,{),( 212 212 221212     nn nn nnnn ggd ggd gFgdgEgd                                             )(),(.)(),()(),( )(),()(),(.)(),( )(),(.)(),(.)(),( 1221212 2 212 12222212 1212122212     nnnnnn nnnnnn nnnnnn ggdggdggd ggdggdggd ggdggdggd          )(),()(),( )(),()(),( 221212 122212   nnnn nnnn ggdggd ggdggd            )(),(. )(),( )(),(.)(),( 212 212 122212     nn nn nnnn ggd ggd ggdggd                  )(),()(),( )(),()(),( )(),( 122212 122212 212          nnnn nnnn nn ggdggd ggdggd gg
  • 7. Random Fixed Point TheoremInMetric Spaces International organization of Scientific Research 7 | P a g e    )(),(.)(),(. 212122  nnnn ggdggd      )(),()()(),()( 122212    nnnn ggdggd    )(),()()(),()1( 212122  nnnn ggdggd      )(),( )1( )( )(),( 212122     nnnn ggdggd         )(),(.)(),( 212122  nnnn ggdsggd   1 )1( )( where       s Similarly      )(),( ............................... ............................ )(),(.)(),( 10 .2 1222 2 122   ggds ggdsggd n nnnn    Hence    )(),()(),( 10 .12 2212  ggdsggd n nn    Hence the sequence { n g } is a Cauchy sequence in X and X being complete, therefore there exist )(u in X such that )()(lim  ug n n   the subsequence )(ug nk  Now, if EF is continuous on X then )()(lim)}(lim{))(,( 1  uggEFuEF kk n k n k    Thus )()}(,{  uuEF  i.e. )(u is fixed point of EF. Now we show that )()}(,{  uuF  . If )()}(,{  uuF  , then    )}(,{)},(,{)}(,{),(  uFuEFduFud                                      )}(,{),()}(,{)},(,{)()},(,{ )(,{),()}(,{),()()},(,{ )}(,{)},(,{)}(,{),()}(,{)},(,{ 2     uFuduFuFduuFd uFuduEFuduuFd uFuFduFuduEFuFd          )(,{),()}(,{)},(,{ )}(,{),()}(,{)},(,{   uEFuduFuFd uFuduEFuFd           )()},(,{ )()},(,{ )}(,{),()}(,{)},(,{     uuFd uuFd uFuduEFuFd                                       )}(,{),()}(,{)},(,{)()},(,{ )(,{),()}(),()()},(,{ )}(,{)},(,{)}(,{),()()},(,{ 2     uFuduFuFduuFd uFuduuduuFd uFuFduFuduuFd          )(),()}(,{)},(,{ )}(,{),()()},(,{   uuduFuFd uFuduuFd  
  • 8. Random Fixed Point TheoremInMetric Spaces International organization of Scientific Research 8 | P a g e         )()},(,{ )()},(,{ )}(,{),()()},(,{     uuFd uuFd uFuduuFd                     2 )()},(,{ )}(,{)},(,{)}(,{),()()},(,{    uuFd uFuFduFuduuFd          )()},(,{)()},(,{.0)()},(,{2  uuFduuFduuFd     )()},(,{2  uuFd        )()},(,{ )()},(,{2)()},(,{   uuFd uuFduuFd   Since 122   implies that   12   Hence )()}(,{  uuF  . Further    )()},(,{)()},(,{  uuEduuEd  implies that )()}(,{  uuE  . So u is common fixed point of E & F Uniqueness: Let )(v is another common fixed point of E & F we have    )}(,{)},(,{)(),(  vFuEdvud                                      )}(,{),()}(,{),()(),( )}(,{),()}(,{),()(),( )}(,{),()}(,{),()}(,{),( 2     vFvdvFudvud vFvduEvdvud vFudvFvduEud                   )(),( )(),( )}(,{),()}(,{),( )}(,{),()}(,{),( )}(,{),()}(,{),(       vud vud vFvduEud uEvdvFud vFvduEud                                   )(),()(),()(),( )(),()}(),()(),()(),()(),()(),( 2    vvdvudvud vvduvdvudvudvvduud          )(),()(),( )(),()(),(   uvdvud vvduud           )(),( )(),( )(),()(),(     vud vud vvduud      )(),(2  vud        )(),( )(),(2)(),(   vud vudvud   Because   12   . This implies )()(  vu  .This completes the proof of (3.4)
  • 9. Random Fixed Point TheoremInMetric Spaces International organization of Scientific Research 9 | P a g e REFERENCES [1]. Beg, I. and Shahzad, N. “Random approximations and random fixed point theorems,” J. Appl. Math. Stochastic Anal. 7(1994). No.2, 145-150. [2]. Bharucha-Reid, A.T. “Fixed point theorems in probabilistic analysis,” Bull. Amer. Math. Soc. 82(1976), 641-657. [3]. Choudhary B.S. and Ray,M. “Convergence of an iteration leading to a solution of a random operator equation,”J. Appl. Stochastic Anal. 12(1999). No. 2, 161-168. [4]. Dhagat V.B., Sharma A. and BhardwajR.K. “Fixed point theorems for random operators in Hilbert spaces,” International Journal of Math. Anal.2(2008).No.12,557-561. [5]. O’Regan,D. “A continuous type result for random operators,” Proc. Amer. Math, Soc. 126(1998), 1963- 1971. [6]. SehgalV.M. andWaters,C. “Some random fixed point theorems for condensing operators,” Proc. Amer. Math. Soc. 90(1984). No.3, 425-429. [7]. SushantkumarMohanta “Random fixed point in Banach spaces” Inter. J of Math Analysis Vol. 5 (2011) No. 10, 451-461. [8]. B. R wadkar,Ramakant Bhardwaj, Rajesh Shrivastava, “Some NewResult In Topological Space For Non- Symmetric RationalExpression Concerning Banach Space” ,International Journal of Theoretical and Applied Science 3(2): 65-78(2011).