SlideShare a Scribd company logo
CSCE 3110
Data Structures &
Algorithm Analysis
Rada Mihalcea
http://www.cs.unt.edu/~rada/CSCE3110
Arrays
Arrays
Array: a set of pairs (index and value)
data structure
For each index, there is a value associated with
that index.
representation (possible)
implemented by using consecutive memory.
Objects: A set of pairs <index, value> where for each value of index
there is a value from the set item. Index is a finite ordered set of one or
more dimensions, for example, {0, … , n-1} for one dimension,
{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)} for two dimensions,
etc.
Methods:
for all A ∈ Array, i ∈ index, x ∈ item, j, size ∈ integer
Array Create(j, list) ::= return an array of j dimensions where list is a
j-tuple whose kth element is the size of the
kth dimension. Items are undefined.
Item Retrieve(A, i) ::= if (i ∈ index) return the item associated with
index value i in array A
else return error
Array Store(A, i, x) ::= if (i in index)
return an array that is identical to array
A except the new pair <i, x> has been
inserted else return error
The Array ADT
Arrays in C
int list[5], *plist[5];
list[5]: five integers
list[0], list[1], list[2], list[3], list[4]
*plist[5]: five pointers to integers
plist[0], plist[1], plist[2], plist[3],
plist[4]
implementation of 1-D array
list[0] base address = α
list[1] α + sizeof(int)
list[2] α + 2*sizeof(int)
list[3] α + 3*sizeof(int)
Arrays in C (cont’d)
Compare int *list1 and int list2[5] in C.
Same: list1 and list2 are pointers.
Difference: list2 reserves five locations.
Notations:
list2 - a pointer to list2[0]
(list2 + i) - a pointer to list2[i] (&list2[i])
*(list2 + i) - list2[i]
Address Contents
1228 0
1230 1
1232 2
1234 3
1236 4
Example:
int one[] = {0, 1, 2, 3, 4}; //Goal: print out
address and value
void print1(int *ptr, int rows)
{
printf(“Address Contentsn”);
for (i=0; i < rows; i++)
printf(“%8u%5dn”, ptr+i, *(ptr+i));
printf(“n”);
}
Example
ne
n
e
xaxaxp ++= ...)( 1
1
Polynomials A(X)=3X20
+2X5
+4, B(X)=X4
+10X3
+3X2
+1
Other Data Structures
Based on Arrays
•Arrays:
•Basic data structure
•May store any type of elements
Polynomials: defined by a list of coefficients and
exponents
- degree of polynomial = the largest exponent in a
polynomial
Polynomial ADT
Objects: a set of ordered pairs of <ei,ai>
where ai in Coefficients and
ei in Exponents, ei are integers >= 0
Methods:
for all poly, poly1, poly2  Polynomial, coef Coefficients, expon
Exponents
Polynomial Zero( ) ::= return the polynomial p(x) = 0
Boolean IsZero(poly) ::= if (poly) return FALSE
else return TRUE
Coefficient Coef(poly, expon) ::= if (expon  poly) return its
coefficient else return Zero
Exponent Lead_Exp(poly) ::= return the largest exponent in
poly
Polynomial Attach(poly,coef, expon) ::= if (expon  poly) return error
else return the polynomial poly
with the term <coef, expon>
inserted
Polyomial ADT (cont’d)
Polynomial Remove(poly, expon) ::= if (expon  poly) return the
polynomial poly with the term
whose exponent is expon deleted
else return error
Polynomial SingleMult(poly, coef, expon)::= return the polynomial
poly • coef • xexpon
Polynomial Add(poly1, poly2) ::= return the polynomial
poly1 +poly2
Polynomial Mult(poly1, poly2) ::= return the polynomial
poly1 • poly2
Polynomial Addition (1)
#define MAX_DEGREE 101
typedef struct {
int degree;
float coef[MAX_DEGREE];
} polynomial;
Addition(polynomial * a, polynomial * b, polynomial* c)
{
…
}
advantage: easy implementation
disadvantage: waste space when sparse
Running time?
Use one global array to store all polynomials
Polynomial Addition (2)
2 1 1 10 3 1
1000 0 4 3 2 0
coef
exp
starta finisha startb finishb avail
0 1 2 3 4 5 6
A(X)=2X1000
+1
B(X)=X4
+10X3
+3X2
+1
Polynomial Addition (2) (cont’d)
#define MAX_DEGREE 101
typedef struct {
int exp;
float coef;
} polynomial_term;
polynomial_term terms[3*MAX_DEGREE];
Addition(int starta, int enda, int startb, int endb, int startc, int endc)
{
…
}
advantage: less space
disadvantage: longer code
Running time?




















−
−
0002800
0000091
000000
006000
0003110
150220015
col1 col2 col3 col4 col5 col6
row0
row1
row2
row3
row4
row5
8/36
6*65*3
15/15
sparse matrix
data structure?
Sparse Matrices
Sparse Matrix ADT
Objects: a set of triples, <row, column, value>, where row
and column are integers and form a unique combination, and
value comes from the set item.
Methods:
for all a, b ∈ Sparse_Matrix, x  item, i, j, max_col,
max_row  index
Sparse_Marix Create(max_row, max_col) ::=
return a Sparse_matrix that can hold up to
max_items = max _row  max_col and
whose maximum row size is max_row and
whose maximum column size is max_col.
Sparse Matrix ADT (cont’d)
Sparse_Matrix Transpose(a) ::=
return the matrix produced by interchanging
the row and column value of every triple.
Sparse_Matrix Add(a, b) ::=
if the dimensions of a and b are the same
return the matrix produced by adding
corresponding items, namely those with
identical row and column values.
else return error
Sparse_Matrix Multiply(a, b) ::=
if number of columns in a equals number of rows in b
return the matrix d produced by multiplying
a by b according to the formula: d [i] [j] =
(a[i][k]•b[k][j]) where d (i, j) is the (i,j)th
element
else return error.
(1) Represented by a two-dimensional array.
Sparse matrix wastes space.
(2) Each element is characterized by <row, col, value>.
Sparse Matrix Representation
Sparse_matrix Create(max_row, max_col) ::=
#define MAX_TERMS 101 /* maximum number of terms +1*/
typedef struct {
int col;
int row;
int value;
} term;
term A[MAX_TERMS]
The terms in A should be ordered
based on <row, col>
Sparse Matrix Operations
Transpose of a sparse matrix.
What is the transpose of a matrix?
row col value row col value
a[0] 6 6 8 b[0] 6 6 8
[1] 0 0 15 [1] 0 0 15
[2] 0 3 22 [2] 0 4 91
[3] 0 5 -15 [3] 1 1 11
[4] 1 1 11 [4] 2 1 3
[5] 1 2 3 [5] 2 5 28
[6] 2 3 -6 [6] 3 0 22
[7] 4 0 91 [7] 3 2 -6
[8] 5 2 28 [8] 5 0 -15
transpose
(1) for each row i
take element <i, j, value> and store it
in element <j, i, value> of the transpose.
difficulty: where to put <j, i, value>?
(0, 0, 15) ====> (0, 0, 15)
(0, 3, 22) ====> (3, 0, 22)
(0, 5, -15) ====> (5, 0, -15)
(1, 1, 11) ====> (1, 1, 11)
Move elements down very often.
(2) For all elements in column j,
place element <i, j, value> in element <j, i,
Transpose a Sparse Matrix
Transpose of a Sparse Matrix
(cont’d)
void transpose (term a[], term b[])
/* b is set to the transpose of a */
{
int n, i, j, currentb;
n = a[0].value; /* total number of elements */
b[0].row = a[0].col; /* rows in b = columns in a */
b[0].col = a[0].row; /*columns in b = rows in a */
b[0].value = n;
if (n > 0) { /*non zero matrix */
currentb = 1;
for (i = 0; i < a[0].col; i++)
/* transpose by columns in a */
for( j = 1; j <= n; j++)
/* find elements from the current column */
if (a[j].col == i) {
/* element is in current column, add it to b */

More Related Content

PPTX
Priority Queue in Data Structure
PPT
Joins in SQL
PPTX
Graph in data structure
PPTX
Linked list
PPT
Binary search tree(bst)
PPTX
Deque and its applications
PDF
Binary tree
Priority Queue in Data Structure
Joins in SQL
Graph in data structure
Linked list
Binary search tree(bst)
Deque and its applications
Binary tree

What's hot (20)

PPTX
SQL(DDL & DML)
PPTX
AVL Tree in Data Structure
PPTX
Circular link list.ppt
PPT
Data structure lecture 1
PPT
Singly link list
PPT
Red black tree
PPTX
queue & its applications
PPTX
single linked list
PPT
B trees in Data Structure
PPTX
Data Structures - Lecture 9 [Stack & Queue using Linked List]
PPT
Graphs In Data Structure
PDF
Python exception handling
PPTX
Stacks and Queue - Data Structures
PPSX
Data Structure (Queue)
PPTX
Doubly & Circular Linked Lists
PPTX
Introduction to Array ppt
PPTX
Stack and Queue by M.Gomathi Lecturer
PPTX
Threaded Binary Tree
PDF
Array data structure
PPT
Abstract data types
SQL(DDL & DML)
AVL Tree in Data Structure
Circular link list.ppt
Data structure lecture 1
Singly link list
Red black tree
queue & its applications
single linked list
B trees in Data Structure
Data Structures - Lecture 9 [Stack & Queue using Linked List]
Graphs In Data Structure
Python exception handling
Stacks and Queue - Data Structures
Data Structure (Queue)
Doubly & Circular Linked Lists
Introduction to Array ppt
Stack and Queue by M.Gomathi Lecturer
Threaded Binary Tree
Array data structure
Abstract data types
Ad

Similar to Arrays (20)

PPT
PPT
sparse-matrix.ppt
PPT
Chapter2
PPT
Chapter2
PPT
Data structures KTU chapter2.PPT
PPTX
arrays.pptx
PPTX
Chapter 13.pptx
PPT
PPTX
DATA STRUCTURE CLASS 12 COMPUTER SCIENCE
PPT
Data Structure Midterm Lesson Arrays
PDF
PPT
Array 31.8.2020 updated
PPT
Multi dimensional arrays
PPTX
Arrays_in_c++.pptx
PPT
Extractors & Implicit conversions
PDF
An Introduction to Part of C++ STL
PPTX
Array,MULTI ARRAY, IN C
PPTX
Basic of array and data structure, data structure basics, array, address calc...
PPT
sparse-matrix.ppt
Chapter2
Chapter2
Data structures KTU chapter2.PPT
arrays.pptx
Chapter 13.pptx
DATA STRUCTURE CLASS 12 COMPUTER SCIENCE
Data Structure Midterm Lesson Arrays
Array 31.8.2020 updated
Multi dimensional arrays
Arrays_in_c++.pptx
Extractors & Implicit conversions
An Introduction to Part of C++ STL
Array,MULTI ARRAY, IN C
Basic of array and data structure, data structure basics, array, address calc...
Ad

Recently uploaded (20)

PPTX
cloud_computing_Infrastucture_as_cloud_p
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Approach and Philosophy of On baking technology
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Mushroom cultivation and it's methods.pdf
PPTX
1. Introduction to Computer Programming.pptx
PDF
A comparative analysis of optical character recognition models for extracting...
PPTX
Spectroscopy.pptx food analysis technology
PDF
Heart disease approach using modified random forest and particle swarm optimi...
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Getting Started with Data Integration: FME Form 101
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PPTX
Machine Learning_overview_presentation.pptx
cloud_computing_Infrastucture_as_cloud_p
TLE Review Electricity (Electricity).pptx
Approach and Philosophy of On baking technology
Unlocking AI with Model Context Protocol (MCP)
Reach Out and Touch Someone: Haptics and Empathic Computing
Per capita expenditure prediction using model stacking based on satellite ima...
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Group 1 Presentation -Planning and Decision Making .pptx
Accuracy of neural networks in brain wave diagnosis of schizophrenia
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Mushroom cultivation and it's methods.pdf
1. Introduction to Computer Programming.pptx
A comparative analysis of optical character recognition models for extracting...
Spectroscopy.pptx food analysis technology
Heart disease approach using modified random forest and particle swarm optimi...
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Getting Started with Data Integration: FME Form 101
Univ-Connecticut-ChatGPT-Presentaion.pdf
Machine Learning_overview_presentation.pptx

Arrays

  • 1. CSCE 3110 Data Structures & Algorithm Analysis Rada Mihalcea http://www.cs.unt.edu/~rada/CSCE3110 Arrays
  • 2. Arrays Array: a set of pairs (index and value) data structure For each index, there is a value associated with that index. representation (possible) implemented by using consecutive memory.
  • 3. Objects: A set of pairs <index, value> where for each value of index there is a value from the set item. Index is a finite ordered set of one or more dimensions, for example, {0, … , n-1} for one dimension, {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)} for two dimensions, etc. Methods: for all A ∈ Array, i ∈ index, x ∈ item, j, size ∈ integer Array Create(j, list) ::= return an array of j dimensions where list is a j-tuple whose kth element is the size of the kth dimension. Items are undefined. Item Retrieve(A, i) ::= if (i ∈ index) return the item associated with index value i in array A else return error Array Store(A, i, x) ::= if (i in index) return an array that is identical to array A except the new pair <i, x> has been inserted else return error The Array ADT
  • 4. Arrays in C int list[5], *plist[5]; list[5]: five integers list[0], list[1], list[2], list[3], list[4] *plist[5]: five pointers to integers plist[0], plist[1], plist[2], plist[3], plist[4] implementation of 1-D array list[0] base address = α list[1] α + sizeof(int) list[2] α + 2*sizeof(int) list[3] α + 3*sizeof(int)
  • 5. Arrays in C (cont’d) Compare int *list1 and int list2[5] in C. Same: list1 and list2 are pointers. Difference: list2 reserves five locations. Notations: list2 - a pointer to list2[0] (list2 + i) - a pointer to list2[i] (&list2[i]) *(list2 + i) - list2[i]
  • 6. Address Contents 1228 0 1230 1 1232 2 1234 3 1236 4 Example: int one[] = {0, 1, 2, 3, 4}; //Goal: print out address and value void print1(int *ptr, int rows) { printf(“Address Contentsn”); for (i=0; i < rows; i++) printf(“%8u%5dn”, ptr+i, *(ptr+i)); printf(“n”); } Example
  • 7. ne n e xaxaxp ++= ...)( 1 1 Polynomials A(X)=3X20 +2X5 +4, B(X)=X4 +10X3 +3X2 +1 Other Data Structures Based on Arrays •Arrays: •Basic data structure •May store any type of elements Polynomials: defined by a list of coefficients and exponents - degree of polynomial = the largest exponent in a polynomial
  • 8. Polynomial ADT Objects: a set of ordered pairs of <ei,ai> where ai in Coefficients and ei in Exponents, ei are integers >= 0 Methods: for all poly, poly1, poly2  Polynomial, coef Coefficients, expon Exponents Polynomial Zero( ) ::= return the polynomial p(x) = 0 Boolean IsZero(poly) ::= if (poly) return FALSE else return TRUE Coefficient Coef(poly, expon) ::= if (expon  poly) return its coefficient else return Zero Exponent Lead_Exp(poly) ::= return the largest exponent in poly Polynomial Attach(poly,coef, expon) ::= if (expon  poly) return error else return the polynomial poly with the term <coef, expon> inserted
  • 9. Polyomial ADT (cont’d) Polynomial Remove(poly, expon) ::= if (expon  poly) return the polynomial poly with the term whose exponent is expon deleted else return error Polynomial SingleMult(poly, coef, expon)::= return the polynomial poly • coef • xexpon Polynomial Add(poly1, poly2) ::= return the polynomial poly1 +poly2 Polynomial Mult(poly1, poly2) ::= return the polynomial poly1 • poly2
  • 10. Polynomial Addition (1) #define MAX_DEGREE 101 typedef struct { int degree; float coef[MAX_DEGREE]; } polynomial; Addition(polynomial * a, polynomial * b, polynomial* c) { … } advantage: easy implementation disadvantage: waste space when sparse Running time?
  • 11. Use one global array to store all polynomials Polynomial Addition (2) 2 1 1 10 3 1 1000 0 4 3 2 0 coef exp starta finisha startb finishb avail 0 1 2 3 4 5 6 A(X)=2X1000 +1 B(X)=X4 +10X3 +3X2 +1
  • 12. Polynomial Addition (2) (cont’d) #define MAX_DEGREE 101 typedef struct { int exp; float coef; } polynomial_term; polynomial_term terms[3*MAX_DEGREE]; Addition(int starta, int enda, int startb, int endb, int startc, int endc) { … } advantage: less space disadvantage: longer code Running time?
  • 13.                     − − 0002800 0000091 000000 006000 0003110 150220015 col1 col2 col3 col4 col5 col6 row0 row1 row2 row3 row4 row5 8/36 6*65*3 15/15 sparse matrix data structure? Sparse Matrices
  • 14. Sparse Matrix ADT Objects: a set of triples, <row, column, value>, where row and column are integers and form a unique combination, and value comes from the set item. Methods: for all a, b ∈ Sparse_Matrix, x  item, i, j, max_col, max_row  index Sparse_Marix Create(max_row, max_col) ::= return a Sparse_matrix that can hold up to max_items = max _row  max_col and whose maximum row size is max_row and whose maximum column size is max_col.
  • 15. Sparse Matrix ADT (cont’d) Sparse_Matrix Transpose(a) ::= return the matrix produced by interchanging the row and column value of every triple. Sparse_Matrix Add(a, b) ::= if the dimensions of a and b are the same return the matrix produced by adding corresponding items, namely those with identical row and column values. else return error Sparse_Matrix Multiply(a, b) ::= if number of columns in a equals number of rows in b return the matrix d produced by multiplying a by b according to the formula: d [i] [j] = (a[i][k]•b[k][j]) where d (i, j) is the (i,j)th element else return error.
  • 16. (1) Represented by a two-dimensional array. Sparse matrix wastes space. (2) Each element is characterized by <row, col, value>. Sparse Matrix Representation Sparse_matrix Create(max_row, max_col) ::= #define MAX_TERMS 101 /* maximum number of terms +1*/ typedef struct { int col; int row; int value; } term; term A[MAX_TERMS] The terms in A should be ordered based on <row, col>
  • 17. Sparse Matrix Operations Transpose of a sparse matrix. What is the transpose of a matrix? row col value row col value a[0] 6 6 8 b[0] 6 6 8 [1] 0 0 15 [1] 0 0 15 [2] 0 3 22 [2] 0 4 91 [3] 0 5 -15 [3] 1 1 11 [4] 1 1 11 [4] 2 1 3 [5] 1 2 3 [5] 2 5 28 [6] 2 3 -6 [6] 3 0 22 [7] 4 0 91 [7] 3 2 -6 [8] 5 2 28 [8] 5 0 -15 transpose
  • 18. (1) for each row i take element <i, j, value> and store it in element <j, i, value> of the transpose. difficulty: where to put <j, i, value>? (0, 0, 15) ====> (0, 0, 15) (0, 3, 22) ====> (3, 0, 22) (0, 5, -15) ====> (5, 0, -15) (1, 1, 11) ====> (1, 1, 11) Move elements down very often. (2) For all elements in column j, place element <i, j, value> in element <j, i, Transpose a Sparse Matrix
  • 19. Transpose of a Sparse Matrix (cont’d) void transpose (term a[], term b[]) /* b is set to the transpose of a */ { int n, i, j, currentb; n = a[0].value; /* total number of elements */ b[0].row = a[0].col; /* rows in b = columns in a */ b[0].col = a[0].row; /*columns in b = rows in a */ b[0].value = n; if (n > 0) { /*non zero matrix */ currentb = 1; for (i = 0; i < a[0].col; i++) /* transpose by columns in a */ for( j = 1; j <= n; j++) /* find elements from the current column */ if (a[j].col == i) { /* element is in current column, add it to b */