SlideShare a Scribd company logo
Lists
COMP171
Fall 2005
Linked Lists / Slide 2
Outline
 Abstract Data Type (ADT)
 List ADT
 List ADT with Array Implementation
 Linked lists
 Basic operations of linked lists
 Insert, find, delete, print, etc.
 Variations of linked lists
 Circular linked lists
 Doubly linked lists
Linked Lists / Slide 3
Abstract Data Type (ADT)
 Data type
 a set of objects + a set of operations
 Example: integer
set of whole numbers
operations: +, -, x, /
 Can this be generalized?
 (e.g. procedures generalize the notion of an
operator)
 Yes!
 Abstract data type
 high-level abstractions (managing complexity
through abstraction)
 Encapsulation
Linked Lists / Slide 4
Encapsulation
 Operation on the ADT can only be done by calling the
appropriate function
 no mention of how the set of operations is
implemented
 The definition of the type and all operations on that
type can be localized to one section of the program
 If we wish to change the implementation of an ADT
 we know where to look
 by revising one small section we can be sure that
there is no subtlety elsewhere that will cause errors
 We can treat the ADT as a primitive type: we have no
concern with the underlying implementation
 ADT  C++: class
 method  C++: member function
Linked Lists / Slide 5
ADT…
 Examples
 the set ADT
A set of elements
Operations: union, intersection, size and complement
 the queue ADT
A set of sequences of elements
Operations: create empty queue, insert, examine, delete,
and destroy queue
 Two ADT’s are different if they have the same
underlying model but different operations
 E.g. a different set ADT with only the union and find
operations
 The appropriateness of an implementation
depends very much on the operations to be
performed
Linked Lists / Slide 6
Pros and Cons
 Implementation of the ADT is separate from its use
 Modular: one module for one ADT
 Easier to debug
 Easier for several people to work simultaneously
 Code for the ADT can be reused in different
applications
 Information hiding
 A logical unit to do a specific job
 implementation details can be changed without affecting user
programs
 Allow rapid prototying
 Prototype with simple ADT implementations, then tune them
later when necessary
 Loss of efficiency
Linked Lists / Slide 7
The List ADT
 A sequence of zero or more elements
A1, A2, A3, … AN
 N: length of the list
 A1: first element
 AN: last element
 Ai: position i
 If N=0, then empty list
 Linearly ordered
 Ai precedes Ai+1
 Ai follows Ai-1
Linked Lists / Slide 8
Operations
 printList: print the list
 makeEmpty: create an empty list
 find: locate the position of an object in a list
 list: 34,12, 52, 16, 12
 find(52)  3
 insert: insert an object to a list
 insert(x,3)  34, 12, 52, x, 16, 12
 remove: delete an element from the list
 remove(52)  34, 12, x, 16, 12
 findKth: retrieve the element at a certain
position
Linked Lists / Slide 9
Implementation of an ADT
 Choose a data structure to represent the
ADT
 E.g. arrays, records, etc.
 Each operation associated with the ADT is
implemented by one or more subroutines
 Two standard implementations for the list ADT
 Array-based
 Linked list
Linked Lists / Slide 10
Array Implementation
 Elements are stored in contiguous array
positions
Linked Lists / Slide 11
Array Implementation...
 Requires an estimate of the maximum size of
the list
 waste space
 printList and find: linear
 findKth: constant
 insert and delete: slow
 e.g. insert at position 0 (making a new element)
requires first pushing the entire array down one spot to
make room
 e.g. delete at position 0
requires shifting all the elements in the list up one
 On average, half of the lists needs to be moved for
either operation
Linked Lists / Slide 12
Pointer Implementation (Linked List)
 Ensure that the list is not stored contiguously
 use a linked list
 a series of structures that are not necessarily adjacent
in memory
 Each node contains the element and a pointer to a
structure containing its successor
the last cell’s next link points to NULL
 Compared to the array implementation,
the pointer implementation uses only as much space as is needed
for the elements currently on the list
but requires space for the pointers in each cell
Linked Lists / Slide 13
Linked Lists
 A linked list is a series of connected nodes
 Each node contains at least
 A piece of data (any type)
 Pointer to the next node in the list
 Head: pointer to the first node
 The last node points to NULL
A 
Head
B C
A
data pointer
node
Linked Lists / Slide 14
A Simple Linked List Class
 We use two classes: Node and List
 Declare Node class for the nodes
 data: double-type data in this example
 next: a pointer to the next node in the list
class Node {
public:
double data; // data
Node* next; // pointer to next
};
Linked Lists / Slide 15
A Simple Linked List Class
 Declare List, which contains
 head: a pointer to the first node in the list.
Since the list is empty initially, head is set to NULL
 Operations on List
class List {
public:
List(void) { head = NULL; } // constructor
~List(void); // destructor
bool IsEmpty() { return head == NULL; }
Node* InsertNode(int index, double x);
int FindNode(double x);
int DeleteNode(double x);
void DisplayList(void);
private:
Node* head;
};
Linked Lists / Slide 16
A Simple Linked List Class
 Operations of List
 IsEmpty: determine whether or not the list is
empty
 InsertNode: insert a new node at a particular
position
 FindNode: find a node with a given value
 DeleteNode: delete a node with a given value
 DisplayList: print all the nodes in the list
Linked Lists / Slide 17
Inserting a new node
 Node* InsertNode(int index, double x)
 Insert a node with data equal to x after the index’th elements.
(i.e., when index = 0, insert the node as the first element;
when index = 1, insert the node after the first element, and so on)
 If the insertion is successful, return the inserted node.
Otherwise, return NULL.
(If index is < 0 or > length of the list, the insertion will fail.)
 Steps
1. Locate index’th element
2. Allocate memory for the new node
3. Point the new node to its successor
4. Point the new node’s predecessor to the new node
newNode
index’th
element
Linked Lists / Slide 18
Inserting a new node
 Possible cases of InsertNode
1. Insert into an empty list
2. Insert in front
3. Insert at back
4. Insert in middle
 But, in fact, only need to handle two cases
 Insert as the first node (Case 1 and Case 2)
 Insert in the middle or at the end of the list (Case 3 and
Case 4)
Linked Lists / Slide 19
Inserting a new node
Node* List::InsertNode(int index, double x) {
if (index < 0) return NULL;
int currIndex = 1;
Node* currNode = head;
while (currNode && index > currIndex) {
currNode = currNode->next;
currIndex++;
}
if (index > 0 && currNode == NULL) return NULL;
Node* newNode = new Node;
newNode->data = x;
if (index == 0) {
newNode->next = head;
head = newNode;
}
else {
newNode->next = currNode->next;
currNode->next = newNode;
}
return newNode;
}
Try to locate
index’th node. If it
doesn’t exist,
return NULL.
Linked Lists / Slide 20
Inserting a new node
Node* List::InsertNode(int index, double x) {
if (index < 0) return NULL;
int currIndex = 1;
Node* currNode = head;
while (currNode && index > currIndex) {
currNode = currNode->next;
currIndex++;
}
if (index > 0 && currNode == NULL) return NULL;
Node* newNode = new Node;
newNode->data = x;
if (index == 0) {
newNode->next = head;
head = newNode;
}
else {
newNode->next = currNode->next;
currNode->next = newNode;
}
return newNode;
}
Create a new node
Linked Lists / Slide 21
Inserting a new node
Node* List::InsertNode(int index, double x) {
if (index < 0) return NULL;
int currIndex = 1;
Node* currNode = head;
while (currNode && index > currIndex) {
currNode = currNode->next;
currIndex++;
}
if (index > 0 && currNode == NULL) return NULL;
Node* newNode = new Node;
newNode->data = x;
if (index == 0) {
newNode->next = head;
head = newNode;
}
else {
newNode->next = currNode->next;
currNode->next = newNode;
}
return newNode;
}
Insert as first element
head
newNode
Linked Lists / Slide 22
Inserting a new node
Node* List::InsertNode(int index, double x) {
if (index < 0) return NULL;
int currIndex = 1;
Node* currNode = head;
while (currNode && index > currIndex) {
currNode = currNode->next;
currIndex++;
}
if (index > 0 && currNode == NULL) return NULL;
Node* newNode = new Node;
newNode->data = x;
if (index == 0) {
newNode->next = head;
head = newNode;
}
else {
newNode->next = currNode->next;
currNode->next = newNode;
}
return newNode;
}
Insert after currNode
newNode
currNode
Linked Lists / Slide 23
Finding a node
 int FindNode(double x)
 Search for a node with the value equal to x in the list.
 If such a node is found, return its position. Otherwise, return
0.
int List::FindNode(double x) {
Node* currNode = head;
int currIndex = 1;
while (currNode && currNode->data != x) {
currNode = currNode->next;
currIndex++;
}
if (currNode) return currIndex;
return 0;
}
Linked Lists / Slide 24
Deleting a node
 int DeleteNode(double x)
 Delete a node with the value equal to x from the list.
 If such a node is found, return its position. Otherwise, return
0.
 Steps
 Find the desirable node (similar to FindNode)
 Release the memory occupied by the found node
 Set the pointer of the predecessor of the found node to the
successor of the found node
 Like InsertNode, there are two special cases
 Delete first node
 Delete the node in middle or at the end of the list
Linked Lists / Slide 25
Deleting a node
int List::DeleteNode(double x) {
Node* prevNode = NULL;
Node* currNode = head;
int currIndex = 1;
while (currNode && currNode->data != x) {
prevNode = currNode;
currNode = currNode->next;
currIndex++;
}
if (currNode) {
if (prevNode) {
prevNode->next = currNode->next;
delete currNode;
}
else {
head = currNode->next;
delete currNode;
}
return currIndex;
}
return 0;
}
Try to find the node with
its value equal to x
Linked Lists / Slide 26
Deleting a node
int List::DeleteNode(double x) {
Node* prevNode = NULL;
Node* currNode = head;
int currIndex = 1;
while (currNode && currNode->data != x) {
prevNode = currNode;
currNode = currNode->next;
currIndex++;
}
if (currNode) {
if (prevNode) {
prevNode->next = currNode->next;
delete currNode;
}
else {
head = currNode->next;
delete currNode;
}
return currIndex;
}
return 0;
}
currNode
prevNode
Linked Lists / Slide 27
Deleting a node
int List::DeleteNode(double x) {
Node* prevNode = NULL;
Node* currNode = head;
int currIndex = 1;
while (currNode && currNode->data != x) {
prevNode = currNode;
currNode = currNode->next;
currIndex++;
}
if (currNode) {
if (prevNode) {
prevNode->next = currNode->next;
delete currNode;
}
else {
head = currNode->next;
delete currNode;
}
return currIndex;
}
return 0;
}
currNode
head
Linked Lists / Slide 28
Printing all the elements
 void DisplayList(void)
 Print the data of all the elements
 Print the number of the nodes in the list
void List::DisplayList()
{
int num = 0;
Node* currNode = head;
while (currNode != NULL){
cout << currNode->data << endl;
currNode = currNode->next;
num++;
}
cout << "Number of nodes in the list: " << num << endl;
}
Linked Lists / Slide 29
Destroying the list
 ~List(void)
 Use the destructor to release all the memory used by the list.
 Step through the list and delete each node one by one.
List::~List(void) {
Node* currNode = head, *nextNode = NULL;
while (currNode != NULL)
{
nextNode = currNode->next;
// destroy the current node
delete currNode;
currNode = nextNode;
}
}
Linked Lists / Slide 30
Using List
int main(void)
{
List list;
list.InsertNode(0, 7.0); // successful
list.InsertNode(1, 5.0); // successful
list.InsertNode(-1, 5.0); // unsuccessful
list.InsertNode(0, 6.0); // successful
list.InsertNode(8, 4.0); // unsuccessful
// print all the elements
list.DisplayList();
if(list.FindNode(5.0) > 0) cout << "5.0 found" << endl;
else cout << "5.0 not found" << endl;
if(list.FindNode(4.5) > 0) cout << "4.5 found" << endl;
else cout << "4.5 not found" << endl;
list.DeleteNode(7.0);
list.DisplayList();
return 0;
}
6
7
5
Number of nodes in the list: 3
5.0 found
4.5 not found
6
5
Number of nodes in the list: 2
result
Linked Lists / Slide 31
Variations of Linked Lists
 Circular linked lists
 The last node points to the first node of the list
 How do we know when we have finished traversing
the list? (Tip: check if the pointer of the current
node is equal to the head.)
A
Head
B C
Linked Lists / Slide 32
Variations of Linked Lists
 Doubly linked lists
 Each node points to not only successor but the
predecessor
 There are two NULL: at the first and last nodes in
the list
 Advantage: given a node, it is easy to visit its
predecessor. Convenient to traverse lists backwards
A
Head
B
 C 
Linked Lists / Slide 33
Array versus Linked Lists
 Linked lists are more complex to code and manage
than arrays, but they have some distinct advantages.
 Dynamic: a linked list can easily grow and shrink in size.
We don’t need to know how many nodes will be in the list. They
are created in memory as needed.
In contrast, the size of a C++ array is fixed at compilation time.
 Easy and fast insertions and deletions
To insert or delete an element in an array, we need to copy to
temporary variables to make room for new elements or close the
gap caused by deleted elements.
With a linked list, no need to move other nodes. Only need to
reset some pointers.
Linked Lists / Slide 34
Example: The Polynomial ADT
 An ADT for single-variable polynomials
 Array implementation



N
i
i
i x
a
x
f
0
)
(
Linked Lists / Slide 35
The Polynomial ADT…
 Acceptable if most of the coefficients Aj are
nonzero, undesirable if this is not the case
 E.g. multiply
most of the time is spent multiplying zeros and stepping
through nonexistent parts of the input polynomials
 Implementation using a singly linked list
 Each term is contained in one cell, and the cells
are sorted in decreasing order of exponents
5
11
2
3
)
(
1
5
10
)
(
1492
1990
2
14
1000
1







x
x
x
x
P
x
x
x
P
Ad

Recommended

PPT
List
Amit Vats
 
PPT
linked-list - Abstract data type (ADT) Linked Lists
Anil Yadav
 
PPT
Abstract data types
JAGDEEPKUMAR23
 
PPT
Chapter 5 ds
Hanif Durad
 
PPT
Lecture 3 List of Data Structures & Algorithms
haseebanjum2611
 
PPT
Data structures & algorithms lecture 3
Poojith Chowdhary
 
PPT
linked-list.ppt
DikkySuryadiSKomMKom
 
PPTX
3.linked list
Chandan Singh
 
PPT
linked-list - Finding a node Deleting a node
Anil Yadav
 
PPT
Algo>ADT list & linked list
Ain-ul-Moiz Khawaja
 
PPTX
DS_LinkedList.pptx
msohail37
 
PPT
dynamicList.ppt
ssuser0be977
 
PPTX
Linked lists a
Khuram Shahzad
 
PPTX
List,Stacks and Queues.pptx
UmatulSaboohSaleem1
 
PPTX
Lecture 4 data structures and algorithms
Aakash deep Singhal
 
PPTX
singlelinkedlistasdfghzxcvbnmqwertyuiopa
rabailasghar3
 
PPTX
Linked List.pptx
PoonamPatil120
 
PPTX
Linear data structure concepts
Akila Krishnamoorthy
 
PPTX
unit 1.pptx
ssuser7922b8
 
PPTX
DSL Unit 4 (Linked list) (PPT)SE3rd sem sppu.pptx
vaibhavkore8
 
PPT
linkedlistwith animations.ppt
MuhammadShafi89
 
PPT
lecture 02.2.ppt
NathanielAdika
 
PPTX
Linked lists in Data Structure
Muhazzab Chouhadry
 
PPTX
Deletion from single way linked list and search
Estiak Khan
 
PPTX
Linked list (1).pptx
rajveersingh643731
 
PPT
Lec6 mod linked list
Ibrahim El-Torbany
 
PPTX
EC2311 – Data Structures and C Programming
Padma Priya
 
PPTX
AI_Presentation (1). Artificial intelligence
RoselynKaur8thD34
 
PDF
Abraham Silberschatz-Operating System Concepts (9th,2012.12).pdf
Shabista Imam
 

More Related Content

Similar to Array linked list.ppt (20)

PPT
linked-list - Finding a node Deleting a node
Anil Yadav
 
PPT
Algo>ADT list & linked list
Ain-ul-Moiz Khawaja
 
PPTX
DS_LinkedList.pptx
msohail37
 
PPT
dynamicList.ppt
ssuser0be977
 
PPTX
Linked lists a
Khuram Shahzad
 
PPTX
List,Stacks and Queues.pptx
UmatulSaboohSaleem1
 
PPTX
Lecture 4 data structures and algorithms
Aakash deep Singhal
 
PPTX
singlelinkedlistasdfghzxcvbnmqwertyuiopa
rabailasghar3
 
PPTX
Linked List.pptx
PoonamPatil120
 
PPTX
Linear data structure concepts
Akila Krishnamoorthy
 
PPTX
unit 1.pptx
ssuser7922b8
 
PPTX
DSL Unit 4 (Linked list) (PPT)SE3rd sem sppu.pptx
vaibhavkore8
 
PPT
linkedlistwith animations.ppt
MuhammadShafi89
 
PPT
lecture 02.2.ppt
NathanielAdika
 
PPTX
Linked lists in Data Structure
Muhazzab Chouhadry
 
PPTX
Deletion from single way linked list and search
Estiak Khan
 
PPTX
Linked list (1).pptx
rajveersingh643731
 
PPT
Lec6 mod linked list
Ibrahim El-Torbany
 
PPTX
EC2311 – Data Structures and C Programming
Padma Priya
 
linked-list - Finding a node Deleting a node
Anil Yadav
 
Algo>ADT list & linked list
Ain-ul-Moiz Khawaja
 
DS_LinkedList.pptx
msohail37
 
dynamicList.ppt
ssuser0be977
 
Linked lists a
Khuram Shahzad
 
List,Stacks and Queues.pptx
UmatulSaboohSaleem1
 
Lecture 4 data structures and algorithms
Aakash deep Singhal
 
singlelinkedlistasdfghzxcvbnmqwertyuiopa
rabailasghar3
 
Linked List.pptx
PoonamPatil120
 
Linear data structure concepts
Akila Krishnamoorthy
 
unit 1.pptx
ssuser7922b8
 
DSL Unit 4 (Linked list) (PPT)SE3rd sem sppu.pptx
vaibhavkore8
 
linkedlistwith animations.ppt
MuhammadShafi89
 
lecture 02.2.ppt
NathanielAdika
 
Linked lists in Data Structure
Muhazzab Chouhadry
 
Deletion from single way linked list and search
Estiak Khan
 
Linked list (1).pptx
rajveersingh643731
 
Lec6 mod linked list
Ibrahim El-Torbany
 
EC2311 – Data Structures and C Programming
Padma Priya
 

Recently uploaded (20)

PPTX
AI_Presentation (1). Artificial intelligence
RoselynKaur8thD34
 
PDF
Abraham Silberschatz-Operating System Concepts (9th,2012.12).pdf
Shabista Imam
 
PDF
Rapid Prototyping for XR: Lecture 1 Introduction to Prototyping
Mark Billinghurst
 
PPTX
Industrial internet of things IOT Week-3.pptx
KNaveenKumarECE
 
PDF
Rapid Prototyping for XR: Lecture 6 - AI for Prototyping and Research Directi...
Mark Billinghurst
 
PPTX
Industry 4.o the fourth revolutionWeek-2.pptx
KNaveenKumarECE
 
PDF
Rapid Prototyping for XR: Lecture 5 - Cross Platform Development
Mark Billinghurst
 
PDF
Complete University of Calculus :: 2nd edition
Shabista Imam
 
PDF
輪読会資料_Miipher and Miipher2 .
NABLAS株式会社
 
PPTX
DESIGN OF REINFORCED CONCRETE ELEMENTS S
prabhusp8
 
PPTX
Bitumen Emulsion by Dr Sangita Ex CRRI Delhi
grilcodes
 
PDF
International Journal of Advanced Information Technology (IJAIT)
ijait
 
PPTX
Solar thermal – Flat plate and concentrating collectors .pptx
jdaniabraham1
 
PDF
Modern multi-proposer consensus implementations
François Garillot
 
PPTX
Deep Learning for Natural Language Processing_FDP on 16 June 2025 MITS.pptx
resming1
 
PPTX
Stability of IBR Dominated Grids - IEEE PEDG 2025 - short.pptx
ssuser307730
 
PDF
تقرير عن التحليل الديناميكي لتدفق الهواء حول جناح.pdf
محمد قصص فتوتة
 
PPTX
retina_biometrics ruet rajshahi bangdesh.pptx
MdRakibulIslam697135
 
PDF
Rapid Prototyping for XR: Lecture 2 - Low Fidelity Prototyping.
Mark Billinghurst
 
PDF
Complete guidance book of Asp.Net Web API
Shabista Imam
 
AI_Presentation (1). Artificial intelligence
RoselynKaur8thD34
 
Abraham Silberschatz-Operating System Concepts (9th,2012.12).pdf
Shabista Imam
 
Rapid Prototyping for XR: Lecture 1 Introduction to Prototyping
Mark Billinghurst
 
Industrial internet of things IOT Week-3.pptx
KNaveenKumarECE
 
Rapid Prototyping for XR: Lecture 6 - AI for Prototyping and Research Directi...
Mark Billinghurst
 
Industry 4.o the fourth revolutionWeek-2.pptx
KNaveenKumarECE
 
Rapid Prototyping for XR: Lecture 5 - Cross Platform Development
Mark Billinghurst
 
Complete University of Calculus :: 2nd edition
Shabista Imam
 
輪読会資料_Miipher and Miipher2 .
NABLAS株式会社
 
DESIGN OF REINFORCED CONCRETE ELEMENTS S
prabhusp8
 
Bitumen Emulsion by Dr Sangita Ex CRRI Delhi
grilcodes
 
International Journal of Advanced Information Technology (IJAIT)
ijait
 
Solar thermal – Flat plate and concentrating collectors .pptx
jdaniabraham1
 
Modern multi-proposer consensus implementations
François Garillot
 
Deep Learning for Natural Language Processing_FDP on 16 June 2025 MITS.pptx
resming1
 
Stability of IBR Dominated Grids - IEEE PEDG 2025 - short.pptx
ssuser307730
 
تقرير عن التحليل الديناميكي لتدفق الهواء حول جناح.pdf
محمد قصص فتوتة
 
retina_biometrics ruet rajshahi bangdesh.pptx
MdRakibulIslam697135
 
Rapid Prototyping for XR: Lecture 2 - Low Fidelity Prototyping.
Mark Billinghurst
 
Complete guidance book of Asp.Net Web API
Shabista Imam
 
Ad

Array linked list.ppt

  • 2. Linked Lists / Slide 2 Outline  Abstract Data Type (ADT)  List ADT  List ADT with Array Implementation  Linked lists  Basic operations of linked lists  Insert, find, delete, print, etc.  Variations of linked lists  Circular linked lists  Doubly linked lists
  • 3. Linked Lists / Slide 3 Abstract Data Type (ADT)  Data type  a set of objects + a set of operations  Example: integer set of whole numbers operations: +, -, x, /  Can this be generalized?  (e.g. procedures generalize the notion of an operator)  Yes!  Abstract data type  high-level abstractions (managing complexity through abstraction)  Encapsulation
  • 4. Linked Lists / Slide 4 Encapsulation  Operation on the ADT can only be done by calling the appropriate function  no mention of how the set of operations is implemented  The definition of the type and all operations on that type can be localized to one section of the program  If we wish to change the implementation of an ADT  we know where to look  by revising one small section we can be sure that there is no subtlety elsewhere that will cause errors  We can treat the ADT as a primitive type: we have no concern with the underlying implementation  ADT  C++: class  method  C++: member function
  • 5. Linked Lists / Slide 5 ADT…  Examples  the set ADT A set of elements Operations: union, intersection, size and complement  the queue ADT A set of sequences of elements Operations: create empty queue, insert, examine, delete, and destroy queue  Two ADT’s are different if they have the same underlying model but different operations  E.g. a different set ADT with only the union and find operations  The appropriateness of an implementation depends very much on the operations to be performed
  • 6. Linked Lists / Slide 6 Pros and Cons  Implementation of the ADT is separate from its use  Modular: one module for one ADT  Easier to debug  Easier for several people to work simultaneously  Code for the ADT can be reused in different applications  Information hiding  A logical unit to do a specific job  implementation details can be changed without affecting user programs  Allow rapid prototying  Prototype with simple ADT implementations, then tune them later when necessary  Loss of efficiency
  • 7. Linked Lists / Slide 7 The List ADT  A sequence of zero or more elements A1, A2, A3, … AN  N: length of the list  A1: first element  AN: last element  Ai: position i  If N=0, then empty list  Linearly ordered  Ai precedes Ai+1  Ai follows Ai-1
  • 8. Linked Lists / Slide 8 Operations  printList: print the list  makeEmpty: create an empty list  find: locate the position of an object in a list  list: 34,12, 52, 16, 12  find(52)  3  insert: insert an object to a list  insert(x,3)  34, 12, 52, x, 16, 12  remove: delete an element from the list  remove(52)  34, 12, x, 16, 12  findKth: retrieve the element at a certain position
  • 9. Linked Lists / Slide 9 Implementation of an ADT  Choose a data structure to represent the ADT  E.g. arrays, records, etc.  Each operation associated with the ADT is implemented by one or more subroutines  Two standard implementations for the list ADT  Array-based  Linked list
  • 10. Linked Lists / Slide 10 Array Implementation  Elements are stored in contiguous array positions
  • 11. Linked Lists / Slide 11 Array Implementation...  Requires an estimate of the maximum size of the list  waste space  printList and find: linear  findKth: constant  insert and delete: slow  e.g. insert at position 0 (making a new element) requires first pushing the entire array down one spot to make room  e.g. delete at position 0 requires shifting all the elements in the list up one  On average, half of the lists needs to be moved for either operation
  • 12. Linked Lists / Slide 12 Pointer Implementation (Linked List)  Ensure that the list is not stored contiguously  use a linked list  a series of structures that are not necessarily adjacent in memory  Each node contains the element and a pointer to a structure containing its successor the last cell’s next link points to NULL  Compared to the array implementation, the pointer implementation uses only as much space as is needed for the elements currently on the list but requires space for the pointers in each cell
  • 13. Linked Lists / Slide 13 Linked Lists  A linked list is a series of connected nodes  Each node contains at least  A piece of data (any type)  Pointer to the next node in the list  Head: pointer to the first node  The last node points to NULL A  Head B C A data pointer node
  • 14. Linked Lists / Slide 14 A Simple Linked List Class  We use two classes: Node and List  Declare Node class for the nodes  data: double-type data in this example  next: a pointer to the next node in the list class Node { public: double data; // data Node* next; // pointer to next };
  • 15. Linked Lists / Slide 15 A Simple Linked List Class  Declare List, which contains  head: a pointer to the first node in the list. Since the list is empty initially, head is set to NULL  Operations on List class List { public: List(void) { head = NULL; } // constructor ~List(void); // destructor bool IsEmpty() { return head == NULL; } Node* InsertNode(int index, double x); int FindNode(double x); int DeleteNode(double x); void DisplayList(void); private: Node* head; };
  • 16. Linked Lists / Slide 16 A Simple Linked List Class  Operations of List  IsEmpty: determine whether or not the list is empty  InsertNode: insert a new node at a particular position  FindNode: find a node with a given value  DeleteNode: delete a node with a given value  DisplayList: print all the nodes in the list
  • 17. Linked Lists / Slide 17 Inserting a new node  Node* InsertNode(int index, double x)  Insert a node with data equal to x after the index’th elements. (i.e., when index = 0, insert the node as the first element; when index = 1, insert the node after the first element, and so on)  If the insertion is successful, return the inserted node. Otherwise, return NULL. (If index is < 0 or > length of the list, the insertion will fail.)  Steps 1. Locate index’th element 2. Allocate memory for the new node 3. Point the new node to its successor 4. Point the new node’s predecessor to the new node newNode index’th element
  • 18. Linked Lists / Slide 18 Inserting a new node  Possible cases of InsertNode 1. Insert into an empty list 2. Insert in front 3. Insert at back 4. Insert in middle  But, in fact, only need to handle two cases  Insert as the first node (Case 1 and Case 2)  Insert in the middle or at the end of the list (Case 3 and Case 4)
  • 19. Linked Lists / Slide 19 Inserting a new node Node* List::InsertNode(int index, double x) { if (index < 0) return NULL; int currIndex = 1; Node* currNode = head; while (currNode && index > currIndex) { currNode = currNode->next; currIndex++; } if (index > 0 && currNode == NULL) return NULL; Node* newNode = new Node; newNode->data = x; if (index == 0) { newNode->next = head; head = newNode; } else { newNode->next = currNode->next; currNode->next = newNode; } return newNode; } Try to locate index’th node. If it doesn’t exist, return NULL.
  • 20. Linked Lists / Slide 20 Inserting a new node Node* List::InsertNode(int index, double x) { if (index < 0) return NULL; int currIndex = 1; Node* currNode = head; while (currNode && index > currIndex) { currNode = currNode->next; currIndex++; } if (index > 0 && currNode == NULL) return NULL; Node* newNode = new Node; newNode->data = x; if (index == 0) { newNode->next = head; head = newNode; } else { newNode->next = currNode->next; currNode->next = newNode; } return newNode; } Create a new node
  • 21. Linked Lists / Slide 21 Inserting a new node Node* List::InsertNode(int index, double x) { if (index < 0) return NULL; int currIndex = 1; Node* currNode = head; while (currNode && index > currIndex) { currNode = currNode->next; currIndex++; } if (index > 0 && currNode == NULL) return NULL; Node* newNode = new Node; newNode->data = x; if (index == 0) { newNode->next = head; head = newNode; } else { newNode->next = currNode->next; currNode->next = newNode; } return newNode; } Insert as first element head newNode
  • 22. Linked Lists / Slide 22 Inserting a new node Node* List::InsertNode(int index, double x) { if (index < 0) return NULL; int currIndex = 1; Node* currNode = head; while (currNode && index > currIndex) { currNode = currNode->next; currIndex++; } if (index > 0 && currNode == NULL) return NULL; Node* newNode = new Node; newNode->data = x; if (index == 0) { newNode->next = head; head = newNode; } else { newNode->next = currNode->next; currNode->next = newNode; } return newNode; } Insert after currNode newNode currNode
  • 23. Linked Lists / Slide 23 Finding a node  int FindNode(double x)  Search for a node with the value equal to x in the list.  If such a node is found, return its position. Otherwise, return 0. int List::FindNode(double x) { Node* currNode = head; int currIndex = 1; while (currNode && currNode->data != x) { currNode = currNode->next; currIndex++; } if (currNode) return currIndex; return 0; }
  • 24. Linked Lists / Slide 24 Deleting a node  int DeleteNode(double x)  Delete a node with the value equal to x from the list.  If such a node is found, return its position. Otherwise, return 0.  Steps  Find the desirable node (similar to FindNode)  Release the memory occupied by the found node  Set the pointer of the predecessor of the found node to the successor of the found node  Like InsertNode, there are two special cases  Delete first node  Delete the node in middle or at the end of the list
  • 25. Linked Lists / Slide 25 Deleting a node int List::DeleteNode(double x) { Node* prevNode = NULL; Node* currNode = head; int currIndex = 1; while (currNode && currNode->data != x) { prevNode = currNode; currNode = currNode->next; currIndex++; } if (currNode) { if (prevNode) { prevNode->next = currNode->next; delete currNode; } else { head = currNode->next; delete currNode; } return currIndex; } return 0; } Try to find the node with its value equal to x
  • 26. Linked Lists / Slide 26 Deleting a node int List::DeleteNode(double x) { Node* prevNode = NULL; Node* currNode = head; int currIndex = 1; while (currNode && currNode->data != x) { prevNode = currNode; currNode = currNode->next; currIndex++; } if (currNode) { if (prevNode) { prevNode->next = currNode->next; delete currNode; } else { head = currNode->next; delete currNode; } return currIndex; } return 0; } currNode prevNode
  • 27. Linked Lists / Slide 27 Deleting a node int List::DeleteNode(double x) { Node* prevNode = NULL; Node* currNode = head; int currIndex = 1; while (currNode && currNode->data != x) { prevNode = currNode; currNode = currNode->next; currIndex++; } if (currNode) { if (prevNode) { prevNode->next = currNode->next; delete currNode; } else { head = currNode->next; delete currNode; } return currIndex; } return 0; } currNode head
  • 28. Linked Lists / Slide 28 Printing all the elements  void DisplayList(void)  Print the data of all the elements  Print the number of the nodes in the list void List::DisplayList() { int num = 0; Node* currNode = head; while (currNode != NULL){ cout << currNode->data << endl; currNode = currNode->next; num++; } cout << "Number of nodes in the list: " << num << endl; }
  • 29. Linked Lists / Slide 29 Destroying the list  ~List(void)  Use the destructor to release all the memory used by the list.  Step through the list and delete each node one by one. List::~List(void) { Node* currNode = head, *nextNode = NULL; while (currNode != NULL) { nextNode = currNode->next; // destroy the current node delete currNode; currNode = nextNode; } }
  • 30. Linked Lists / Slide 30 Using List int main(void) { List list; list.InsertNode(0, 7.0); // successful list.InsertNode(1, 5.0); // successful list.InsertNode(-1, 5.0); // unsuccessful list.InsertNode(0, 6.0); // successful list.InsertNode(8, 4.0); // unsuccessful // print all the elements list.DisplayList(); if(list.FindNode(5.0) > 0) cout << "5.0 found" << endl; else cout << "5.0 not found" << endl; if(list.FindNode(4.5) > 0) cout << "4.5 found" << endl; else cout << "4.5 not found" << endl; list.DeleteNode(7.0); list.DisplayList(); return 0; } 6 7 5 Number of nodes in the list: 3 5.0 found 4.5 not found 6 5 Number of nodes in the list: 2 result
  • 31. Linked Lists / Slide 31 Variations of Linked Lists  Circular linked lists  The last node points to the first node of the list  How do we know when we have finished traversing the list? (Tip: check if the pointer of the current node is equal to the head.) A Head B C
  • 32. Linked Lists / Slide 32 Variations of Linked Lists  Doubly linked lists  Each node points to not only successor but the predecessor  There are two NULL: at the first and last nodes in the list  Advantage: given a node, it is easy to visit its predecessor. Convenient to traverse lists backwards A Head B  C 
  • 33. Linked Lists / Slide 33 Array versus Linked Lists  Linked lists are more complex to code and manage than arrays, but they have some distinct advantages.  Dynamic: a linked list can easily grow and shrink in size. We don’t need to know how many nodes will be in the list. They are created in memory as needed. In contrast, the size of a C++ array is fixed at compilation time.  Easy and fast insertions and deletions To insert or delete an element in an array, we need to copy to temporary variables to make room for new elements or close the gap caused by deleted elements. With a linked list, no need to move other nodes. Only need to reset some pointers.
  • 34. Linked Lists / Slide 34 Example: The Polynomial ADT  An ADT for single-variable polynomials  Array implementation    N i i i x a x f 0 ) (
  • 35. Linked Lists / Slide 35 The Polynomial ADT…  Acceptable if most of the coefficients Aj are nonzero, undesirable if this is not the case  E.g. multiply most of the time is spent multiplying zeros and stepping through nonexistent parts of the input polynomials  Implementation using a singly linked list  Each term is contained in one cell, and the cells are sorted in decreasing order of exponents 5 11 2 3 ) ( 1 5 10 ) ( 1492 1990 2 14 1000 1        x x x x P x x x P