SlideShare a Scribd company logo
2
Most read
7
Most read
13
Most read
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 1
INTEGER PROGRAMMING
Introduction
An integer programming model is one where one or more of the decision variables has to take on
an integer value in the final solution. Solving an integer programming problem is much more
difficult than solving an LP problem. Even the fastest computers can take an excessively long
time to solve big integer programming problems. If requiring integer values is the only way in
which a problem deviates from a linear programming formulation, then it is an integer
programming (IP) problem. (The more complete name is integer linear programming, but the
adjective linear normally is dropped except when this problem is contrasted with the more
esoteric integer nonlinear programming problem. So, the mathematical model for integer
programming is the linear programming model with the one additional restriction that the
variables must have integer values.
In linear programming, each of the decision variable as well as slack and /or surplus variable is
allowed to take any fractional value. However, there are certain practical problems in which the
fractional value of the decision variables has no significance. For example, it does not make
sense saying 1.5 men working on a project or 1.6 machines in a workshop. The integer solution
to a problem can, however, be obtained by rounding off the optimum value of the variables to the
nearest integer value.
This approach can be easy in terms of economy of effort, time and cost that might be required to
derive an integer solution but this solution may not satisfy all the given constraints. Secondly, the
value of the objective function so obtained may not be optimal value. All such difficulties can be
avoided if the given problem, where an integer solution is required, is solved by integer
programming techniques.
Why used?
The implicit assumption was that solutions could be fractional or real numbers (i.e.non
integer) in the linear programming models. However, non-integer solutions are always
practical.
When only integer solutions are practical or logical, non-integer solution values can be
rounded off to the nearest feasible integer values.
For example, if the case is nail, it will cause little concern considering 8000.4 nails as
8000 nails. Round off makes the case cost only a few cents apiece.
For example, if the case is a production of jet aircraft, round off could affect profit or
cost by million dollars considering 7.4 jet airliners as 7 or 8.
Integer Programming Models
There are three types of models;
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 2
 Pure Integer Model; All decision variables required to have integer solution values.
 0-1 Integer Model: All decision variables required to have integer values of zero or one.
 Mixed Integer Model: Some of the decision variables (but not all) required to have
integer values.
There are certain decision problems where decision variables make sense only if they have
integer values in the solution. Capital budgeting, construction scheduling, plant location and
size, routing and shipping schedule, batch size, capacity expansion, fixed charge, etc., are few
problems which demonstrate the areas of application of integer programming.
Example 1: A Total (Pure) Integer Model
Machine shop obtaining new presses and lathes. The Marginal profitability of each press
machine is $100/day and each of lathe machine is $150/day. The Resource constraints is
$40,000 and 200 sq. ft. floor space. The Machine purchase prices and space requirements are
given in the table below:
Machine
Required Floor Space (sq.
ft.) Purchase Price
Press 15 8000
Lathe 30 4000
Integer Programming Model:
Maximize Z = $100X1+ $150X2
subject to:
8,000X1+ 4,000X2 ≤ $40,000
15X1+ 30X2 ≤ 200 ft2
X1, X2 ≥ 0 and integer
X1= number of presses
X2= number of lathes
Example 2: A Total Integer Model
Integer Programming Model:
Maximize Z = 6X1+ 5X2 + 2X3
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 3
subject to:
10X1+ 4X2+ 2 X3 ≤ 600
2 X1+ 5 X2+ 2 X3 ≤ 800
X1, X2, X3 ≥0 and integer
X1= 22, X2= 0, X3 = 378
Z=888
Example 3: A 0 - 1 Integer Model
Recreation facilities selection to maximize daily usage by residents.
Resource constraints: $120,000 budget; 12 acres of land.
Selection constraint: either swimming pool or tennis center (not both).
Data:
Recreation
Expected
Usage Cost
($)
Land
Facility (people/day) Requirement
(acres)
Swimming
pool 300 35000 4
Tennis Center 90 10000 2
Athletic field 400 25000 7
Gymnasium 150 90000 3
Integer Programming Model:
Maximize Z = 300X1+ 90X2+ 400X3+ 150X4
subject to:
$35,000X1+ 10,000X2+ 25,000X3+ 90,000X4 ≤ $120,000
4X1+ 2X2+ 7X3+ 3X4 ≤ 12 acres
X1+ X2 ≤ 1 facility
X1, X2, X3, X4 = 0 or 1
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 4
X1= construction of a swimming pool
X2= construction of a tennis center
X3= construction of an athletic field
X4= construction of a gymnasium
Example 4:
Integer Programming Model:
Maximize Z = 6X1+ 5X2 + 2X3
subject to:
10X1+ 4X2+ 2 X3 ≤ 600
2 X1+ 5 X2+ 2 X3 ≤ 800
X1, X2, X3 ≥ 0 OR 1
X1= 1, X2= 1, X3 = 1, Z=13
Example 5: A Mixed Integer Model;
$250,000 available for investments providing greatest return after one year.
Data:
Condominium cost $50,000/unit, $9,000 profit if sold after one year.
Land cost $12,000/ acre, $1,500 profit if sold after one year.
Municipal bond cost $8,000/bond, $1,000 profit if sold after one year.
Only 4 condominiums, 15 acres of land, and 20 municipal bonds available.
Integer Programming Model:
Maximize Z = $9,000x1+ 1,500x2 + 1,000x3
subject to:
50,000X1+ 12,000X2 + 8,000X3 ≤ $250,000
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 5
X1 ≤ 4 condominiums
X2 ≤ 15 acres
X3≤20 bonds
X2 ≥0
X1, X3 ≥0 and integer
X1= condominiums purchased, X2 = acres of land purchased, X3= bonds purchased
Example 6:
Integer Programming Model:
Maximize Z = 6X1+ 5X2 + 2X3
subject to:
10X1+ 4X2+ 2 X3 ≤ 600
2 X1+ 5 X2+ 2 X3 ≤800
X1, X2, X3 ≥0
X1= 22.2, X2= 0, X3 = 377.8
Z=888.9
METHODS FOR SOLVING ILP PROBLEMS
a. Branch–and–Bound Method (Developed By: A.H. Land and A. G. Doing)
b. Cutting–Plane Method (developed by: Ralph E. Gomory)
a. BRANCH–AND–BOUND METHOD
Creates and solves a sequence of sub-problems to the original problem that are increasingly
more restrictive until an optimal solution is found.
Branching: Selection of an integer value of a decision variable to examine for a possible
integer solution to a problem. “If the solution to the linear programming problem contains
non-integer values for some or all decision variables, then the solution space is reduced by
introducing constraints with respect to any one of those decision variables. If the value of the
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 6
decision variable “X1” is 2.5, then two more problems will be created by using each of the
following constraints. X1 ≤ 2 and X1 ≥ 3.
Bound: An upper or lower limit on the value of the objective function at a given stage of the
analysis of an integer programming problem.
Lower bound: The lower bound at a node is the value of the objective function
corresponding to the truncated values (integer parts) of the decision variables of the problem
in that node.
Upper bound: The upper bound at a node is the value of the objective function
corresponding to the linear programming solution in that node.
Fathomed subproblem / node: A problem is said to be fathomed if any one of the following
three conditions is true:
1. The values of the decision variables of the problem are integer.
2. The upper bound of the problem which has non–integer values for its decision variables
is not greater than the current best lower bound.
3. The problem has infeasible solution. This means that further branching from this type of
fathomed nodes is not necessary.
Current best lower bound: This is the best lower bound (highest in the case of maximization
problem and lowest in the case of minimization problem) among the lower bounds of all the
fathomed nodes. Initially, it is assumed as infinity for the root node.
Branch & Bound Algorithm Applied to Maximization Problem:
Step 1. Solve the given linear programming problem graphically or using iterative
method. Set, the current best lower bound ZB as ∞.
Step 2. Check, Whether the problem has integer solution. If yes, print the current solution
as the optimal solution and stop; Otherwise go to Step–3.
Step 3. Identify the variable Xk which has the maximum fractional part as the branching
variable. (In case of tie, select the variable which has the highest objective function
coefficient.)
Step 4. Create two more problems by including each of the following constraints to the
current problem and solve them.
a) Xk ≤ Integer part of Xk
b) Xk ≥ Next Integer of Xk
Step 5. If any one of the new sub-problems has infeasible solution or fully integer values
for the decision variables, the corresponding node is fathomed. If a new node has
integer values for the decision variables, update the current best lower bound as the
lower bound of that node if its lower bound is greater than the previous current best
lower bound.
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 7
Step 6. Are all terminal nodes fathomed? If answer is yes, go to step–7; otherwise,
identify the node with the highest lower bound and go to step–3.
Step 7. Select the solution of the problem with respect to the fathomed node whose lower
bound is equal to the current best lower bound as the optimal solution.
Example
Max. Z = 10X1 + 20X2
Subject to:
6X1 + 8X2 ≤ 48
X1 + 3X2 ≤ 12
X1, X2 ≥ 0 and integers
ZU = Upper bound = Z (Optimum) of LP Problem.
ZL = Lower bound w. r. t. the truncated values of the decision variables
ZB = Current Best Lower Bound
X1=24/5, X2=12/5,Z=96
ZU=96
ZL=80
ZB=∞
In Problem (P1), X1 has the highest fractional part 24/5. Hence; “X1” is selected for further
branching.
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 8
The Problem P2 has the highest lower bound (ZL) of 90 among the unfathomed terminal nodes.
So, the further branching is done from this node.
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 9
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 10
The solution of P6 is non–integer and its ZL = 80 and ZU = 90. Since, ZU ≤ (Current best ZL =90),
the node P6 is also fathomed and it has infeasible solution in terms of not fulfilling integer
constraints for the decision variables.
The Problem P7 has integer solution. So, it is a fathomed node. Hence the current best lower
bound (ZB) is updated to the objective function value 90.
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 11
Now, the Only unfathomed terminal node is P3. The further branching from this node is shown
below:
The problems P8 and P9 have integer solution. So, these two nodes are fathomed. But the
objective function value of these nodes are not greater than the current best lower bound of 90.
Hence, the current best lower bound is not updated. Now, all the terminal nodes are fathomed.
The feasible fathomed node with the current best lower bound is P7. Hence, its solution is treated
as the optimal solution: X1=5, X2 =2, Z(Optimum) = 90
NOTE: This Problem has alternative optimum solution at P8 with X1=3, X2=3, Z(Optimum)=90
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 12
Complete Tree:
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 13
Example 2;
Max Z = 6X1 + 8X2
Subject to:
4X1 + 5X2 ≤ 22
5X1 + 8X2 ≤ 30
X1, X2 ≥ 0 and integers
b. Integer simplex method (Gomory's cutting plane method)
An Algorithm for solvingPure integer and mixed integer programming
problems have been developed by Ralph E. Gomory
Step I. Relax the integer requirements.
Step II. Solve the resulting LP problem using Simplex Method.
Step III. If all the basic variables have integer values, Optimality of the Integer
programming problem is reached. So, go step 7; otherwise go to step 4.
Step IV. Examine the constraints corresponding to the current optimal solution. For each
Basic Variable with non-integer solution in the current optimal table, find the fractional
part, fi, Therefore, bi = [bi] + fi, where [bi] is the integer part of bi, and fi is the
fractional part of bi.
Step V. Choose the largest fraction among various fi; i.e. Max (fi). Treat the constraint
corresponding to the maximum fraction as the source row
(equation). Based on the source equation, develop an additional constraint (Gomory’s
constraint / fractional cut) as shown:
–fi = Si – Summation ((fi) (Non–Basic Variable))
Step VI. Add the fractional cut as the last row in the latest optimal table and proceed
further using dual simplex method, and find the new optimum solution. If the new
optimum solution is integer then go to step 7; otherwise go to step IV.
Step VII. Print the integer solution [X’s and Z – Values]
Find solution using integer simplex method (Gomory's cutting plane method)
MAX Z = x1 + x2
subject to
3X1 + 2X2 ≤ 5
X2 ≤ 20
and X1, X2 >= 0
The optimal table of this linear programming problem is obtained at the third iteration of the
simplex method. The optimal table looks like as follow;
Iteration-3 Cj 1 1 0 0
B CB XB x1 x2 S1 S2 Min Ratio
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 14
x2 1 2.5 1.5 1 0.5 0
S2 0 17.5 -1.5 0 -0.5 1
Z=2.5 Zj 1.5 1 0.5 0
Zj-Cj 0.5 0 0.5 0
Since all Zj-Cj≥0
Hence, non-integer optimal solution is arrived with value of variables as:
X1=0, X2=2.5
Max Z=2.5
To obtain the integer valued solution, we proceed to construct Gomory's fractional cut, with the
help of X2-row as follows:
2.5=1.5X1+1X2+0.5S1
(2+0.5) = (1+0.5) X1+(1+0) X2+(0+0.5) S1
The fractional cut will become
-0.5=Sg1-0.5X1-0.5S1→ (Cut-1)
Adding this additional constraint at the bottom of optimal simplex table. The new table so
obtained is;
Iteration-1 Cj 1 1 0 0 0
B CBv XB X1 X2 S1 S2 Sg1
X2 1 2.5 1.5 1 0.5 0 0
S2 0 17.5 -1.5 0 -0.5 1 0
Sg1 0 -0.5 (-0.5) 0 -0.5 0 1
Z=2.5 Zj 1.5 1 0.5 0 0
Zj-Cj 0.5 0 0.5 0 0
Ratio=Zj-Cj/Sg1, j
and Sg1, j<0
-1↑ --- -1 --- ---
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 15
Minimum negative XB is -0.5 and its row index is 3. So, the leaving basis variable is Sg1.
Maximum negative ratio is -1 and its column index is 1. So, the entering variable is X1.
The pivot element is -0.5.
Entering =X1, Departing =Sg1, Key Element =-0.5
R3(old) = -0.5 -0.5 0 -0.5 0 1
R3(new)=R3(old)÷ (-0.5) 1 1 0 1 0 -2
R1(old) = 2.5 1.5 1 0.5 0 0
R3(new) = 1 1 0 1 0 -2
1.5×R3(new) = 1.5 1.5 0 1.5 0 -3
R1(new)=R1(old) - 1.5R3(new) 1 0 1 -1 0 3
R2(old) = 17.5 -1.5 0 -0.5 1 0
R3(new) = 1 1 0 1 0 -2
1.5×R3(new) = 1.5 1.5 0 1.5 0 -3
R2(new)=R2(old) + 1.5R3(new) 19 0 0 1 1 -3
Iteration-2 Cj 1 1 0 0 0
B CBv XB X1 X2 S1 S2 Sg1
X2 1 1 0 1 -1 0 3
S2 0 19 0 0 1 1 -3
X1 1 1 1 0 1 0 -2
Z=2 Zj 1 1 0 0 1
Zj-Cj 0 0 0 0 1
Ratio --- --- --- --- ---
COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 16
Since all Zj-Cj≥0. Hence, integer optimal solution is arrived with value of variables as:
X1=1,X2=1
Max Z=2
The integer optimal solution found after 1-cuts.
Ad

Recommended

Formulation Lpp
Formulation Lpp
Sachin MK
 
Dynamic Programming
Dynamic Programming
contact2kazi
 
Two Phase Method- Linear Programming
Two Phase Method- Linear Programming
Manas Lad
 
Karmarkar's Algorithm For Linear Programming Problem
Karmarkar's Algorithm For Linear Programming Problem
Ajay Dhamija
 
4-The Simplex Method.ppt
4-The Simplex Method.ppt
Mayurkumarpatil1
 
simplex method
simplex method
Dronak Sahu
 
Duality in Linear Programming
Duality in Linear Programming
jyothimonc
 
Operations Research - The Dual Simplex Method
Operations Research - The Dual Simplex Method
Hisham Al Kurdi, EAVA, DMC-D-4K, HCCA-P, HCAA-D
 
Transportation problem
Transportation problem
Shubhagata Roy
 
Game theory
Game theory
Abu Bashar
 
Game theory ppt
Game theory ppt
Anushka Kapoor
 
Unit.3. duality and sensetivity analisis
Unit.3. duality and sensetivity analisis
DagnaygebawGoshme
 
Practicle application of maxima and minima
Practicle application of maxima and minima
British Council
 
Introduction to Operations Research
Introduction to Operations Research
Sundar B N
 
Financial mathematics
Financial mathematics
Vukile Xhego
 
Duality
Duality
Sachin MK
 
Simplex Method
Simplex Method
kzoe1996
 
Travelling salesman problem
Travelling salesman problem
hamza haseeb
 
Lesson 11: Markov Chains
Lesson 11: Markov Chains
Matthew Leingang
 
Simplex method (maximization)
Simplex method (maximization)
Kamel Attar
 
Economic interpretations of Linear Programming Problem
Economic interpretations of Linear Programming Problem
RAVI PRASAD K.J.
 
GETUG-AFU 15
GETUG-AFU 15
UACH, Valdivia
 
Modi method
Modi method
manpreetgrewal
 
Sensitivity analysis in linear programming problem ( Muhammed Jiyad)
Sensitivity analysis in linear programming problem ( Muhammed Jiyad)
Muhammed Jiyad
 
Duality in Linear Programming Problem
Duality in Linear Programming Problem
RAVI PRASAD K.J.
 
Complex Number's Applications
Complex Number's Applications
Nikhil Deswal
 
Integer Linear Programming
Integer Linear Programming
SukhpalRamanand
 
primal and dual problem
primal and dual problem
Yash Lad
 
Integer Programming PPt.ernxzamnbmbmspdf
Integer Programming PPt.ernxzamnbmbmspdf
Raja Manyam
 
Linear mixed integer programs for chemical engineering
Linear mixed integer programs for chemical engineering
AvaniTaiwade
 

More Related Content

What's hot (20)

Transportation problem
Transportation problem
Shubhagata Roy
 
Game theory
Game theory
Abu Bashar
 
Game theory ppt
Game theory ppt
Anushka Kapoor
 
Unit.3. duality and sensetivity analisis
Unit.3. duality and sensetivity analisis
DagnaygebawGoshme
 
Practicle application of maxima and minima
Practicle application of maxima and minima
British Council
 
Introduction to Operations Research
Introduction to Operations Research
Sundar B N
 
Financial mathematics
Financial mathematics
Vukile Xhego
 
Duality
Duality
Sachin MK
 
Simplex Method
Simplex Method
kzoe1996
 
Travelling salesman problem
Travelling salesman problem
hamza haseeb
 
Lesson 11: Markov Chains
Lesson 11: Markov Chains
Matthew Leingang
 
Simplex method (maximization)
Simplex method (maximization)
Kamel Attar
 
Economic interpretations of Linear Programming Problem
Economic interpretations of Linear Programming Problem
RAVI PRASAD K.J.
 
GETUG-AFU 15
GETUG-AFU 15
UACH, Valdivia
 
Modi method
Modi method
manpreetgrewal
 
Sensitivity analysis in linear programming problem ( Muhammed Jiyad)
Sensitivity analysis in linear programming problem ( Muhammed Jiyad)
Muhammed Jiyad
 
Duality in Linear Programming Problem
Duality in Linear Programming Problem
RAVI PRASAD K.J.
 
Complex Number's Applications
Complex Number's Applications
Nikhil Deswal
 
Integer Linear Programming
Integer Linear Programming
SukhpalRamanand
 
primal and dual problem
primal and dual problem
Yash Lad
 
Transportation problem
Transportation problem
Shubhagata Roy
 
Unit.3. duality and sensetivity analisis
Unit.3. duality and sensetivity analisis
DagnaygebawGoshme
 
Practicle application of maxima and minima
Practicle application of maxima and minima
British Council
 
Introduction to Operations Research
Introduction to Operations Research
Sundar B N
 
Financial mathematics
Financial mathematics
Vukile Xhego
 
Simplex Method
Simplex Method
kzoe1996
 
Travelling salesman problem
Travelling salesman problem
hamza haseeb
 
Simplex method (maximization)
Simplex method (maximization)
Kamel Attar
 
Economic interpretations of Linear Programming Problem
Economic interpretations of Linear Programming Problem
RAVI PRASAD K.J.
 
Sensitivity analysis in linear programming problem ( Muhammed Jiyad)
Sensitivity analysis in linear programming problem ( Muhammed Jiyad)
Muhammed Jiyad
 
Duality in Linear Programming Problem
Duality in Linear Programming Problem
RAVI PRASAD K.J.
 
Complex Number's Applications
Complex Number's Applications
Nikhil Deswal
 
Integer Linear Programming
Integer Linear Programming
SukhpalRamanand
 
primal and dual problem
primal and dual problem
Yash Lad
 

Similar to Chapter 6-INTEGER PROGRAMMING note.pdf (20)

Integer Programming PPt.ernxzamnbmbmspdf
Integer Programming PPt.ernxzamnbmbmspdf
Raja Manyam
 
Linear mixed integer programs for chemical engineering
Linear mixed integer programs for chemical engineering
AvaniTaiwade
 
Lp and ip programming cp 9
Lp and ip programming cp 9
M S Prasad
 
Integer Programming - MNIT Jaipur - Taha et al
Integer Programming - MNIT Jaipur - Taha et al
R L
 
RSH_10_Ch_11.ppt Interger programming Goal
RSH_10_Ch_11.ppt Interger programming Goal
AnimeshSarker3
 
integerS programming OperaTIONS RESEARCH
integerS programming OperaTIONS RESEARCH
AreebaSalman1
 
Balaji-opt-lecture5-linear program sp13.ppt
Balaji-opt-lecture5-linear program sp13.ppt
gokulkumaraguru8
 
Balaji-opt-lecture6-act.ppt
Balaji-opt-lecture6-act.ppt
JamesGreen666883
 
Branch and Bound technique to solve Integer Linear Programming
Branch and Bound technique to solve Integer Linear Programming
Kaivalya Shah
 
Integer Programming, Goal Programming, and Nonlinear Programming
Integer Programming, Goal Programming, and Nonlinear Programming
Salah A. Skaik - MBA-PMP®
 
ai linMixed Integer Programming (MIP) is a type of mathematical optimization ...
ai linMixed Integer Programming (MIP) is a type of mathematical optimization ...
havehalifax15
 
Integer programming branch and bound
Integer programming branch and bound
Alejandro Angulo
 
Integer programming
Integer programming
Hakeem-Ur- Rehman
 
ENEL_680_Linear_and_Integer_Programming-1.pdf
ENEL_680_Linear_and_Integer_Programming-1.pdf
arpita43323
 
Optimum Engineering Design - Day 4 - Clasical methods of optimization
Optimum Engineering Design - Day 4 - Clasical methods of optimization
SantiagoGarridoBulln
 
A Comparison between FPPSO and B&B Algorithm for Solving Integer Programming ...
A Comparison between FPPSO and B&B Algorithm for Solving Integer Programming ...
Editor IJCATR
 
Chapter 1 Integer programming problemspdf
Chapter 1 Integer programming problemspdf
TeklebirhanAb
 
A Decomposition Technique For Solving Integer Programming Problems
A Decomposition Technique For Solving Integer Programming Problems
Carrie Romero
 
Reading Materials for Operational Research
Reading Materials for Operational Research
Derbew Tesfa
 
Overview of techniques for solving integer programs
Overview of techniques for solving integer programs
AlexKwan30
 
Integer Programming PPt.ernxzamnbmbmspdf
Integer Programming PPt.ernxzamnbmbmspdf
Raja Manyam
 
Linear mixed integer programs for chemical engineering
Linear mixed integer programs for chemical engineering
AvaniTaiwade
 
Lp and ip programming cp 9
Lp and ip programming cp 9
M S Prasad
 
Integer Programming - MNIT Jaipur - Taha et al
Integer Programming - MNIT Jaipur - Taha et al
R L
 
RSH_10_Ch_11.ppt Interger programming Goal
RSH_10_Ch_11.ppt Interger programming Goal
AnimeshSarker3
 
integerS programming OperaTIONS RESEARCH
integerS programming OperaTIONS RESEARCH
AreebaSalman1
 
Balaji-opt-lecture5-linear program sp13.ppt
Balaji-opt-lecture5-linear program sp13.ppt
gokulkumaraguru8
 
Balaji-opt-lecture6-act.ppt
Balaji-opt-lecture6-act.ppt
JamesGreen666883
 
Branch and Bound technique to solve Integer Linear Programming
Branch and Bound technique to solve Integer Linear Programming
Kaivalya Shah
 
Integer Programming, Goal Programming, and Nonlinear Programming
Integer Programming, Goal Programming, and Nonlinear Programming
Salah A. Skaik - MBA-PMP®
 
ai linMixed Integer Programming (MIP) is a type of mathematical optimization ...
ai linMixed Integer Programming (MIP) is a type of mathematical optimization ...
havehalifax15
 
Integer programming branch and bound
Integer programming branch and bound
Alejandro Angulo
 
ENEL_680_Linear_and_Integer_Programming-1.pdf
ENEL_680_Linear_and_Integer_Programming-1.pdf
arpita43323
 
Optimum Engineering Design - Day 4 - Clasical methods of optimization
Optimum Engineering Design - Day 4 - Clasical methods of optimization
SantiagoGarridoBulln
 
A Comparison between FPPSO and B&B Algorithm for Solving Integer Programming ...
A Comparison between FPPSO and B&B Algorithm for Solving Integer Programming ...
Editor IJCATR
 
Chapter 1 Integer programming problemspdf
Chapter 1 Integer programming problemspdf
TeklebirhanAb
 
A Decomposition Technique For Solving Integer Programming Problems
A Decomposition Technique For Solving Integer Programming Problems
Carrie Romero
 
Reading Materials for Operational Research
Reading Materials for Operational Research
Derbew Tesfa
 
Overview of techniques for solving integer programs
Overview of techniques for solving integer programs
AlexKwan30
 
Ad

Recently uploaded (20)

MATERIAL SCIENCE LECTURE NOTES FOR DIPLOMA STUDENTS
MATERIAL SCIENCE LECTURE NOTES FOR DIPLOMA STUDENTS
SAMEER VISHWAKARMA
 
Tesla-Stock-Analysis-and-Forecast.pptx (1).pptx
Tesla-Stock-Analysis-and-Forecast.pptx (1).pptx
moonsony54
 
Modern multi-proposer consensus implementations
Modern multi-proposer consensus implementations
François Garillot
 
Kel.3_A_Review_on_Internet_of_Things_for_Defense_v3.pptx
Kel.3_A_Review_on_Internet_of_Things_for_Defense_v3.pptx
Endang Saefullah
 
Proposal for folders structure division in projects.pdf
Proposal for folders structure division in projects.pdf
Mohamed Ahmed
 
Deep Learning for Image Processing on 16 June 2025 MITS.pptx
Deep Learning for Image Processing on 16 June 2025 MITS.pptx
resming1
 
Rapid Prototyping for XR: Lecture 4 - High Level Prototyping.
Rapid Prototyping for XR: Lecture 4 - High Level Prototyping.
Mark Billinghurst
 
System design handwritten notes guidance
System design handwritten notes guidance
Shabista Imam
 
FUNDAMENTALS OF COMPUTER ORGANIZATION AND ARCHITECTURE
FUNDAMENTALS OF COMPUTER ORGANIZATION AND ARCHITECTURE
Shabista Imam
 
International Journal of Advanced Information Technology (IJAIT)
International Journal of Advanced Information Technology (IJAIT)
ijait
 
AI_Presentation (1). Artificial intelligence
AI_Presentation (1). Artificial intelligence
RoselynKaur8thD34
 
Introduction to Python Programming Language
Introduction to Python Programming Language
merlinjohnsy
 
Validating a Citizen Observatories enabling Platform by completing a Citizen ...
Validating a Citizen Observatories enabling Platform by completing a Citizen ...
Diego López-de-Ipiña González-de-Artaza
 
special_edition_using_visual_foxpro_6.pdf
special_edition_using_visual_foxpro_6.pdf
Shabista Imam
 
How to Un-Obsolete Your Legacy Keypad Design
How to Un-Obsolete Your Legacy Keypad Design
Epec Engineered Technologies
 
Solar thermal – Flat plate and concentrating collectors .pptx
Solar thermal – Flat plate and concentrating collectors .pptx
jdaniabraham1
 
دراسة حاله لقرية تقع في جنوب غرب السودان
دراسة حاله لقرية تقع في جنوب غرب السودان
محمد قصص فتوتة
 
NEW Strengthened Senior High School Gen Math.pptx
NEW Strengthened Senior High School Gen Math.pptx
DaryllWhere
 
تقرير عن التحليل الديناميكي لتدفق الهواء حول جناح.pdf
تقرير عن التحليل الديناميكي لتدفق الهواء حول جناح.pdf
محمد قصص فتوتة
 
Rapid Prototyping for XR: Lecture 6 - AI for Prototyping and Research Directi...
Rapid Prototyping for XR: Lecture 6 - AI for Prototyping and Research Directi...
Mark Billinghurst
 
MATERIAL SCIENCE LECTURE NOTES FOR DIPLOMA STUDENTS
MATERIAL SCIENCE LECTURE NOTES FOR DIPLOMA STUDENTS
SAMEER VISHWAKARMA
 
Tesla-Stock-Analysis-and-Forecast.pptx (1).pptx
Tesla-Stock-Analysis-and-Forecast.pptx (1).pptx
moonsony54
 
Modern multi-proposer consensus implementations
Modern multi-proposer consensus implementations
François Garillot
 
Kel.3_A_Review_on_Internet_of_Things_for_Defense_v3.pptx
Kel.3_A_Review_on_Internet_of_Things_for_Defense_v3.pptx
Endang Saefullah
 
Proposal for folders structure division in projects.pdf
Proposal for folders structure division in projects.pdf
Mohamed Ahmed
 
Deep Learning for Image Processing on 16 June 2025 MITS.pptx
Deep Learning for Image Processing on 16 June 2025 MITS.pptx
resming1
 
Rapid Prototyping for XR: Lecture 4 - High Level Prototyping.
Rapid Prototyping for XR: Lecture 4 - High Level Prototyping.
Mark Billinghurst
 
System design handwritten notes guidance
System design handwritten notes guidance
Shabista Imam
 
FUNDAMENTALS OF COMPUTER ORGANIZATION AND ARCHITECTURE
FUNDAMENTALS OF COMPUTER ORGANIZATION AND ARCHITECTURE
Shabista Imam
 
International Journal of Advanced Information Technology (IJAIT)
International Journal of Advanced Information Technology (IJAIT)
ijait
 
AI_Presentation (1). Artificial intelligence
AI_Presentation (1). Artificial intelligence
RoselynKaur8thD34
 
Introduction to Python Programming Language
Introduction to Python Programming Language
merlinjohnsy
 
Validating a Citizen Observatories enabling Platform by completing a Citizen ...
Validating a Citizen Observatories enabling Platform by completing a Citizen ...
Diego López-de-Ipiña González-de-Artaza
 
special_edition_using_visual_foxpro_6.pdf
special_edition_using_visual_foxpro_6.pdf
Shabista Imam
 
Solar thermal – Flat plate and concentrating collectors .pptx
Solar thermal – Flat plate and concentrating collectors .pptx
jdaniabraham1
 
دراسة حاله لقرية تقع في جنوب غرب السودان
دراسة حاله لقرية تقع في جنوب غرب السودان
محمد قصص فتوتة
 
NEW Strengthened Senior High School Gen Math.pptx
NEW Strengthened Senior High School Gen Math.pptx
DaryllWhere
 
تقرير عن التحليل الديناميكي لتدفق الهواء حول جناح.pdf
تقرير عن التحليل الديناميكي لتدفق الهواء حول جناح.pdf
محمد قصص فتوتة
 
Rapid Prototyping for XR: Lecture 6 - AI for Prototyping and Research Directi...
Rapid Prototyping for XR: Lecture 6 - AI for Prototyping and Research Directi...
Mark Billinghurst
 
Ad

Chapter 6-INTEGER PROGRAMMING note.pdf

  • 1. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 1 INTEGER PROGRAMMING Introduction An integer programming model is one where one or more of the decision variables has to take on an integer value in the final solution. Solving an integer programming problem is much more difficult than solving an LP problem. Even the fastest computers can take an excessively long time to solve big integer programming problems. If requiring integer values is the only way in which a problem deviates from a linear programming formulation, then it is an integer programming (IP) problem. (The more complete name is integer linear programming, but the adjective linear normally is dropped except when this problem is contrasted with the more esoteric integer nonlinear programming problem. So, the mathematical model for integer programming is the linear programming model with the one additional restriction that the variables must have integer values. In linear programming, each of the decision variable as well as slack and /or surplus variable is allowed to take any fractional value. However, there are certain practical problems in which the fractional value of the decision variables has no significance. For example, it does not make sense saying 1.5 men working on a project or 1.6 machines in a workshop. The integer solution to a problem can, however, be obtained by rounding off the optimum value of the variables to the nearest integer value. This approach can be easy in terms of economy of effort, time and cost that might be required to derive an integer solution but this solution may not satisfy all the given constraints. Secondly, the value of the objective function so obtained may not be optimal value. All such difficulties can be avoided if the given problem, where an integer solution is required, is solved by integer programming techniques. Why used? The implicit assumption was that solutions could be fractional or real numbers (i.e.non integer) in the linear programming models. However, non-integer solutions are always practical. When only integer solutions are practical or logical, non-integer solution values can be rounded off to the nearest feasible integer values. For example, if the case is nail, it will cause little concern considering 8000.4 nails as 8000 nails. Round off makes the case cost only a few cents apiece. For example, if the case is a production of jet aircraft, round off could affect profit or cost by million dollars considering 7.4 jet airliners as 7 or 8. Integer Programming Models There are three types of models;
  • 2. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 2  Pure Integer Model; All decision variables required to have integer solution values.  0-1 Integer Model: All decision variables required to have integer values of zero or one.  Mixed Integer Model: Some of the decision variables (but not all) required to have integer values. There are certain decision problems where decision variables make sense only if they have integer values in the solution. Capital budgeting, construction scheduling, plant location and size, routing and shipping schedule, batch size, capacity expansion, fixed charge, etc., are few problems which demonstrate the areas of application of integer programming. Example 1: A Total (Pure) Integer Model Machine shop obtaining new presses and lathes. The Marginal profitability of each press machine is $100/day and each of lathe machine is $150/day. The Resource constraints is $40,000 and 200 sq. ft. floor space. The Machine purchase prices and space requirements are given in the table below: Machine Required Floor Space (sq. ft.) Purchase Price Press 15 8000 Lathe 30 4000 Integer Programming Model: Maximize Z = $100X1+ $150X2 subject to: 8,000X1+ 4,000X2 ≤ $40,000 15X1+ 30X2 ≤ 200 ft2 X1, X2 ≥ 0 and integer X1= number of presses X2= number of lathes Example 2: A Total Integer Model Integer Programming Model: Maximize Z = 6X1+ 5X2 + 2X3
  • 3. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 3 subject to: 10X1+ 4X2+ 2 X3 ≤ 600 2 X1+ 5 X2+ 2 X3 ≤ 800 X1, X2, X3 ≥0 and integer X1= 22, X2= 0, X3 = 378 Z=888 Example 3: A 0 - 1 Integer Model Recreation facilities selection to maximize daily usage by residents. Resource constraints: $120,000 budget; 12 acres of land. Selection constraint: either swimming pool or tennis center (not both). Data: Recreation Expected Usage Cost ($) Land Facility (people/day) Requirement (acres) Swimming pool 300 35000 4 Tennis Center 90 10000 2 Athletic field 400 25000 7 Gymnasium 150 90000 3 Integer Programming Model: Maximize Z = 300X1+ 90X2+ 400X3+ 150X4 subject to: $35,000X1+ 10,000X2+ 25,000X3+ 90,000X4 ≤ $120,000 4X1+ 2X2+ 7X3+ 3X4 ≤ 12 acres X1+ X2 ≤ 1 facility X1, X2, X3, X4 = 0 or 1
  • 4. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 4 X1= construction of a swimming pool X2= construction of a tennis center X3= construction of an athletic field X4= construction of a gymnasium Example 4: Integer Programming Model: Maximize Z = 6X1+ 5X2 + 2X3 subject to: 10X1+ 4X2+ 2 X3 ≤ 600 2 X1+ 5 X2+ 2 X3 ≤ 800 X1, X2, X3 ≥ 0 OR 1 X1= 1, X2= 1, X3 = 1, Z=13 Example 5: A Mixed Integer Model; $250,000 available for investments providing greatest return after one year. Data: Condominium cost $50,000/unit, $9,000 profit if sold after one year. Land cost $12,000/ acre, $1,500 profit if sold after one year. Municipal bond cost $8,000/bond, $1,000 profit if sold after one year. Only 4 condominiums, 15 acres of land, and 20 municipal bonds available. Integer Programming Model: Maximize Z = $9,000x1+ 1,500x2 + 1,000x3 subject to: 50,000X1+ 12,000X2 + 8,000X3 ≤ $250,000
  • 5. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 5 X1 ≤ 4 condominiums X2 ≤ 15 acres X3≤20 bonds X2 ≥0 X1, X3 ≥0 and integer X1= condominiums purchased, X2 = acres of land purchased, X3= bonds purchased Example 6: Integer Programming Model: Maximize Z = 6X1+ 5X2 + 2X3 subject to: 10X1+ 4X2+ 2 X3 ≤ 600 2 X1+ 5 X2+ 2 X3 ≤800 X1, X2, X3 ≥0 X1= 22.2, X2= 0, X3 = 377.8 Z=888.9 METHODS FOR SOLVING ILP PROBLEMS a. Branch–and–Bound Method (Developed By: A.H. Land and A. G. Doing) b. Cutting–Plane Method (developed by: Ralph E. Gomory) a. BRANCH–AND–BOUND METHOD Creates and solves a sequence of sub-problems to the original problem that are increasingly more restrictive until an optimal solution is found. Branching: Selection of an integer value of a decision variable to examine for a possible integer solution to a problem. “If the solution to the linear programming problem contains non-integer values for some or all decision variables, then the solution space is reduced by introducing constraints with respect to any one of those decision variables. If the value of the
  • 6. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 6 decision variable “X1” is 2.5, then two more problems will be created by using each of the following constraints. X1 ≤ 2 and X1 ≥ 3. Bound: An upper or lower limit on the value of the objective function at a given stage of the analysis of an integer programming problem. Lower bound: The lower bound at a node is the value of the objective function corresponding to the truncated values (integer parts) of the decision variables of the problem in that node. Upper bound: The upper bound at a node is the value of the objective function corresponding to the linear programming solution in that node. Fathomed subproblem / node: A problem is said to be fathomed if any one of the following three conditions is true: 1. The values of the decision variables of the problem are integer. 2. The upper bound of the problem which has non–integer values for its decision variables is not greater than the current best lower bound. 3. The problem has infeasible solution. This means that further branching from this type of fathomed nodes is not necessary. Current best lower bound: This is the best lower bound (highest in the case of maximization problem and lowest in the case of minimization problem) among the lower bounds of all the fathomed nodes. Initially, it is assumed as infinity for the root node. Branch & Bound Algorithm Applied to Maximization Problem: Step 1. Solve the given linear programming problem graphically or using iterative method. Set, the current best lower bound ZB as ∞. Step 2. Check, Whether the problem has integer solution. If yes, print the current solution as the optimal solution and stop; Otherwise go to Step–3. Step 3. Identify the variable Xk which has the maximum fractional part as the branching variable. (In case of tie, select the variable which has the highest objective function coefficient.) Step 4. Create two more problems by including each of the following constraints to the current problem and solve them. a) Xk ≤ Integer part of Xk b) Xk ≥ Next Integer of Xk Step 5. If any one of the new sub-problems has infeasible solution or fully integer values for the decision variables, the corresponding node is fathomed. If a new node has integer values for the decision variables, update the current best lower bound as the lower bound of that node if its lower bound is greater than the previous current best lower bound.
  • 7. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 7 Step 6. Are all terminal nodes fathomed? If answer is yes, go to step–7; otherwise, identify the node with the highest lower bound and go to step–3. Step 7. Select the solution of the problem with respect to the fathomed node whose lower bound is equal to the current best lower bound as the optimal solution. Example Max. Z = 10X1 + 20X2 Subject to: 6X1 + 8X2 ≤ 48 X1 + 3X2 ≤ 12 X1, X2 ≥ 0 and integers ZU = Upper bound = Z (Optimum) of LP Problem. ZL = Lower bound w. r. t. the truncated values of the decision variables ZB = Current Best Lower Bound X1=24/5, X2=12/5,Z=96 ZU=96 ZL=80 ZB=∞ In Problem (P1), X1 has the highest fractional part 24/5. Hence; “X1” is selected for further branching.
  • 8. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 8 The Problem P2 has the highest lower bound (ZL) of 90 among the unfathomed terminal nodes. So, the further branching is done from this node.
  • 9. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 9
  • 10. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 10 The solution of P6 is non–integer and its ZL = 80 and ZU = 90. Since, ZU ≤ (Current best ZL =90), the node P6 is also fathomed and it has infeasible solution in terms of not fulfilling integer constraints for the decision variables. The Problem P7 has integer solution. So, it is a fathomed node. Hence the current best lower bound (ZB) is updated to the objective function value 90.
  • 11. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 11 Now, the Only unfathomed terminal node is P3. The further branching from this node is shown below: The problems P8 and P9 have integer solution. So, these two nodes are fathomed. But the objective function value of these nodes are not greater than the current best lower bound of 90. Hence, the current best lower bound is not updated. Now, all the terminal nodes are fathomed. The feasible fathomed node with the current best lower bound is P7. Hence, its solution is treated as the optimal solution: X1=5, X2 =2, Z(Optimum) = 90 NOTE: This Problem has alternative optimum solution at P8 with X1=3, X2=3, Z(Optimum)=90
  • 12. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 12 Complete Tree:
  • 13. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 13 Example 2; Max Z = 6X1 + 8X2 Subject to: 4X1 + 5X2 ≤ 22 5X1 + 8X2 ≤ 30 X1, X2 ≥ 0 and integers b. Integer simplex method (Gomory's cutting plane method) An Algorithm for solvingPure integer and mixed integer programming problems have been developed by Ralph E. Gomory Step I. Relax the integer requirements. Step II. Solve the resulting LP problem using Simplex Method. Step III. If all the basic variables have integer values, Optimality of the Integer programming problem is reached. So, go step 7; otherwise go to step 4. Step IV. Examine the constraints corresponding to the current optimal solution. For each Basic Variable with non-integer solution in the current optimal table, find the fractional part, fi, Therefore, bi = [bi] + fi, where [bi] is the integer part of bi, and fi is the fractional part of bi. Step V. Choose the largest fraction among various fi; i.e. Max (fi). Treat the constraint corresponding to the maximum fraction as the source row (equation). Based on the source equation, develop an additional constraint (Gomory’s constraint / fractional cut) as shown: –fi = Si – Summation ((fi) (Non–Basic Variable)) Step VI. Add the fractional cut as the last row in the latest optimal table and proceed further using dual simplex method, and find the new optimum solution. If the new optimum solution is integer then go to step 7; otherwise go to step IV. Step VII. Print the integer solution [X’s and Z – Values] Find solution using integer simplex method (Gomory's cutting plane method) MAX Z = x1 + x2 subject to 3X1 + 2X2 ≤ 5 X2 ≤ 20 and X1, X2 >= 0 The optimal table of this linear programming problem is obtained at the third iteration of the simplex method. The optimal table looks like as follow; Iteration-3 Cj 1 1 0 0 B CB XB x1 x2 S1 S2 Min Ratio
  • 14. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 14 x2 1 2.5 1.5 1 0.5 0 S2 0 17.5 -1.5 0 -0.5 1 Z=2.5 Zj 1.5 1 0.5 0 Zj-Cj 0.5 0 0.5 0 Since all Zj-Cj≥0 Hence, non-integer optimal solution is arrived with value of variables as: X1=0, X2=2.5 Max Z=2.5 To obtain the integer valued solution, we proceed to construct Gomory's fractional cut, with the help of X2-row as follows: 2.5=1.5X1+1X2+0.5S1 (2+0.5) = (1+0.5) X1+(1+0) X2+(0+0.5) S1 The fractional cut will become -0.5=Sg1-0.5X1-0.5S1→ (Cut-1) Adding this additional constraint at the bottom of optimal simplex table. The new table so obtained is; Iteration-1 Cj 1 1 0 0 0 B CBv XB X1 X2 S1 S2 Sg1 X2 1 2.5 1.5 1 0.5 0 0 S2 0 17.5 -1.5 0 -0.5 1 0 Sg1 0 -0.5 (-0.5) 0 -0.5 0 1 Z=2.5 Zj 1.5 1 0.5 0 0 Zj-Cj 0.5 0 0.5 0 0 Ratio=Zj-Cj/Sg1, j and Sg1, j<0 -1↑ --- -1 --- ---
  • 15. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 15 Minimum negative XB is -0.5 and its row index is 3. So, the leaving basis variable is Sg1. Maximum negative ratio is -1 and its column index is 1. So, the entering variable is X1. The pivot element is -0.5. Entering =X1, Departing =Sg1, Key Element =-0.5 R3(old) = -0.5 -0.5 0 -0.5 0 1 R3(new)=R3(old)÷ (-0.5) 1 1 0 1 0 -2 R1(old) = 2.5 1.5 1 0.5 0 0 R3(new) = 1 1 0 1 0 -2 1.5×R3(new) = 1.5 1.5 0 1.5 0 -3 R1(new)=R1(old) - 1.5R3(new) 1 0 1 -1 0 3 R2(old) = 17.5 -1.5 0 -0.5 1 0 R3(new) = 1 1 0 1 0 -2 1.5×R3(new) = 1.5 1.5 0 1.5 0 -3 R2(new)=R2(old) + 1.5R3(new) 19 0 0 1 1 -3 Iteration-2 Cj 1 1 0 0 0 B CBv XB X1 X2 S1 S2 Sg1 X2 1 1 0 1 -1 0 3 S2 0 19 0 0 1 1 -3 X1 1 1 1 0 1 0 -2 Z=2 Zj 1 1 0 0 1 Zj-Cj 0 0 0 0 1 Ratio --- --- --- --- ---
  • 16. COMPILED BY TSEGAY BERHE MSC IN PRODUCTION ENGINEERING AND MANAGEMENT 16 Since all Zj-Cj≥0. Hence, integer optimal solution is arrived with value of variables as: X1=1,X2=1 Max Z=2 The integer optimal solution found after 1-cuts.