This document summarizes Chapter 10 of the book "Data Mining: Concepts and Techniques (3rd ed.)" which covers cluster analysis. The chapter introduces different types of clustering methods including partitioning methods like k-means and k-medoids, hierarchical methods, density-based methods, and grid-based methods. It discusses how to evaluate the quality of clustering results and highlights considerations for cluster analysis such as similarity measures, clustering space, and challenges like scalability and high dimensionality.
Related topics: