SlideShare a Scribd company logo
Big data processing with Apache
Spark and Oracle database
Martin Toshev
Who am I
Software consultant (CoffeeCupConsulting)
BG JUG board member (http://jug.bg)
(BG JUG is a 2018 Oracle Duke’s
choice award winner)
Agenda
• Apache Spark from an eagle’s eye
• Apache Spark capabilities
• Using Oracle RDBMS as a Spark datasource
Apache Spark from an Eagle’s eye
Highlights
• A framework for large-scale distributed data processing
• Originally in Scala but extended with Java, Python and R
• One of the most contributed
open source/Apache/GitHub projects with over 1400
contributors
Spark vs MapReduce
• Spark has been developed in order to address the
shortcomings of the MapReduce programming model
• In particular MapReduce is unsuitable for:
– real-time processing (suitable for batch processing of present data)
– operations not limited to the key-value format of data
– large data on a network
– online transaction processing
– graph processing
– sequential program execution
Spark vs Hadoop
• Spark is faster as it depends more on RAM usage and
tries to minimize disk IO (on the storage system)
• Spark however can still use Hadoop:
– as a storage engine (HDFS)
– as a compute engine (MapReduce or Hadoop YARN)
• Spark has pluggable storage and compute engine
architecture
Spark components
Spark Framework
Spark Core
Spark
Streaming
MLib GraphXSpark SQL
Spark architecture
SparkContext
(driver)
Cluster
manager
Worker
node
Worker
node
Worker
node
Spark application
(JAR)
Input data
sources
Output data
sources
Apache Spark capabilities
Spark datasets
• The building block of Spark are RDDs (Resilient
Distributed Datasets)
• They are immutable collections of objects spread across
a Spark cluster and stored in RAM or on disk
• Created by means of distributed transformations
• Rebuilt on failure of a Spark node
Spark datasets
• The DataFrame API is a superset of RDDs introduced in
Spark 2.0
• The Dataset API provides a way to work with a
combination of RDDs and DataFrames
• The DataFrame API is preferred compared to RDDs due to
improved performance and more advanced operations
Spark datasets
List<Item> items = …;
SparkConf configuration = new
SparkConf().setAppName(“ItemsManager").setMaster("local");
JavaSparkContext context =
new JavaSparkContext(configuration);
JavaRDD<Item> itemsRDD = context.parallelize(items);
Spark transformations
map itemsRDD.map(i -> { i.setName(“phone”);
return i;});
filter itemsRDD.filter(i ->
i.getName().contains(“phone”))
flatMap itemsRDD.flatMap(i ->
Arrays.asList(i, i).iterator());
union itemsRDD.union(newItemsRDD);
intersection itemsRDD.intersection(newItemsRDD);
distinct itemsRDD.distinct()
cartesian itemsRDD.cartesian(otherDatasetRDD)
Spark transformations
groupBy pairItemsRDD = itemsRDD.mapToPair(i ->
new Tuple2(i.getType(), i));
modifiedPairItemsRDD =
pairItemsRDD.groupByKey();
reduceByKey pairItemsRDD = itemsRDD.mapToPair(o ->
new Tuple2(o.getType(), o));
modifiedPairItemsRDD =
pairItemsRDD.reduceByKey((o1, o2) ->
new Item(o1.getType(),
o1.getCount() + o2.getCount(),
o1.getUnitPrice())
);
• Other transformations include aggregateByKey,
sortByKey, join, cogroup …
Spark actions
• Spark actions are the terminal operations that produce
results from the transformations
• Actions are a way to communicate back from the
execution engine to the Spark driver instance
Spark actions
collect itemsRDD.collect()
reduce itemsRDD.map(i ->
i.getUnitPrice() * i.getCount()).
reduce((x, y) -> x + y);
count itemsRDD.count()
first itemsRDD.first()
take itemsRDD.take(4)
takeOrdered itemsRDD.takeOrdered(4, comparator)
foreach itemsRDD.foreach(System.out::println)
saveAsTextFile itemsRDD.saveAsTextFile(path)
saveAsObjectFile itemsRDD.saveAsObjectFile(path)
DataFrames/DataSets
• A dataframe can be created using an instance of the
org.apache.spark.sql.SparkSession class
• The DataFrame/DataSet APIs provide more advanced
operations and the capability to run SQL queries on the
data
itemsDS.createOrReplaceTempView(“items");
session.sql("SELECT * FROM items");
DataFrames/DataSets
• An existing RDD can be converted to a Spark dataframe:
• An RDD can be retrieved from a dataframe as well:
SparkSession session =
SparkSession.builder().appName("app").getOrCreate();
Dataset<Row> itemsDS =
session.createDataFrame(itemsRDD, Item.class);
itemsDS.rdd()
Spark data sources
• Spark can receive data from a variety of data sources in a
variety of ways (batching, real-time streaming)
• These datasources might be:
– files: Spark supports reading data from a variety of formats (JSON, CSV, Avro,
etc.)
– relational databases: using JDBC/ODBC driver Spark can extract data from an
RDBMS
– TCP sockets, messaging systems: using streaming capabilities of Spark data
can be read from messaging systems and raw TCP sockets
Spark data sources
• Spark provides support for operations on batch data or
real time data
• For real time data Spark provides two main APIs:
– Spark streaming is an older API working on RDDs
– Spark structured streaming is a newer API working on DataFrames/DataSets
Spark data sources
• Spark provides capabilities to plug-in additional data
sources not supported by Spark
• For streaming sources you can define your own custom
receivers
Spark streaming
• Data is divided into batches called Dstreams
(decentralized streams)
• Typical use case is the integration of Spark with
messaging systems such as Kafka, RabbitMQ and
ActiveMQ etc.
• Fault tolerance can be enabled in Spark Streaming
whereby data is stored in HDFS
Spark streaming
• To define a Spark stream you need to create a
JavaStreamingContext instance
SparkConf conf = new
SparkConf().setMaster("local[4]").setAppName("CustomerItems");
JavaStreamingContext jssc = new JavaStreamingContext(conf,
Durations.seconds(1));
Spark streaming
• Then a receiver can be created for the data:
– from sockets:
– from data directory:
– from RDD streams (for testing purposes):
jssc.socketTextStream("localhost", 7777);
jssc.textFileStream("... some data directory ...");
jssc.queueStream(... RDDs queue ... )
Spark streaming
• Then the data pipeline can be built using transformations
and actions on the streams
• Finally retrieval of data must be triggered from the
streaming context:
jssc.start();
jssc.awaitTermination();
Spark streaming
• Window streams can be created over stream data based
on two criteria:
– length of the window
– sliding interval for the windows
• Streaming datasets can also be joined with other
streaming or batch datasets
Spark structured streaming
• Newer streaming API working on DataSets/DataFrames:
• A schema can be specified on the streaming data using
the .schema(<schema>) method on the read stream
SparkSession context = SparkSession
.builder()
.appName("CustomerItems")
.getOrCreate();
Dataset<Row> lines = spark
.readStream()
.format("socket")
.option("host", "localhost")
.option("port", 7777)
.load();
Spark structured streaming
• Write sinks can also be used to write out streaming datasets:
• The following write sinks are provided by Spark:
- file
- Kafka
- foreach
- console (for testing purpose)
- memory (for testing purpose)
StreamingQuery query =
wordCounts.writeStream()
.outputMode("complete")
.format("console")
.start();
query.awaitTermination();
Clustering
• Spark supports the following cluster managers:
– Standalone scheduler (default)
– YARN
– Mesos
• Support for Kubernetes cluster manager is also
undergoing (experimental at present)
Using Oracle RDBMS
as a Spark datasource
Oracle RDBMS data source
• Spark supports retrieval of data through JDBC/ODBC
• Database driver must be supplied to the Spark classpath
(specified with the --driver-class-path) option
• For Oracle RDBMS that is the ojdbc driver
Oracle RDBMS data source
session.read()
.format("jdbc")
.option("url","jdbc:oracle:thin:@//127.0.0.1:1521/ORCL")
.option("dbtable", "items")
.option("user", "c##spark")
.option("password", "spark")
.load();
Oracle RDBMS data source
• You can use a variery of options when reading data from an
RDBMS using the jdbc format:
– query: a subquery that provides the possibility to limit retrieved data
– queryTimeout: specify the timeout for the JDBC query executed
against the RDBMS
• You can also save datasets to a table:
itemsDF.write().mode(org.apache.spark.sql.SaveMode.Append).
jdbc("jdbc:oracle:thin:@//127.0.0.1:1521/ORCL", “items",
prop);
Data processing options
• However the support provided by Spark is for batch
processing of data from the RDBMS …
• In many cases one might want to process data in a
streaming manner
Data processing options
• For stream processing of data from an Oracle RDBMS a
Spark instance may have to:
– process records as they are inserted in the RDBMS
Id Type OrderTime
1 Laptop 2019.11.05 11:55:05
2 Battery 2019.11.05 12:04:23
3 Headphones 2019.11.05 12:24:17
4 Laptop 2019.11.05 12:52:32
Data processing options
• For stream processing of data from an Oracle RDBMS a
Spark instance may have to:
– process records on evenly-sized batches
Id Type OrderTime
1 Laptop 2019.11.05 11:55:05
2 Battery 2019.11.05 12:04:23
3 Headphones 2019.11.05 12:24:17
4 Laptop 2019.11.05 12:52:32
Data processing options
• For stream processing of data from an Oracle RDBMS a
Spark instance may have to:
– process records on evenly-sized time intervals (record size may vary)
Id Type OrderTime
1 Laptop 2019.11.05 11:55:05
2 Battery 2019.11.05 12:04:23
3 Headphones 2019.11.05 12:24:17
4 Laptop 2019.11.05 12:52:32
Data processing options
• For stream processing of data from an Oracle RDBMS a
Spark instance may have to:
– process batches of overlapping records using a sized window
Id Type OrderTime
1 Laptop 2019.11.05 11:55:05
2 Battery 2019.11.05 12:04:23
3 Headphones 2019.11.05 12:24:17
4 Laptop 2019.11.05 12:52:32
Data processing options
• For stream processing of data from an Oracle RDBMS a
Spark instance may have to:
– processing of batches based on custom filter criteria
Id Type OrderTime
1 Laptop 2019.11.05 11:55:05
2 Battery 2019.11.05 12:04:23
3 Headphones 2019.11.05 12:24:17
4 Laptop 2019.11.05 12:52:32
Data processing options
• These can be achieved using the following mechanism:
– by duplicating writes over a streaming system such as Kafka
– via Spark streaming receiver that:
• buffer records (if a small delay is tolerable)
• creates an endpoint that an RDBMS trigger calls upon insertion
• listens for database changes using DCN (Database Change Notifications) via JDBC
(only pre-12c, DCN support dropped for PDBs as of 12c)
DEMO
Summary
• Apache Spark is one of the most feature-rich and
developed big data processing frameworks
• Provides a mechanism to distribute load over a large
number of nodes using different cluster managers
• A great option for fast and scalable processing of data
from an Oracle RDBMS

More Related Content

What's hot (20)

Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...
Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...
Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...
Databricks
 
How to Actually Tune Your Spark Jobs So They Work
How to Actually Tune Your Spark Jobs So They WorkHow to Actually Tune Your Spark Jobs So They Work
How to Actually Tune Your Spark Jobs So They Work
Ilya Ganelin
 
Introduction to Apache Spark
Introduction to Apache SparkIntroduction to Apache Spark
Introduction to Apache Spark
Samy Dindane
 
Understanding and Improving Code Generation
Understanding and Improving Code GenerationUnderstanding and Improving Code Generation
Understanding and Improving Code Generation
Databricks
 
Apache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & InternalsApache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & Internals
Anton Kirillov
 
Apache Spark overview
Apache Spark overviewApache Spark overview
Apache Spark overview
DataArt
 
Real-Time Spark: From Interactive Queries to Streaming
Real-Time Spark: From Interactive Queries to StreamingReal-Time Spark: From Interactive Queries to Streaming
Real-Time Spark: From Interactive Queries to Streaming
Databricks
 
How we got to 1 millisecond latency in 99% under repair, compaction, and flus...
How we got to 1 millisecond latency in 99% under repair, compaction, and flus...How we got to 1 millisecond latency in 99% under repair, compaction, and flus...
How we got to 1 millisecond latency in 99% under repair, compaction, and flus...
ScyllaDB
 
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...
Flink Forward
 
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Top 5 Mistakes to Avoid When Writing Apache Spark ApplicationsTop 5 Mistakes to Avoid When Writing Apache Spark Applications
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Cloudera, Inc.
 
Gcp data engineer
Gcp data engineerGcp data engineer
Gcp data engineer
Narendranath Reddy T
 
Kafka internals
Kafka internalsKafka internals
Kafka internals
David Groozman
 
Programming in Spark using PySpark
Programming in Spark using PySpark      Programming in Spark using PySpark
Programming in Spark using PySpark
Mostafa
 
Optimizing Delta/Parquet Data Lakes for Apache Spark
Optimizing Delta/Parquet Data Lakes for Apache SparkOptimizing Delta/Parquet Data Lakes for Apache Spark
Optimizing Delta/Parquet Data Lakes for Apache Spark
Databricks
 
Apache Spark 101
Apache Spark 101Apache Spark 101
Apache Spark 101
Abdullah Çetin ÇAVDAR
 
Rds data lake @ Robinhood
Rds data lake @ Robinhood Rds data lake @ Robinhood
Rds data lake @ Robinhood
BalajiVaradarajan13
 
Memory Management in Apache Spark
Memory Management in Apache SparkMemory Management in Apache Spark
Memory Management in Apache Spark
Databricks
 
Apache Spark Core – Practical Optimization
Apache Spark Core – Practical OptimizationApache Spark Core – Practical Optimization
Apache Spark Core – Practical Optimization
Databricks
 
Intro to Cassandra
Intro to CassandraIntro to Cassandra
Intro to Cassandra
DataStax Academy
 
Node.js and the MySQL Document Store
Node.js and the MySQL Document StoreNode.js and the MySQL Document Store
Node.js and the MySQL Document Store
Rui Quelhas
 
Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...
Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...
Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...
Databricks
 
How to Actually Tune Your Spark Jobs So They Work
How to Actually Tune Your Spark Jobs So They WorkHow to Actually Tune Your Spark Jobs So They Work
How to Actually Tune Your Spark Jobs So They Work
Ilya Ganelin
 
Introduction to Apache Spark
Introduction to Apache SparkIntroduction to Apache Spark
Introduction to Apache Spark
Samy Dindane
 
Understanding and Improving Code Generation
Understanding and Improving Code GenerationUnderstanding and Improving Code Generation
Understanding and Improving Code Generation
Databricks
 
Apache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & InternalsApache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & Internals
Anton Kirillov
 
Apache Spark overview
Apache Spark overviewApache Spark overview
Apache Spark overview
DataArt
 
Real-Time Spark: From Interactive Queries to Streaming
Real-Time Spark: From Interactive Queries to StreamingReal-Time Spark: From Interactive Queries to Streaming
Real-Time Spark: From Interactive Queries to Streaming
Databricks
 
How we got to 1 millisecond latency in 99% under repair, compaction, and flus...
How we got to 1 millisecond latency in 99% under repair, compaction, and flus...How we got to 1 millisecond latency in 99% under repair, compaction, and flus...
How we got to 1 millisecond latency in 99% under repair, compaction, and flus...
ScyllaDB
 
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...
Flink Forward
 
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Top 5 Mistakes to Avoid When Writing Apache Spark ApplicationsTop 5 Mistakes to Avoid When Writing Apache Spark Applications
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Cloudera, Inc.
 
Programming in Spark using PySpark
Programming in Spark using PySpark      Programming in Spark using PySpark
Programming in Spark using PySpark
Mostafa
 
Optimizing Delta/Parquet Data Lakes for Apache Spark
Optimizing Delta/Parquet Data Lakes for Apache SparkOptimizing Delta/Parquet Data Lakes for Apache Spark
Optimizing Delta/Parquet Data Lakes for Apache Spark
Databricks
 
Memory Management in Apache Spark
Memory Management in Apache SparkMemory Management in Apache Spark
Memory Management in Apache Spark
Databricks
 
Apache Spark Core – Practical Optimization
Apache Spark Core – Practical OptimizationApache Spark Core – Practical Optimization
Apache Spark Core – Practical Optimization
Databricks
 
Node.js and the MySQL Document Store
Node.js and the MySQL Document StoreNode.js and the MySQL Document Store
Node.js and the MySQL Document Store
Rui Quelhas
 

Similar to Big data processing with Apache Spark and Oracle Database (20)

Building highly scalable data pipelines with Apache Spark
Building highly scalable data pipelines with Apache SparkBuilding highly scalable data pipelines with Apache Spark
Building highly scalable data pipelines with Apache Spark
Martin Toshev
 
Spark Concepts - Spark SQL, Graphx, Streaming
Spark Concepts - Spark SQL, Graphx, StreamingSpark Concepts - Spark SQL, Graphx, Streaming
Spark Concepts - Spark SQL, Graphx, Streaming
Petr Zapletal
 
Spark from the Surface
Spark from the SurfaceSpark from the Surface
Spark from the Surface
Josi Aranda
 
Apache Spark Components
Apache Spark ComponentsApache Spark Components
Apache Spark Components
Girish Khanzode
 
Processing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeekProcessing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeek
Venkata Naga Ravi
 
Jump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with DatabricksJump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with Databricks
Anyscale
 
Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...
Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...
Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...
Simplilearn
 
Glint with Apache Spark
Glint with Apache SparkGlint with Apache Spark
Glint with Apache Spark
Venkata Naga Ravi
 
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsfPyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
sasuke20y4sh
 
Unified Big Data Processing with Apache Spark (QCON 2014)
Unified Big Data Processing with Apache Spark (QCON 2014)Unified Big Data Processing with Apache Spark (QCON 2014)
Unified Big Data Processing with Apache Spark (QCON 2014)
Databricks
 
Apache Spark for Beginners
Apache Spark for BeginnersApache Spark for Beginners
Apache Spark for Beginners
Anirudh
 
Apache Spark in Industry
Apache Spark in IndustryApache Spark in Industry
Apache Spark in Industry
Dorian Beganovic
 
Apache Spark Overview
Apache Spark OverviewApache Spark Overview
Apache Spark Overview
Dharmjit Singh
 
APACHE SPARK.pptx
APACHE SPARK.pptxAPACHE SPARK.pptx
APACHE SPARK.pptx
DeepaThirumurugan
 
Apache Spark Overview @ ferret
Apache Spark Overview @ ferretApache Spark Overview @ ferret
Apache Spark Overview @ ferret
Andrii Gakhov
 
Apache Spark - A High Level overview
Apache Spark - A High Level overviewApache Spark - A High Level overview
Apache Spark - A High Level overview
Karan Alang
 
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Databricks
 
SparkPaper
SparkPaperSparkPaper
SparkPaper
Suraj Thapaliya
 
Spark after Dark by Chris Fregly of Databricks
Spark after Dark by Chris Fregly of DatabricksSpark after Dark by Chris Fregly of Databricks
Spark after Dark by Chris Fregly of Databricks
Data Con LA
 
Spark After Dark - LA Apache Spark Users Group - Feb 2015
Spark After Dark - LA Apache Spark Users Group - Feb 2015Spark After Dark - LA Apache Spark Users Group - Feb 2015
Spark After Dark - LA Apache Spark Users Group - Feb 2015
Chris Fregly
 
Building highly scalable data pipelines with Apache Spark
Building highly scalable data pipelines with Apache SparkBuilding highly scalable data pipelines with Apache Spark
Building highly scalable data pipelines with Apache Spark
Martin Toshev
 
Spark Concepts - Spark SQL, Graphx, Streaming
Spark Concepts - Spark SQL, Graphx, StreamingSpark Concepts - Spark SQL, Graphx, Streaming
Spark Concepts - Spark SQL, Graphx, Streaming
Petr Zapletal
 
Spark from the Surface
Spark from the SurfaceSpark from the Surface
Spark from the Surface
Josi Aranda
 
Processing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeekProcessing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeek
Venkata Naga Ravi
 
Jump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with DatabricksJump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with Databricks
Anyscale
 
Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...
Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...
Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...
Simplilearn
 
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsfPyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
sasuke20y4sh
 
Unified Big Data Processing with Apache Spark (QCON 2014)
Unified Big Data Processing with Apache Spark (QCON 2014)Unified Big Data Processing with Apache Spark (QCON 2014)
Unified Big Data Processing with Apache Spark (QCON 2014)
Databricks
 
Apache Spark for Beginners
Apache Spark for BeginnersApache Spark for Beginners
Apache Spark for Beginners
Anirudh
 
Apache Spark Overview @ ferret
Apache Spark Overview @ ferretApache Spark Overview @ ferret
Apache Spark Overview @ ferret
Andrii Gakhov
 
Apache Spark - A High Level overview
Apache Spark - A High Level overviewApache Spark - A High Level overview
Apache Spark - A High Level overview
Karan Alang
 
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Databricks
 
Spark after Dark by Chris Fregly of Databricks
Spark after Dark by Chris Fregly of DatabricksSpark after Dark by Chris Fregly of Databricks
Spark after Dark by Chris Fregly of Databricks
Data Con LA
 
Spark After Dark - LA Apache Spark Users Group - Feb 2015
Spark After Dark - LA Apache Spark Users Group - Feb 2015Spark After Dark - LA Apache Spark Users Group - Feb 2015
Spark After Dark - LA Apache Spark Users Group - Feb 2015
Chris Fregly
 
Ad

More from Martin Toshev (20)

Jdk 10 sneak peek
Jdk 10 sneak peekJdk 10 sneak peek
Jdk 10 sneak peek
Martin Toshev
 
Semantic Technology In Oracle Database 12c
Semantic Technology In Oracle Database 12cSemantic Technology In Oracle Database 12c
Semantic Technology In Oracle Database 12c
Martin Toshev
 
Practical security In a modular world
Practical security In a modular worldPractical security In a modular world
Practical security In a modular world
Martin Toshev
 
Java 9 Security Enhancements in Practice
Java 9 Security Enhancements in PracticeJava 9 Security Enhancements in Practice
Java 9 Security Enhancements in Practice
Martin Toshev
 
Java 9 sneak peek
Java 9 sneak peekJava 9 sneak peek
Java 9 sneak peek
Martin Toshev
 
Writing Stored Procedures in Oracle RDBMS
Writing Stored Procedures in Oracle RDBMSWriting Stored Procedures in Oracle RDBMS
Writing Stored Procedures in Oracle RDBMS
Martin Toshev
 
Spring RabbitMQ
Spring RabbitMQSpring RabbitMQ
Spring RabbitMQ
Martin Toshev
 
Security Architecture of the Java platform
Security Architecture of the Java platformSecurity Architecture of the Java platform
Security Architecture of the Java platform
Martin Toshev
 
Oracle Database 12c Attack Vectors
Oracle Database 12c Attack VectorsOracle Database 12c Attack Vectors
Oracle Database 12c Attack Vectors
Martin Toshev
 
JVM++: The Graal VM
JVM++: The Graal VMJVM++: The Graal VM
JVM++: The Graal VM
Martin Toshev
 
RxJS vs RxJava: Intro
RxJS vs RxJava: IntroRxJS vs RxJava: Intro
RxJS vs RxJava: Intro
Martin Toshev
 
Security Аrchitecture of Тhe Java Platform
Security Аrchitecture of Тhe Java PlatformSecurity Аrchitecture of Тhe Java Platform
Security Аrchitecture of Тhe Java Platform
Martin Toshev
 
Spring RabbitMQ
Spring RabbitMQSpring RabbitMQ
Spring RabbitMQ
Martin Toshev
 
Writing Stored Procedures with Oracle Database 12c
Writing Stored Procedures with Oracle Database 12cWriting Stored Procedures with Oracle Database 12c
Writing Stored Procedures with Oracle Database 12c
Martin Toshev
 
Concurrency Utilities in Java 8
Concurrency Utilities in Java 8Concurrency Utilities in Java 8
Concurrency Utilities in Java 8
Martin Toshev
 
The RabbitMQ Message Broker
The RabbitMQ Message BrokerThe RabbitMQ Message Broker
The RabbitMQ Message Broker
Martin Toshev
 
Security Architecture of the Java Platform (BG OUG, Plovdiv, 13.06.2015)
Security Architecture of the Java Platform (BG OUG, Plovdiv, 13.06.2015)Security Architecture of the Java Platform (BG OUG, Plovdiv, 13.06.2015)
Security Architecture of the Java Platform (BG OUG, Plovdiv, 13.06.2015)
Martin Toshev
 
Modularity of The Java Platform Javaday (http://javaday.org.ua/)
Modularity of The Java Platform Javaday (http://javaday.org.ua/)Modularity of The Java Platform Javaday (http://javaday.org.ua/)
Modularity of The Java Platform Javaday (http://javaday.org.ua/)
Martin Toshev
 
Writing Java Stored Procedures in Oracle 12c
Writing Java Stored Procedures in Oracle 12cWriting Java Stored Procedures in Oracle 12c
Writing Java Stored Procedures in Oracle 12c
Martin Toshev
 
KDB database (EPAM tech talks, Sofia, April, 2015)
KDB database (EPAM tech talks, Sofia, April, 2015)KDB database (EPAM tech talks, Sofia, April, 2015)
KDB database (EPAM tech talks, Sofia, April, 2015)
Martin Toshev
 
Semantic Technology In Oracle Database 12c
Semantic Technology In Oracle Database 12cSemantic Technology In Oracle Database 12c
Semantic Technology In Oracle Database 12c
Martin Toshev
 
Practical security In a modular world
Practical security In a modular worldPractical security In a modular world
Practical security In a modular world
Martin Toshev
 
Java 9 Security Enhancements in Practice
Java 9 Security Enhancements in PracticeJava 9 Security Enhancements in Practice
Java 9 Security Enhancements in Practice
Martin Toshev
 
Writing Stored Procedures in Oracle RDBMS
Writing Stored Procedures in Oracle RDBMSWriting Stored Procedures in Oracle RDBMS
Writing Stored Procedures in Oracle RDBMS
Martin Toshev
 
Security Architecture of the Java platform
Security Architecture of the Java platformSecurity Architecture of the Java platform
Security Architecture of the Java platform
Martin Toshev
 
Oracle Database 12c Attack Vectors
Oracle Database 12c Attack VectorsOracle Database 12c Attack Vectors
Oracle Database 12c Attack Vectors
Martin Toshev
 
RxJS vs RxJava: Intro
RxJS vs RxJava: IntroRxJS vs RxJava: Intro
RxJS vs RxJava: Intro
Martin Toshev
 
Security Аrchitecture of Тhe Java Platform
Security Аrchitecture of Тhe Java PlatformSecurity Аrchitecture of Тhe Java Platform
Security Аrchitecture of Тhe Java Platform
Martin Toshev
 
Writing Stored Procedures with Oracle Database 12c
Writing Stored Procedures with Oracle Database 12cWriting Stored Procedures with Oracle Database 12c
Writing Stored Procedures with Oracle Database 12c
Martin Toshev
 
Concurrency Utilities in Java 8
Concurrency Utilities in Java 8Concurrency Utilities in Java 8
Concurrency Utilities in Java 8
Martin Toshev
 
The RabbitMQ Message Broker
The RabbitMQ Message BrokerThe RabbitMQ Message Broker
The RabbitMQ Message Broker
Martin Toshev
 
Security Architecture of the Java Platform (BG OUG, Plovdiv, 13.06.2015)
Security Architecture of the Java Platform (BG OUG, Plovdiv, 13.06.2015)Security Architecture of the Java Platform (BG OUG, Plovdiv, 13.06.2015)
Security Architecture of the Java Platform (BG OUG, Plovdiv, 13.06.2015)
Martin Toshev
 
Modularity of The Java Platform Javaday (http://javaday.org.ua/)
Modularity of The Java Platform Javaday (http://javaday.org.ua/)Modularity of The Java Platform Javaday (http://javaday.org.ua/)
Modularity of The Java Platform Javaday (http://javaday.org.ua/)
Martin Toshev
 
Writing Java Stored Procedures in Oracle 12c
Writing Java Stored Procedures in Oracle 12cWriting Java Stored Procedures in Oracle 12c
Writing Java Stored Procedures in Oracle 12c
Martin Toshev
 
KDB database (EPAM tech talks, Sofia, April, 2015)
KDB database (EPAM tech talks, Sofia, April, 2015)KDB database (EPAM tech talks, Sofia, April, 2015)
KDB database (EPAM tech talks, Sofia, April, 2015)
Martin Toshev
 
Ad

Recently uploaded (20)

Azure vs AWS Which Cloud Platform Is Best for Your Business in 2025
Azure vs AWS  Which Cloud Platform Is Best for Your Business in 2025Azure vs AWS  Which Cloud Platform Is Best for Your Business in 2025
Azure vs AWS Which Cloud Platform Is Best for Your Business in 2025
Infrassist Technologies Pvt. Ltd.
 
Introduction to Internet of things .ppt.
Introduction to Internet of things .ppt.Introduction to Internet of things .ppt.
Introduction to Internet of things .ppt.
hok12341073
 
Soulmaite review - Find Real AI soulmate review
Soulmaite review - Find Real AI soulmate reviewSoulmaite review - Find Real AI soulmate review
Soulmaite review - Find Real AI soulmate review
Soulmaite
 
Creating an Accessible Future-How AI-powered Accessibility Testing is Shaping...
Creating an Accessible Future-How AI-powered Accessibility Testing is Shaping...Creating an Accessible Future-How AI-powered Accessibility Testing is Shaping...
Creating an Accessible Future-How AI-powered Accessibility Testing is Shaping...
Impelsys Inc.
 
Dancing with AI - A Developer's Journey.pptx
Dancing with AI - A Developer's Journey.pptxDancing with AI - A Developer's Journey.pptx
Dancing with AI - A Developer's Journey.pptx
Elliott Richmond
 
7 Salesforce Data Cloud Best Practices.pdf
7 Salesforce Data Cloud Best Practices.pdf7 Salesforce Data Cloud Best Practices.pdf
7 Salesforce Data Cloud Best Practices.pdf
Minuscule Technologies
 
Oracle Cloud Infrastructure Generative AI Professional
Oracle Cloud Infrastructure Generative AI ProfessionalOracle Cloud Infrastructure Generative AI Professional
Oracle Cloud Infrastructure Generative AI Professional
VICTOR MAESTRE RAMIREZ
 
ISOIEC 42005 Revolutionalises AI Impact Assessment.pptx
ISOIEC 42005 Revolutionalises AI Impact Assessment.pptxISOIEC 42005 Revolutionalises AI Impact Assessment.pptx
ISOIEC 42005 Revolutionalises AI Impact Assessment.pptx
AyilurRamnath1
 
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyesEnd-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
ThousandEyes
 
Data Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any ApplicationData Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any Application
Safe Software
 
What is Oracle EPM A Guide to Oracle EPM Cloud Everything You Need to Know
What is Oracle EPM A Guide to Oracle EPM Cloud Everything You Need to KnowWhat is Oracle EPM A Guide to Oracle EPM Cloud Everything You Need to Know
What is Oracle EPM A Guide to Oracle EPM Cloud Everything You Need to Know
SMACT Works
 
TrustArc Webinar - 2025 Global Privacy Survey
TrustArc Webinar - 2025 Global Privacy SurveyTrustArc Webinar - 2025 Global Privacy Survey
TrustArc Webinar - 2025 Global Privacy Survey
TrustArc
 
How to Detect Outliers in IBM SPSS Statistics.pptx
How to Detect Outliers in IBM SPSS Statistics.pptxHow to Detect Outliers in IBM SPSS Statistics.pptx
How to Detect Outliers in IBM SPSS Statistics.pptx
Version 1 Analytics
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
How Advanced Environmental Detection Is Revolutionizing Oil & Gas Safety.pdf
How Advanced Environmental Detection Is Revolutionizing Oil & Gas Safety.pdfHow Advanced Environmental Detection Is Revolutionizing Oil & Gas Safety.pdf
How Advanced Environmental Detection Is Revolutionizing Oil & Gas Safety.pdf
Rejig Digital
 
Trends Artificial Intelligence - Mary Meeker
Trends Artificial Intelligence - Mary MeekerTrends Artificial Intelligence - Mary Meeker
Trends Artificial Intelligence - Mary Meeker
Clive Dickens
 
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
Safe Software
 
Domino IQ – Was Sie erwartet, erste Schritte und Anwendungsfälle
Domino IQ – Was Sie erwartet, erste Schritte und AnwendungsfälleDomino IQ – Was Sie erwartet, erste Schritte und Anwendungsfälle
Domino IQ – Was Sie erwartet, erste Schritte und Anwendungsfälle
panagenda
 
Agentic AI: Beyond the Buzz- LangGraph Studio V2
Agentic AI: Beyond the Buzz- LangGraph Studio V2Agentic AI: Beyond the Buzz- LangGraph Studio V2
Agentic AI: Beyond the Buzz- LangGraph Studio V2
Shashikant Jagtap
 
Improving Developer Productivity With DORA, SPACE, and DevEx
Improving Developer Productivity With DORA, SPACE, and DevExImproving Developer Productivity With DORA, SPACE, and DevEx
Improving Developer Productivity With DORA, SPACE, and DevEx
Justin Reock
 
Azure vs AWS Which Cloud Platform Is Best for Your Business in 2025
Azure vs AWS  Which Cloud Platform Is Best for Your Business in 2025Azure vs AWS  Which Cloud Platform Is Best for Your Business in 2025
Azure vs AWS Which Cloud Platform Is Best for Your Business in 2025
Infrassist Technologies Pvt. Ltd.
 
Introduction to Internet of things .ppt.
Introduction to Internet of things .ppt.Introduction to Internet of things .ppt.
Introduction to Internet of things .ppt.
hok12341073
 
Soulmaite review - Find Real AI soulmate review
Soulmaite review - Find Real AI soulmate reviewSoulmaite review - Find Real AI soulmate review
Soulmaite review - Find Real AI soulmate review
Soulmaite
 
Creating an Accessible Future-How AI-powered Accessibility Testing is Shaping...
Creating an Accessible Future-How AI-powered Accessibility Testing is Shaping...Creating an Accessible Future-How AI-powered Accessibility Testing is Shaping...
Creating an Accessible Future-How AI-powered Accessibility Testing is Shaping...
Impelsys Inc.
 
Dancing with AI - A Developer's Journey.pptx
Dancing with AI - A Developer's Journey.pptxDancing with AI - A Developer's Journey.pptx
Dancing with AI - A Developer's Journey.pptx
Elliott Richmond
 
7 Salesforce Data Cloud Best Practices.pdf
7 Salesforce Data Cloud Best Practices.pdf7 Salesforce Data Cloud Best Practices.pdf
7 Salesforce Data Cloud Best Practices.pdf
Minuscule Technologies
 
Oracle Cloud Infrastructure Generative AI Professional
Oracle Cloud Infrastructure Generative AI ProfessionalOracle Cloud Infrastructure Generative AI Professional
Oracle Cloud Infrastructure Generative AI Professional
VICTOR MAESTRE RAMIREZ
 
ISOIEC 42005 Revolutionalises AI Impact Assessment.pptx
ISOIEC 42005 Revolutionalises AI Impact Assessment.pptxISOIEC 42005 Revolutionalises AI Impact Assessment.pptx
ISOIEC 42005 Revolutionalises AI Impact Assessment.pptx
AyilurRamnath1
 
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyesEnd-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
ThousandEyes
 
Data Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any ApplicationData Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any Application
Safe Software
 
What is Oracle EPM A Guide to Oracle EPM Cloud Everything You Need to Know
What is Oracle EPM A Guide to Oracle EPM Cloud Everything You Need to KnowWhat is Oracle EPM A Guide to Oracle EPM Cloud Everything You Need to Know
What is Oracle EPM A Guide to Oracle EPM Cloud Everything You Need to Know
SMACT Works
 
TrustArc Webinar - 2025 Global Privacy Survey
TrustArc Webinar - 2025 Global Privacy SurveyTrustArc Webinar - 2025 Global Privacy Survey
TrustArc Webinar - 2025 Global Privacy Survey
TrustArc
 
How to Detect Outliers in IBM SPSS Statistics.pptx
How to Detect Outliers in IBM SPSS Statistics.pptxHow to Detect Outliers in IBM SPSS Statistics.pptx
How to Detect Outliers in IBM SPSS Statistics.pptx
Version 1 Analytics
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
How Advanced Environmental Detection Is Revolutionizing Oil & Gas Safety.pdf
How Advanced Environmental Detection Is Revolutionizing Oil & Gas Safety.pdfHow Advanced Environmental Detection Is Revolutionizing Oil & Gas Safety.pdf
How Advanced Environmental Detection Is Revolutionizing Oil & Gas Safety.pdf
Rejig Digital
 
Trends Artificial Intelligence - Mary Meeker
Trends Artificial Intelligence - Mary MeekerTrends Artificial Intelligence - Mary Meeker
Trends Artificial Intelligence - Mary Meeker
Clive Dickens
 
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
National Fuels Treatments Initiative: Building a Seamless Map of Hazardous Fu...
Safe Software
 
Domino IQ – Was Sie erwartet, erste Schritte und Anwendungsfälle
Domino IQ – Was Sie erwartet, erste Schritte und AnwendungsfälleDomino IQ – Was Sie erwartet, erste Schritte und Anwendungsfälle
Domino IQ – Was Sie erwartet, erste Schritte und Anwendungsfälle
panagenda
 
Agentic AI: Beyond the Buzz- LangGraph Studio V2
Agentic AI: Beyond the Buzz- LangGraph Studio V2Agentic AI: Beyond the Buzz- LangGraph Studio V2
Agentic AI: Beyond the Buzz- LangGraph Studio V2
Shashikant Jagtap
 
Improving Developer Productivity With DORA, SPACE, and DevEx
Improving Developer Productivity With DORA, SPACE, and DevExImproving Developer Productivity With DORA, SPACE, and DevEx
Improving Developer Productivity With DORA, SPACE, and DevEx
Justin Reock
 

Big data processing with Apache Spark and Oracle Database

  • 1. Big data processing with Apache Spark and Oracle database Martin Toshev
  • 2. Who am I Software consultant (CoffeeCupConsulting) BG JUG board member (http://jug.bg) (BG JUG is a 2018 Oracle Duke’s choice award winner)
  • 3. Agenda • Apache Spark from an eagle’s eye • Apache Spark capabilities • Using Oracle RDBMS as a Spark datasource
  • 4. Apache Spark from an Eagle’s eye
  • 5. Highlights • A framework for large-scale distributed data processing • Originally in Scala but extended with Java, Python and R • One of the most contributed open source/Apache/GitHub projects with over 1400 contributors
  • 6. Spark vs MapReduce • Spark has been developed in order to address the shortcomings of the MapReduce programming model • In particular MapReduce is unsuitable for: – real-time processing (suitable for batch processing of present data) – operations not limited to the key-value format of data – large data on a network – online transaction processing – graph processing – sequential program execution
  • 7. Spark vs Hadoop • Spark is faster as it depends more on RAM usage and tries to minimize disk IO (on the storage system) • Spark however can still use Hadoop: – as a storage engine (HDFS) – as a compute engine (MapReduce or Hadoop YARN) • Spark has pluggable storage and compute engine architecture
  • 8. Spark components Spark Framework Spark Core Spark Streaming MLib GraphXSpark SQL
  • 11. Spark datasets • The building block of Spark are RDDs (Resilient Distributed Datasets) • They are immutable collections of objects spread across a Spark cluster and stored in RAM or on disk • Created by means of distributed transformations • Rebuilt on failure of a Spark node
  • 12. Spark datasets • The DataFrame API is a superset of RDDs introduced in Spark 2.0 • The Dataset API provides a way to work with a combination of RDDs and DataFrames • The DataFrame API is preferred compared to RDDs due to improved performance and more advanced operations
  • 13. Spark datasets List<Item> items = …; SparkConf configuration = new SparkConf().setAppName(“ItemsManager").setMaster("local"); JavaSparkContext context = new JavaSparkContext(configuration); JavaRDD<Item> itemsRDD = context.parallelize(items);
  • 14. Spark transformations map itemsRDD.map(i -> { i.setName(“phone”); return i;}); filter itemsRDD.filter(i -> i.getName().contains(“phone”)) flatMap itemsRDD.flatMap(i -> Arrays.asList(i, i).iterator()); union itemsRDD.union(newItemsRDD); intersection itemsRDD.intersection(newItemsRDD); distinct itemsRDD.distinct() cartesian itemsRDD.cartesian(otherDatasetRDD)
  • 15. Spark transformations groupBy pairItemsRDD = itemsRDD.mapToPair(i -> new Tuple2(i.getType(), i)); modifiedPairItemsRDD = pairItemsRDD.groupByKey(); reduceByKey pairItemsRDD = itemsRDD.mapToPair(o -> new Tuple2(o.getType(), o)); modifiedPairItemsRDD = pairItemsRDD.reduceByKey((o1, o2) -> new Item(o1.getType(), o1.getCount() + o2.getCount(), o1.getUnitPrice()) ); • Other transformations include aggregateByKey, sortByKey, join, cogroup …
  • 16. Spark actions • Spark actions are the terminal operations that produce results from the transformations • Actions are a way to communicate back from the execution engine to the Spark driver instance
  • 17. Spark actions collect itemsRDD.collect() reduce itemsRDD.map(i -> i.getUnitPrice() * i.getCount()). reduce((x, y) -> x + y); count itemsRDD.count() first itemsRDD.first() take itemsRDD.take(4) takeOrdered itemsRDD.takeOrdered(4, comparator) foreach itemsRDD.foreach(System.out::println) saveAsTextFile itemsRDD.saveAsTextFile(path) saveAsObjectFile itemsRDD.saveAsObjectFile(path)
  • 18. DataFrames/DataSets • A dataframe can be created using an instance of the org.apache.spark.sql.SparkSession class • The DataFrame/DataSet APIs provide more advanced operations and the capability to run SQL queries on the data itemsDS.createOrReplaceTempView(“items"); session.sql("SELECT * FROM items");
  • 19. DataFrames/DataSets • An existing RDD can be converted to a Spark dataframe: • An RDD can be retrieved from a dataframe as well: SparkSession session = SparkSession.builder().appName("app").getOrCreate(); Dataset<Row> itemsDS = session.createDataFrame(itemsRDD, Item.class); itemsDS.rdd()
  • 20. Spark data sources • Spark can receive data from a variety of data sources in a variety of ways (batching, real-time streaming) • These datasources might be: – files: Spark supports reading data from a variety of formats (JSON, CSV, Avro, etc.) – relational databases: using JDBC/ODBC driver Spark can extract data from an RDBMS – TCP sockets, messaging systems: using streaming capabilities of Spark data can be read from messaging systems and raw TCP sockets
  • 21. Spark data sources • Spark provides support for operations on batch data or real time data • For real time data Spark provides two main APIs: – Spark streaming is an older API working on RDDs – Spark structured streaming is a newer API working on DataFrames/DataSets
  • 22. Spark data sources • Spark provides capabilities to plug-in additional data sources not supported by Spark • For streaming sources you can define your own custom receivers
  • 23. Spark streaming • Data is divided into batches called Dstreams (decentralized streams) • Typical use case is the integration of Spark with messaging systems such as Kafka, RabbitMQ and ActiveMQ etc. • Fault tolerance can be enabled in Spark Streaming whereby data is stored in HDFS
  • 24. Spark streaming • To define a Spark stream you need to create a JavaStreamingContext instance SparkConf conf = new SparkConf().setMaster("local[4]").setAppName("CustomerItems"); JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));
  • 25. Spark streaming • Then a receiver can be created for the data: – from sockets: – from data directory: – from RDD streams (for testing purposes): jssc.socketTextStream("localhost", 7777); jssc.textFileStream("... some data directory ..."); jssc.queueStream(... RDDs queue ... )
  • 26. Spark streaming • Then the data pipeline can be built using transformations and actions on the streams • Finally retrieval of data must be triggered from the streaming context: jssc.start(); jssc.awaitTermination();
  • 27. Spark streaming • Window streams can be created over stream data based on two criteria: – length of the window – sliding interval for the windows • Streaming datasets can also be joined with other streaming or batch datasets
  • 28. Spark structured streaming • Newer streaming API working on DataSets/DataFrames: • A schema can be specified on the streaming data using the .schema(<schema>) method on the read stream SparkSession context = SparkSession .builder() .appName("CustomerItems") .getOrCreate(); Dataset<Row> lines = spark .readStream() .format("socket") .option("host", "localhost") .option("port", 7777) .load();
  • 29. Spark structured streaming • Write sinks can also be used to write out streaming datasets: • The following write sinks are provided by Spark: - file - Kafka - foreach - console (for testing purpose) - memory (for testing purpose) StreamingQuery query = wordCounts.writeStream() .outputMode("complete") .format("console") .start(); query.awaitTermination();
  • 30. Clustering • Spark supports the following cluster managers: – Standalone scheduler (default) – YARN – Mesos • Support for Kubernetes cluster manager is also undergoing (experimental at present)
  • 31. Using Oracle RDBMS as a Spark datasource
  • 32. Oracle RDBMS data source • Spark supports retrieval of data through JDBC/ODBC • Database driver must be supplied to the Spark classpath (specified with the --driver-class-path) option • For Oracle RDBMS that is the ojdbc driver
  • 33. Oracle RDBMS data source session.read() .format("jdbc") .option("url","jdbc:oracle:thin:@//127.0.0.1:1521/ORCL") .option("dbtable", "items") .option("user", "c##spark") .option("password", "spark") .load();
  • 34. Oracle RDBMS data source • You can use a variery of options when reading data from an RDBMS using the jdbc format: – query: a subquery that provides the possibility to limit retrieved data – queryTimeout: specify the timeout for the JDBC query executed against the RDBMS • You can also save datasets to a table: itemsDF.write().mode(org.apache.spark.sql.SaveMode.Append). jdbc("jdbc:oracle:thin:@//127.0.0.1:1521/ORCL", “items", prop);
  • 35. Data processing options • However the support provided by Spark is for batch processing of data from the RDBMS … • In many cases one might want to process data in a streaming manner
  • 36. Data processing options • For stream processing of data from an Oracle RDBMS a Spark instance may have to: – process records as they are inserted in the RDBMS Id Type OrderTime 1 Laptop 2019.11.05 11:55:05 2 Battery 2019.11.05 12:04:23 3 Headphones 2019.11.05 12:24:17 4 Laptop 2019.11.05 12:52:32
  • 37. Data processing options • For stream processing of data from an Oracle RDBMS a Spark instance may have to: – process records on evenly-sized batches Id Type OrderTime 1 Laptop 2019.11.05 11:55:05 2 Battery 2019.11.05 12:04:23 3 Headphones 2019.11.05 12:24:17 4 Laptop 2019.11.05 12:52:32
  • 38. Data processing options • For stream processing of data from an Oracle RDBMS a Spark instance may have to: – process records on evenly-sized time intervals (record size may vary) Id Type OrderTime 1 Laptop 2019.11.05 11:55:05 2 Battery 2019.11.05 12:04:23 3 Headphones 2019.11.05 12:24:17 4 Laptop 2019.11.05 12:52:32
  • 39. Data processing options • For stream processing of data from an Oracle RDBMS a Spark instance may have to: – process batches of overlapping records using a sized window Id Type OrderTime 1 Laptop 2019.11.05 11:55:05 2 Battery 2019.11.05 12:04:23 3 Headphones 2019.11.05 12:24:17 4 Laptop 2019.11.05 12:52:32
  • 40. Data processing options • For stream processing of data from an Oracle RDBMS a Spark instance may have to: – processing of batches based on custom filter criteria Id Type OrderTime 1 Laptop 2019.11.05 11:55:05 2 Battery 2019.11.05 12:04:23 3 Headphones 2019.11.05 12:24:17 4 Laptop 2019.11.05 12:52:32
  • 41. Data processing options • These can be achieved using the following mechanism: – by duplicating writes over a streaming system such as Kafka – via Spark streaming receiver that: • buffer records (if a small delay is tolerable) • creates an endpoint that an RDBMS trigger calls upon insertion • listens for database changes using DCN (Database Change Notifications) via JDBC (only pre-12c, DCN support dropped for PDBs as of 12c)
  • 42. DEMO
  • 43. Summary • Apache Spark is one of the most feature-rich and developed big data processing frameworks • Provides a mechanism to distribute load over a large number of nodes using different cluster managers • A great option for fast and scalable processing of data from an Oracle RDBMS