This document summarizes a research paper that analyzes machine learning algorithms for intrusion detection using the UNSW-NB15 dataset. It compares the performance of classifiers like KNN, SGD, Random Forest, Logistic Regression, and Naive Bayes, both with and without feature selection. Chi-Square feature selection is applied to reduce irrelevant features before training the classifiers. The classifiers' performance is evaluated based on metrics like accuracy, precision, recall, F1-score, true positive rate and false positive rate. The paper finds that feature selection can improve classifiers' performance for intrusion detection.