SlideShare a Scribd company logo
Types of Algorithms
Algorithm classification
• Algorithms that use a similar problem-solving
approach can be grouped together
• This classification scheme is neither exhaustive
nor disjoint
• The purpose is not to be able to classify an
algorithm as one type or another, but to highlight
the various ways in which a problem can be
attacked
A short list of categories
• Algorithm types we will consider include:
– Simple recursive algorithms
– Backtracking algorithms
– Divide and conquer algorithms
– Dynamic programming algorithms
– Greedy algorithms
– Branch and bound algorithms
– Brute force algorithms
– Randomized algorithms
Simple recursive algorithms I
• A simple recursive algorithm:
– Solves the base cases directly
– Recurs with a simpler subproblem
– Does some extra work to convert the solution to the
simpler subproblem into a solution to the given
problem
• I call these “simple” because several of the other
algorithm types are inherently recursive
Example recursive algorithms
• To count the number of elements in a list:
– If the list is empty, return zero; otherwise,
– Step past the first element, and count the remaining
elements in the list
– Add one to the result
• To test if a value occurs in a list:
– If the list is empty, return false; otherwise,
– If the first thing in the list is the given value, return
true; otherwise
– Step past the first element, and test whether the value
occurs in the remainder of the list
Backtracking algorithms
• Backtracking algorithms are based on a depth-first
recursive search
• A backtracking algorithm:
– Tests to see if a solution has been found, and if so,
returns it; otherwise
– For each choice that can be made at this point,
• Make that choice
• Recur
• If the recursion returns a solution, return it
– If no choices remain, return failure
Example backtracking algorithm
• To color a map with no more than four colors:
– color(Country n)
• If all countries have been colored (n > number of
countries) return success; otherwise,
• For each color c of four colors,
– If country n is not adjacent to a country that has
been colored c
» Color country n with color c
» recursivly color country n+1
» If successful, return success
• Return failure (if loop exits)
Divide and Conquer
• A divide and conquer algorithm consists of two
parts:
– Divide the problem into smaller subproblems of the
same type, and solve these subproblems recursively
– Combine the solutions to the subproblems into a
solution to the original problem
• Traditionally, an algorithm is only called divide
and conquer if it contains two or more recursive
calls
Examples
• Quicksort:
– Partition the array into two parts, and quicksort each
of the parts
– No additional work is required to combine the two
sorted parts
• Mergesort:
– Cut the array in half, and mergesort each half
– Combine the two sorted arrays into a single sorted
array by merging them
Binary tree lookup
• Here’s how to look up something in a sorted
binary tree:
– Compare the key to the value in the root
• If the two values are equal, report success
• If the key is less, search the left subtree
• If the key is greater, search the right subtree
• This is not a divide and conquer algorithm
because, although there are two recursive calls,
only one is used at each level of the recursion
Fibonacci numbers
• To find the nth Fibonacci number:
– If n is zero or one, return one; otherwise,
– Compute fibonacci(n-1) and fibonacci(n-2)
– Return the sum of these two numbers
• This is an expensive algorithm
– It requires O(fibonacci(n)) time
– This is equivalent to exponential time, that is, O(2n)
Dynamic programming algorithms
• A dynamic programming algorithm remembers past results
and uses them to find new results
• Dynamic programming is generally used for optimization
problems
– Multiple solutions exist, need to find the “best” one
– Requires “optimal substructure” and “overlapping subproblems”
• Optimal substructure: Optimal solution contains optimal
solutions to subproblems
• Overlapping subproblems: Solutions to subproblems can be
stored and reused in a bottom-up fashion
• This differs from Divide and Conquer, where subproblems
generally need not overlap
Fibonacci numbers again
• To find the nth Fibonacci number:
– If n is zero or one, return one; otherwise,
– Compute, or look up in a table, fibonacci(n-1) and
fibonacci(n-2)
– Find the sum of these two numbers
– Store the result in a table and return it
• Since finding the nth Fibonacci number involves
finding all smaller Fibonacci numbers, the second
recursive call has little work to do
• The table may be preserved and used again later
Greedy algorithms
• An optimization problem is one in which you want
to find, not just a solution, but the best solution
• A “greedy algorithm” sometimes works well for
optimization problems
• A greedy algorithm works in phases: At each
phase:
– You take the best you can get right now, without regard
for future consequences
– You hope that by choosing a local optimum at each
step, you will end up at a global optimum
Example: Counting money
• Suppose you want to count out a certain amount of money,
using the fewest possible bills and coins
• A greedy algorithm would do this would be:
At each step, take the largest possible bill or coin that does
not overshoot
– Example: To make $6.39, you can choose:
• a $5 bill
• a $1 bill, to make $6
• a 25¢ coin, to make $6.25
• A 10¢ coin, to make $6.35
• four 1¢ coins, to make $6.39
• For US money, the greedy algorithm always gives the
optimum solution
A failure of the greedy algorithm
• In some (fictional) monetary system, “krons” come
in 1 kron, 7 kron, and 10 kron coins
• Using a greedy algorithm to count out 15 krons,
you would get
– A 10 kron piece
– Five 1 kron pieces, for a total of 15 krons
– This requires six coins
• A better solution would be to use two 7 kron pieces
and one 1 kron piece
– This only requires three coins
• The greedy algorithm results in a solution, but not
in an optimal solution
Branch and bound algorithms
• Branch and bound algorithms are generally used for
optimization problems
– As the algorithm progresses, a tree of subproblems is formed
– The original problem is considered the “root problem”
– A method is used to construct an upper and lower bound for a
given problem
– At each node, apply the bounding methods
• If the bounds match, it is deemed a feasible solution to that
particular subproblem
• If bounds do not match, partition the problem represented by
that node, and make the two subproblems into children nodes
– Continue, using the best known feasible solution to trim sections of
the tree, until all nodes have been solved or trimmed
Example branch and bound algorithm
• Travelling salesman problem: A salesman has to
visit each of n cities (at least) once each, and
wants to minimize total distance travelled
– Consider the root problem to be the problem of finding
the shortest route through a set of cities visiting each
city once
– Split the node into two child problems:
• Shortest route visiting city A first
• Shortest route not visiting city A first
– Continue subdividing similarly as the tree grows
Brute force algorithm
• A brute force algorithm simply tries all
possibilities until a satisfactory solution is found
– Such an algorithm can be:
• Optimizing: Find the best solution. This may require
finding all solutions, or if a value for the best
solution is known, it may stop when any best
solution is found
– Example: Finding the best path for a travelling salesman
• Satisficing: Stop as soon as a solution is found that
is good enough
– Example: Finding a travelling salesman path that is within
10% of optimal
Improving brute force algorithms
• Often, brute force algorithms require exponential
time
• Various heuristics and optimizations can be used
– Heuristic: A “rule of thumb” that helps you decide
which possibilities to look at first
– Optimization: In this case, a way to eliminate certain
possibilites without fully exploring them
Randomized algorithms
• A randomized algorithm uses a random number at
least once during the computation to make a
decision
– Example: In Quicksort, using a random number to
choose a pivot
– Example: Trying to factor a large prime by choosing
random numbers as possible divisors
The End

More Related Content

PPTX
Types of algorithms
PPT
35 algorithm-types
PDF
Lec07-Greedy Algorithms.pdf Lec07-Greedy Algorithms.pdf
PPT
32 algorithm-types
PPTX
Algo_Lecture01.pptx
PPTX
Greedy algorithm for design and analysis
PPT
Backtacking
PPTX
problem solving and algorithm development
Types of algorithms
35 algorithm-types
Lec07-Greedy Algorithms.pdf Lec07-Greedy Algorithms.pdf
32 algorithm-types
Algo_Lecture01.pptx
Greedy algorithm for design and analysis
Backtacking
problem solving and algorithm development

Similar to algorithm-types.ppt (20)

PDF
Data Analysis and Algorithms Lecture 1: Introduction
PPT
Types of Algorithms.ppt
PPTX
DynamicProgramming.pptx
PPTX
algo classification.pptx
PPTX
CH-1.1 Introduction (1).pptx
PPT
Greedy_Backtracking graph coloring.ppt
PPT
Algorithm designs and its technique.ppt
PPT
ADT(Algorithm Design Technique Backtracking algorithm).ppt
PPTX
Algorithm.pptx
PPTX
bcfbedbf-6679-4d5d-b8a5-7d4c9c48dba4.pptx
PPTX
Undecidable Problems and Approximation Algorithms
PDF
heuristic search Techniques and game playing.pdf
PPTX
Dynamic programming, Branch and bound algorithm & Greedy algorithms
PPTX
ALGO VS FLOW.pptx
PPTX
Analysis and Design of Algorithms
PPTX
Linear Programing.pptx
PPT
Greedy Algorihm
PPTX
mmmmmmm
Data Analysis and Algorithms Lecture 1: Introduction
Types of Algorithms.ppt
DynamicProgramming.pptx
algo classification.pptx
CH-1.1 Introduction (1).pptx
Greedy_Backtracking graph coloring.ppt
Algorithm designs and its technique.ppt
ADT(Algorithm Design Technique Backtracking algorithm).ppt
Algorithm.pptx
bcfbedbf-6679-4d5d-b8a5-7d4c9c48dba4.pptx
Undecidable Problems and Approximation Algorithms
heuristic search Techniques and game playing.pdf
Dynamic programming, Branch and bound algorithm & Greedy algorithms
ALGO VS FLOW.pptx
Analysis and Design of Algorithms
Linear Programing.pptx
Greedy Algorihm
mmmmmmm
Ad

Recently uploaded (20)

PPTX
chapter 3_bem.pptxKLJLKJLKJLKJKJKLJKJKJKHJH
PPTX
1-4 Chaptedjkfhkshdkfjhalksjdhfkjshdljkfhrs.pptx
PDF
RIBOSOMES.12.pdf kerala msc botany degree
PDF
Villa Thesis-Final.pdf NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PPTX
Cerebral_Palsy_Detailed_Presentation.pptx
PPTX
cse couse aefrfrqewrbqwrgbqgvq2w3vqbvq23rbgw3rnw345
PPTX
ESD MODULE-5hdbdhbdbdbdbbdbdbbdndbdbdbdbbdbd
PPT
APPROACH TO DEVELOPMENTALlllllllllllllllll
PPTX
LIFE ORIENTATION SLIDES 2025 Grade 11.pptx
PDF
Josh Gao Strength to Strength Book Summary
PDF
シュアーイノベーション採用ピッチ資料|Company Introduction & Recruiting Deck
PPTX
internship presentation of bsnl in colllege
PDF
HR Jobs in Jaipur: 2025 Trends, Banking Careers & Smart Hiring Tools
PPTX
Cyber_Awareness_Presrerereerentation.pptx
PPTX
OnePlus 13R – ⚡ All-Rounder King Performance: Snapdragon 8 Gen 3 – same as iQ...
PDF
313302 DBMS UNIT 1 PPT for diploma Computer Eng Unit 2
PPTX
CORE 1 HOUSEKEEPING TOURISM SECTOR POWERPOINT
PDF
reStartEvents 8:7 Nationwide All-Clearances Employer Directory.pdf
PPTX
Nervous_System_Drugs_PPT.pptxXXXXXXXXXXXXXXXXX
PDF
Daisia Frank: Strategy-Driven Real Estate with Heart.pdf
chapter 3_bem.pptxKLJLKJLKJLKJKJKLJKJKJKHJH
1-4 Chaptedjkfhkshdkfjhalksjdhfkjshdljkfhrs.pptx
RIBOSOMES.12.pdf kerala msc botany degree
Villa Thesis-Final.pdf NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Cerebral_Palsy_Detailed_Presentation.pptx
cse couse aefrfrqewrbqwrgbqgvq2w3vqbvq23rbgw3rnw345
ESD MODULE-5hdbdhbdbdbdbbdbdbbdndbdbdbdbbdbd
APPROACH TO DEVELOPMENTALlllllllllllllllll
LIFE ORIENTATION SLIDES 2025 Grade 11.pptx
Josh Gao Strength to Strength Book Summary
シュアーイノベーション採用ピッチ資料|Company Introduction & Recruiting Deck
internship presentation of bsnl in colllege
HR Jobs in Jaipur: 2025 Trends, Banking Careers & Smart Hiring Tools
Cyber_Awareness_Presrerereerentation.pptx
OnePlus 13R – ⚡ All-Rounder King Performance: Snapdragon 8 Gen 3 – same as iQ...
313302 DBMS UNIT 1 PPT for diploma Computer Eng Unit 2
CORE 1 HOUSEKEEPING TOURISM SECTOR POWERPOINT
reStartEvents 8:7 Nationwide All-Clearances Employer Directory.pdf
Nervous_System_Drugs_PPT.pptxXXXXXXXXXXXXXXXXX
Daisia Frank: Strategy-Driven Real Estate with Heart.pdf
Ad

algorithm-types.ppt

  • 2. Algorithm classification • Algorithms that use a similar problem-solving approach can be grouped together • This classification scheme is neither exhaustive nor disjoint • The purpose is not to be able to classify an algorithm as one type or another, but to highlight the various ways in which a problem can be attacked
  • 3. A short list of categories • Algorithm types we will consider include: – Simple recursive algorithms – Backtracking algorithms – Divide and conquer algorithms – Dynamic programming algorithms – Greedy algorithms – Branch and bound algorithms – Brute force algorithms – Randomized algorithms
  • 4. Simple recursive algorithms I • A simple recursive algorithm: – Solves the base cases directly – Recurs with a simpler subproblem – Does some extra work to convert the solution to the simpler subproblem into a solution to the given problem • I call these “simple” because several of the other algorithm types are inherently recursive
  • 5. Example recursive algorithms • To count the number of elements in a list: – If the list is empty, return zero; otherwise, – Step past the first element, and count the remaining elements in the list – Add one to the result • To test if a value occurs in a list: – If the list is empty, return false; otherwise, – If the first thing in the list is the given value, return true; otherwise – Step past the first element, and test whether the value occurs in the remainder of the list
  • 6. Backtracking algorithms • Backtracking algorithms are based on a depth-first recursive search • A backtracking algorithm: – Tests to see if a solution has been found, and if so, returns it; otherwise – For each choice that can be made at this point, • Make that choice • Recur • If the recursion returns a solution, return it – If no choices remain, return failure
  • 7. Example backtracking algorithm • To color a map with no more than four colors: – color(Country n) • If all countries have been colored (n > number of countries) return success; otherwise, • For each color c of four colors, – If country n is not adjacent to a country that has been colored c » Color country n with color c » recursivly color country n+1 » If successful, return success • Return failure (if loop exits)
  • 8. Divide and Conquer • A divide and conquer algorithm consists of two parts: – Divide the problem into smaller subproblems of the same type, and solve these subproblems recursively – Combine the solutions to the subproblems into a solution to the original problem • Traditionally, an algorithm is only called divide and conquer if it contains two or more recursive calls
  • 9. Examples • Quicksort: – Partition the array into two parts, and quicksort each of the parts – No additional work is required to combine the two sorted parts • Mergesort: – Cut the array in half, and mergesort each half – Combine the two sorted arrays into a single sorted array by merging them
  • 10. Binary tree lookup • Here’s how to look up something in a sorted binary tree: – Compare the key to the value in the root • If the two values are equal, report success • If the key is less, search the left subtree • If the key is greater, search the right subtree • This is not a divide and conquer algorithm because, although there are two recursive calls, only one is used at each level of the recursion
  • 11. Fibonacci numbers • To find the nth Fibonacci number: – If n is zero or one, return one; otherwise, – Compute fibonacci(n-1) and fibonacci(n-2) – Return the sum of these two numbers • This is an expensive algorithm – It requires O(fibonacci(n)) time – This is equivalent to exponential time, that is, O(2n)
  • 12. Dynamic programming algorithms • A dynamic programming algorithm remembers past results and uses them to find new results • Dynamic programming is generally used for optimization problems – Multiple solutions exist, need to find the “best” one – Requires “optimal substructure” and “overlapping subproblems” • Optimal substructure: Optimal solution contains optimal solutions to subproblems • Overlapping subproblems: Solutions to subproblems can be stored and reused in a bottom-up fashion • This differs from Divide and Conquer, where subproblems generally need not overlap
  • 13. Fibonacci numbers again • To find the nth Fibonacci number: – If n is zero or one, return one; otherwise, – Compute, or look up in a table, fibonacci(n-1) and fibonacci(n-2) – Find the sum of these two numbers – Store the result in a table and return it • Since finding the nth Fibonacci number involves finding all smaller Fibonacci numbers, the second recursive call has little work to do • The table may be preserved and used again later
  • 14. Greedy algorithms • An optimization problem is one in which you want to find, not just a solution, but the best solution • A “greedy algorithm” sometimes works well for optimization problems • A greedy algorithm works in phases: At each phase: – You take the best you can get right now, without regard for future consequences – You hope that by choosing a local optimum at each step, you will end up at a global optimum
  • 15. Example: Counting money • Suppose you want to count out a certain amount of money, using the fewest possible bills and coins • A greedy algorithm would do this would be: At each step, take the largest possible bill or coin that does not overshoot – Example: To make $6.39, you can choose: • a $5 bill • a $1 bill, to make $6 • a 25¢ coin, to make $6.25 • A 10¢ coin, to make $6.35 • four 1¢ coins, to make $6.39 • For US money, the greedy algorithm always gives the optimum solution
  • 16. A failure of the greedy algorithm • In some (fictional) monetary system, “krons” come in 1 kron, 7 kron, and 10 kron coins • Using a greedy algorithm to count out 15 krons, you would get – A 10 kron piece – Five 1 kron pieces, for a total of 15 krons – This requires six coins • A better solution would be to use two 7 kron pieces and one 1 kron piece – This only requires three coins • The greedy algorithm results in a solution, but not in an optimal solution
  • 17. Branch and bound algorithms • Branch and bound algorithms are generally used for optimization problems – As the algorithm progresses, a tree of subproblems is formed – The original problem is considered the “root problem” – A method is used to construct an upper and lower bound for a given problem – At each node, apply the bounding methods • If the bounds match, it is deemed a feasible solution to that particular subproblem • If bounds do not match, partition the problem represented by that node, and make the two subproblems into children nodes – Continue, using the best known feasible solution to trim sections of the tree, until all nodes have been solved or trimmed
  • 18. Example branch and bound algorithm • Travelling salesman problem: A salesman has to visit each of n cities (at least) once each, and wants to minimize total distance travelled – Consider the root problem to be the problem of finding the shortest route through a set of cities visiting each city once – Split the node into two child problems: • Shortest route visiting city A first • Shortest route not visiting city A first – Continue subdividing similarly as the tree grows
  • 19. Brute force algorithm • A brute force algorithm simply tries all possibilities until a satisfactory solution is found – Such an algorithm can be: • Optimizing: Find the best solution. This may require finding all solutions, or if a value for the best solution is known, it may stop when any best solution is found – Example: Finding the best path for a travelling salesman • Satisficing: Stop as soon as a solution is found that is good enough – Example: Finding a travelling salesman path that is within 10% of optimal
  • 20. Improving brute force algorithms • Often, brute force algorithms require exponential time • Various heuristics and optimizations can be used – Heuristic: A “rule of thumb” that helps you decide which possibilities to look at first – Optimization: In this case, a way to eliminate certain possibilites without fully exploring them
  • 21. Randomized algorithms • A randomized algorithm uses a random number at least once during the computation to make a decision – Example: In Quicksort, using a random number to choose a pivot – Example: Trying to factor a large prime by choosing random numbers as possible divisors