This document summarizes a research paper on using a k-means clustering method to detect brain tumors in MRI images. The paper introduces brain tumors and MRI imaging. It then describes using k-means clustering for tumor segmentation, which groups similar image patterns into clusters to identify the tumor region. The paper presents results of applying k-means to two MRI images, including statistical measures of segmentation accuracy, tumor area comparison, and timing. The k-means method achieved average rand index of 0.8358, low average errors, and tumor areas close to manual segmentation in under 3 seconds, demonstrating potential for accurate and efficient brain tumor detection.