SlideShare a Scribd company logo
Velammal Engineering College
Department of Computer Science
and Engineering
Welcome…
Subject Code / Name:
19IT202T /
Computer Architecture
Syllabus – Unit II
UNIT-II ARITHMETIC FOR COMPUTERS
Addition and Subtraction – Multiplication – Division – Floating
Point Representation – Floating Point Addition and Subtraction.
Text Books
• Book 1:
o Name: Computer Organization and Design: The
Hardware/Software Interface
o Authors: David A. Patterson and John L. Hennessy
o Publisher: Morgan Kaufmann / Elsevier
o Edition: Fifth Edition, 2014
• Book 2:
o Name: Computer Organization and Embedded Systems
Interface
o Authors: Carl Hamacher, Zvonko Vranesic, Safwat Zaky and
Naraig Manjikian
o Publisher: Tata McGraw Hill
o Edition: Sixth Edition, 2012
• numbers may be represented in any base
• Computer - base 2 numbers are called binary numbers
• A single digit of a binary number is the “atom” of computing,
since all information is composed of binary digits or bit.
• Alternatives: high or low, on or off , true or false, or 1 or 0
• Least Significant Bit(LSB): The rightmost bit in a MIPS word.
• Most Significant Bit(MSB): The left most bit in a MIPS word.
Numbers
The Binary Number System
• Name
o “binarius” (Latin) => two
• Characteristics
o Two symbols
• 0 1
o Positional
• 1010B ≠ 1100B
• Most (digital) computers use the binary number
system Terminology
• •Bit: a binary digit
• •Byte: (typically) 8 bits
Number Representation
• Three systems:
o Sign-and-magnitude
o 1’s complement
o 2’s complement
• In all three systems, the leftmost bit is 0 for positive
numbers and 1 for negative numbers.
• Positive values have identical representations in all
systems.
• Negative values have different representations.
• Ex: 10112
• Sign Magnitude: One's Complement Two's Complement
000 = 0 000 = 0 000 = 0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = 0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = 0 111 = -1
• Issues:
o balance – equal number of negatives and positives
o ambiguous zero – whether more than one zero representation
o ease of arithmetic operations
• Which representation is best? Can we get both balance and non-ambiguous zero?
Possible Representations
ambiguous
zero
ambiguous
zero
Signed Magnitude
• In this notation, an extra bit is added to the left of
the number to notate its sign.
• 0 indicates +ve and 1 indicates -ve.
• Using 8 bits,
• +13 is 00001101 and +11 is 00001011.
• -13 is 10001101 and -11 is 10001011.
1's Complement
• In this notation positive numbers are represented
exactly as regular binary numbers.
• Negative numbers are represented simply by
flipping the bit, i.e. 0's become 1 and 1's become 0.
• So 13 will be 00001101 and 11 will be 00001011.
• -13 will be 11110010 and -11 will be 11110100.
2's Complement
• In this method a negative number is notated by first
determining the 1's complement of the positive
number and then adding 1 to it.
• So 8-bit -13 will be 11110010
• (1's complement) + 1 = 11110011;
• -11 will be 11110101.
Question
• Find the 2’s-complement of 1011010?
• 0100110
• 32 bit signed numbers:
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten
MIPS – 2’s complement
maxint
minint
Negative integers are exactly those that have leftmost bit 1
Binary Addition
Binary Addition
• 710 + 610
0000 0000 0000 0000 0000 0000 0000 01112 = 710
0000 0000 0000 0000 0000 0000 0000 01102 = 610
Binary Addition
• 710 + 610
0000 0000 0000 0000 0000 0000 0000 011 1 2 = 710
0000 0000 0000 0000 0000 0000 0000 011 0 2 = 610
1 2
Binary Addition
• 710 + 610
1
0000 0000 0000 0000 0000 0000 0000 01 1 12 = 710
0000 0000 0000 0000 0000 0000 0000 01 1 02 = 610
12
0
Binary Addition
• 710 + 610
1
0000 0000 0000 0000 0000 0000 0000 0 1 112 = 710
0000 0000 0000 0000 0000 0000 0000 0 1 102 = 610
012
1
1
Binary Addition
• 710 + 610
1 1
0000 0000 0000 0000 0000 0000 0000 0 1112 = 710
0000 0000 0000 0000 0000 0000 0000 0 1102 = 610
1012
1
Binary Addition
• 710 + 610
11
0000 0000 0000 0000 0000 0000 0000 01112 = 710
0000 0000 0000 0000 0000 0000 0000 01102 = 610
0000 0000 0000 0000 0000 0000 0000 11012
Binary Addition
• 710 + 610
11
0000 0000 0000 0000 0000 0000 0000 01112 = 710
0000 0000 0000 0000 0000 0000 0000 01102 = 610
0000 0000 0000 0000 0000 0000 0000 11012 = 1310
Binary Subtraction
Binary Subtraction
• Direct Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 01112 = 710
0000 0000 0000 0000 0000 0000 0000 01102 = 610
Binary Subtraction
• Direct Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 011 1 2 = 710
0000 0000 0000 0000 0000 0000 0000 011 0 2 = 610
1
Binary Subtraction
• Direct Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 01 1 12 = 710
0000 0000 0000 0000 0000 0000 0000 01 1 02 = 610
1
0
Binary Subtraction
• Direct Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 0 1 112 = 710
0000 0000 0000 0000 0000 0000 0000 0 1 102 = 610
0 01
Binary Subtraction
• Direct Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 01112 = 710
0000 0000 0000 0000 0000 0000 0000 01102 = 610
0000 0000 0000 0000 0000 0000 0000 00012
Binary Subtraction
• Direct Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 01112 = 710
0000 0000 0000 0000 0000 0000 0000 01102 = 610
0000 0000 0000 0000 0000 0000 0000 00012 = 110
Binary Subtraction
• 2’s Complement Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 01112 = 710
2’s c of - 610=1111 1111 1111 1111 1111 1111 1111 10102 = 610
0000 0000 0000 0000 0000 0000 0000 00012 = 110
Example
• When adding or subtracting 2's complement binary
numbers, any extra (carry over) bits are discarded.
• 13–11
• 13 + (-11)
• 00001101 + 11110101
• 100000010
Overflow
• When the actual result of an arithmetic operation is
outside the representable range, an arithmetic
overflow has occurred.
• No overflow when adding a positive and a negative
number
• No overflow when subtracting numbers with the same
sign
• Overflow occurs when adding two positive numbers
produces a negative result, or when adding two
negative numbers produces a positive result.
Overflow
Overflow - Example
• No overflow when adding a positive and a negative
number
• A+B
• A = +3
• B = -2
+3 => 011
-2 => 110
• -----------
+1 => 001
• Result - representable range
n=3 bits => Range: - 4 to +3
+3 011
+2 010
+1 001
0 000
-1 111
-2 110
-3 101
-4 100
Overflow - Example
• No overflow when subtracting numbers with the same
sign
• A - B
• A = - 3
• B = - 2
• (-3) – (-2) => -3 + 2
-3 => 101
+2 => 010
• -----------
-1 => 111
• Result - representable range
n=3 bits => Range: - 4 to +3
+3 011
+2 010
+1 001
0 000
-1 111
-2 110
-3 101
-4 100
Overflow - Example
• Overflow occurs when adding two positive numbers
produces a negative result, or when adding two
negative numbers produces a positive result.
• A + B
• A = + 3
• B = + 3
+3 => 011
+3 => 011
• -----------
-2 => 110 X
n=3 bits => Range: - 4 to +3
+3 011
+2 010
+1 001
0 000
-1 111
-2 110
-3 101
-4 100
• No overflow when adding a positive and a negative number
• No overflow when subtracting numbers with the same sign
• Overflow occurs when the result has “wrong” sign (verify!):
Operation Operand A Operand B Result
Indicating Overflow
A + B  0  0  0
A + B  0  0  0
A – B  0  0  0
A – B  0  0  0
• Consider the operations A + B, and A – B
o can overflow occur if B is 0 ?
o can overflow occur if A is 0 ?
Detecting Overflow
Questions
1. Subtract (11010)2 – (10000)2 using 2’s complement method.
2. Subtract (11011)2 – (10011)2 using 2’s complement.
Solution:
Questions
1. Add −8 to +3
2. Add −5 to −2
use 8-bit two’s complement numbers
Solution:
(+3) 0000 0011
+(−8) 1111 1000
-----------------
(−5) 1111 1011
(−2) 1111 1110
+(−5) 1111 1011
-----------------
(−7) 1 1111 1001 : discard carry-out
Multiply
• Grade school shift-add method:
Multiplicand 1000
Multiplier 1001
x 1000
0000
0000
1000
Product 01001000
• m bits x n bits = m+n bit product
• Binary makes it easy:
o multiplier bit 1 => copy multiplicand (1 x multiplicand)
o multiplier bit 0 => place 0 (0 x multiplicand)
x
Intermediate
products
Sequential Version of the Multiplication Algorithm and
Hardware
64-bit ALU
Control test
Multiplier
Shift right
Product
Write
Multiplicand
Shift left
64 bits
64 bits
32 bits
Done
1. Test
Multiplier0
1a. Add multiplicand to product and
place the result in Product register
2. Shift the Multiplicand register left 1 bit
3. Shift the Multiplier register right 1 bit
32nd repetition?
Start
Multiplier0 = 0
Multiplier0 = 1
No: < 32 repetitions
Yes: 32 repetitions
Multiplicand register, product register, ALU are
64-bit wide; multiplier register is 32-bit wide
Algorithm
32-bit multiplicand starts at right half of multiplicand register
Product register is initialized at 0
Hardware
Sequential Version of the Multiplication Algorithm and
Hardware
• Basic 3 steps:
1. if LSB multiplier ==1
Product = Product + Multiplicand
else
No operation
2. Shift the multiplicand left
3. Shift the multiplier right
These three steps are repeated 32 times.
Shift-add Multiplier
Itera Step Multiplier Multiplicand Product
-tion
0 init 0011 0000 0010 0000 0000
values
1 1a 0011 0000 0010 0000 0010
2 0011 0000 0100 0000 0010
3 0001 0000 0100 0000 0010
2 1a 0001 0000 0100 0000 0110
2 0001 0000 1000 0000 0110
3 0000 0000 1000 0000 0110
3 1 0000 0000 1000 0000 0110
2 0000 0001 0000 0000 0110
3 0000 0001 0000 0000 0110
4 1 0000 0001 0000 0000 0110
2 0000 0010 0000 0000 0110
3 0000 0010 0000 0000 0110
Example: 0010 * 0011:
Algorithm
Done
1. Test
Multiplier0
1a. Add multiplicand to product and
place the result in Product register
2. Shift the Multiplicand register left 1 bit
3. Shift the Multiplier register right 1 bit
32nd repetition?
Start
Multiplier0 = 0
Multiplier0 = 1
No: < 32 repetitions
Yes: 32 repetitions
Final Product
Multiplication Exercises
• 1) 13 * 11
• 2) 7 * 5
Signed Multiplication
Booth Algorithm
The Booth Algorithm:
• The Booth algorithm generates a 2n-bit
product and treats both positive and
negative 2’scomplement n-bit operands
uniformly.
• The Booth algorithm has two attractive
features.
First, it handles both positive and negative multipliers
uniformly.
Second, it achieves some efficiency in the number of
additions required when the multiplier has a few large
blocks of 1s.
Signed Multiplication
Booth Algorithm
Booth multiplier recoding table
Booth Algorithm
Booth Recoded Multipliers
Ex: -6
-6 in 2’s complement is 11010
11010 0
Peform recoding
1 1 0 1 0 0
Add a zero to
the RHS of the
multiplier
0
-1
+1
-1
So this is the
recoded multiplier
0
Questions
• Find the Booth recoded multiplier for the given
numbers:
1. -14
2. -5
3. -12
Booth Multiplication
• Let us perform +13 * -6
Steps:
• Recode the multiplier
-6 when recoded is 0 -1 +1 -1 0
+13 = 0 1 1 0 1
- 6 = 0-1+1-10
Note:
Multiplier bit is :
0 All 0s
+1 multiplicand
-1 2’s c of multiplicand
0 1 1 0 1
X 0-1+1-10
0 0 0 0 0
1 0 0 1 1
0 1 1 0 1
1 0 0 1 1
0 0 0 0 0
1 1 1 1 0 1 1 0 0 1 0
0 0 0 0 0
1 1 1 1
0 0 0
1 1
0
Final Product = 11101100102 = -7810
Carry is ignored
Normal and Booth multiplication
1001 Quotient
Divisor 1000 1001010 Dividend
–1000
10
101
1010
–1000
10 Remainder
• Junior school method: see how big a multiple of the divisor can
be subtracted, creating quotient digit at each step
• Binary makes it easy  first, try 1 * divisor; if too big, 0 * divisor
• Dividend = (Quotient * Divisor) + Remainder
Division
Restoring Division
64-bit ALU
Control
test
Quotient
Shift left
Remainder
Write
Divisor
Shift right
64 bits
64 bits
32 bits
Done
Test Remainder
2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1
3. Shift the Divisor register right 1 bit
33rd repetition?
Start
Remainder < 0
No: < 33 repetitions
Yes: 33 repetitions
2b. Restore the original value by adding
the Divisor register to the Remainder
register and place the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0
1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register
Remainder > 0
–
Divisor register, remainder register, ALU are
64-bit wide; quotient register is 32-bit wide
Algorithm
32-bit divisor starts at left half of divisor register
Remainder register is initialized with the dividend at right
Why 33? We shall see later…
Quotient register is
initialized to be 0
Division
Done
Test Remainder
2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1
3. Shift the Divisor register right 1 bit
33rd repetition?
Start
Remainder < 0
No: < 33 repetitions
Yes: 33 repetitions
2b. Restore the original value by adding
the Divisor register to the Remainder
register and place the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0
1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register
Remainder > 0
–
Itera- Step Quotient Divisor Remainder
tion
0 init 0000 0010 0000 0000 0111
1 1 0000 0010 0000 1110 0111
2b 0000 0010 0000 0000 0111
3 0000 0001 0000 0000 0111
2 1 0000 0001 0000 1111 0111
2b 0000 0001 0000 0000 0111
3 0000 0000 1000 0000 0111
3 1 0000 0000 1000 1111 1111
2b 0000 0000 1000 0000 0111
3 0000 0000 0100 0000 0111
4 1 0000 0000 0100 0000 0011
2a 0001 0000 0100 0000 0011
3 0001 0000 0010 0000 0011
5 1 0001 0000 0010 0000 0001
2a 0011 0000 0010 0000 0001
3 0011 0000 0001 0000 0001
Example: 0111 / 0010:
Algorithm
R = Reminder – Divisor
R = 0000 0111 – 0010 0000
R = 1110 0111
Restore,
R = R + D
R = Reminder – Divisor
R = 0000 0111 – 0001 0000
R = 1111 0111
Restore,
R = R + D
R = Reminder – Divisor
R = 0000 0111 – 0000 1000
R = 1111 1111
Restore,
R = R + D
R = Reminder – Divisor
R = 0000 0111 – 0000 0100
R = 0000 0011
R = Reminder – Divisor
R = 0000 0011 – 0000 0010
R = 0000 0001
Signed Division
• Remainder = Dividend - (Quotient · Divisor)
• Four cases:
Division Exercises
• 13 / 5
• 6 / 2
Floating Point
Representation
Floating Point
• We need a way to represent
o numbers with fractions, e.g., 3.1416
o very small numbers (in absolute value), e.g.,
.00000000023
o very large numbers (in absolute value) , e.g., –
3.15576 * 1046
Floating Point
• Scientific Notation:
o A notation that renders numbers with a single
digit to the left of the decimal point.
o Ex: 1.0 X 10-9
o 3.15576 X 109
• Normalized Number:
o A number in floating point notation that has no
leading 0s.
o Ex: 1.0 X 10-9
o 1.0 X 2-1
• Binary form: 1.xxxxxx X 2yyyy
Exercise
Change the following binary numbers into normalized
number:
Hint: a single non-zero digit to the left of the binary point.
Binary Value Normalized Value
10000.11 1.000011 x 24
10.0 × 2-9
(0.010101)2×24
.0000011001
10000011.0
.00101
Floating Point
Representation
• IEEE 754 floating point standard:
o single precision: one word
o double precision: two words
31
sign
bits 30 to 23
8-bit exponent
bits 22 to 0
23-bit fraction
31
sign
bits 30 to 20
11-bit exponent
bits 19 to 0
upper 20 bits of 52-bit fraction
bits 31 to 0
lower 32 bits of 52-bit fraction
Floating Point Representation
• Sign bit
o The sign of a binary floating-point number is represented by a
single bit.
o A 1 bit indicates a negative number, and a 0 bit indicates a
positive number.
• Fraction:
o The value, generally between 0 and 1, placed in the fraction
field. The fraction is also called the mantissa.
• Exponent:
o In the numerical representation system of floating-point
arithmetic, the value that is placed in the exponent field.
• Example:
+1.10101 x 25
Sign bit = 0
(positive)
Fraction =
.10101
Exponent = 5
Floating Point
• Still use a fixed number of bits
o Sign bit S, exponent E, significand F
o Value: (-1)S x (1+F) x 2E
• IEEE 754 standard
6
1
Size Sign bit Exponent
Fraction or
Significand
Range
Single
precision
32b 1b 8b 23b 2x10+/-38
Double
precision
64b 1b 11b 52b 2x10+/-308
S E F
Biased Exponent
• A biased exponent is the result of adding some
constant(called the bias) to the exponent to make
the range of the exponent nonnegative.
• Biased exponent = Exponent + bias
• Bias = 2n-1 – 1
• Single : 127 , Double : 1023
• Example: 1.101 x 25
Biased Exponent = 5 + 127 =132 (1000 0100)
• Example: 1.01001 x 2-3
Biased Exponent = -3 + 127 =124 (0111 1100)
Exercise
Exponent (E) Biased exponent
(E + 127)
Binary Representation
5 +162 10100010
0
-10
127
-1
Excess or Biased
Exponent
• Value: (-1)S x (1 + F) x 2(E-bias)
o SP: bias is 127
o DP: bias is 1023
6
4
Exponent 2’s Compl Excess-127
-127 1000 0001 0000 0000
-126 1000 0010 0000 0001
… … …
+127 0111 1111 1111 1110
FP Overflow/Underflow
• FP Overflow
o Analogous to integer overflow
o Result is too big to represent
o Means exponent is too big
• FP Underflow
o Result is too small to represent
o Means exponent is too small (too negative)
• Both can raise an exception under IEEE754
6
5
IEEE754 Special Cases
6
6
Single Precision Double Precision Value
Exponent Significand Exponent Significand
0 0 0 0 0
0 nonzero 0 nonzero denormalized
1-254 anything 1-2046 anything fp number
255 0 2047 0 infinity
255 nonzero 2047 nonzero
NaN (Not a
Number)
Show the IEEE 754 binary
representation of the number -0.75ten in
single and double precision
Converting -0.75ten to binary
0.75 x 2 = 1.50 (take only integral part, ie 1)
0.50 x 2 = 1.00
0.11 x 2 0
After Normalizing the above value is 1.1 x 2 -1
The general representation for a single precision no is
(-1)S x (1 + F) x 2(E-127)
Subtracting the bias 127 from the exponent of
-1.1two x 2-1 yields
(-1)1 x (1+.1000 0000 0000 0000 0000 000two) x 2(126-127)
(Contd…)
(Contd…)
The single precision binary representation of -0.75ten is
then
The double precision representation is
Show the IEEE 754 binary
representation of the number -0.75ten in
single and double precision
Exercise
• Represent the following numbers in Single and
Double precision formats.
1. +.0000001101011
2. -.00101
Exercise
• What decimal number is represented by this
single precision float?
Exercise
• Assuming single precision IEEE 754 format, what
decimal number is represent by this word?
1 01111101 00100000000000000000000
Floating Point Addition
• Binary floating point addition:
• Steps:
1. Compare the exponents of the two numbers; shift the
smaller number to the right until its exponent would
match the larger exponent
2. Add the significands
3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left and
decrementing the exponent
4. Round the significand to the appropriate number of bits
Floating Point
Addition/Subtraction
Floating Point
Addition/Subtraction
Floating Point
Addition/Subtraction
Thank You

More Related Content

PPTX
CA Unit ii
PPTX
ARITHMETIC FOR COMPUTERS
PPTX
Computer Architecture
PPTX
Computer Architecture
PPTX
CA UNIT II.pptx
PPTX
Binary-Arithmeticcccccccccccccccccc.pptx
PPTX
UNIT - I.pptx
CA Unit ii
ARITHMETIC FOR COMPUTERS
Computer Architecture
Computer Architecture
CA UNIT II.pptx
Binary-Arithmeticcccccccccccccccccc.pptx
UNIT - I.pptx

Similar to Computer Architecture: ARITHMETIC FOR COMPUTERS (20)

PPTX
UNIT - I.pptx
PPTX
Unit-1 Digital Design and Binary Numbers:
PPT
Counit2
PPTX
Digital Electronics: UNIT-I DIGITAL FUNDAMENTALS
PPTX
Chapter_02_Data_Representation Yifeng Zhu
PPT
chapter 3 000Number_Systems.ppt
PPT
Arithmetic unit.ppt
PPTX
L3 ARITHMETIC OPERATIONS.pptx
PPTX
Number system
PDF
IN 1300 LEC_D02(B15) Basic electronic 2.pdf
PPT
Pertemuan 2 - Sistem Bilangan
PPTX
Binary Arithmetic
PPTX
Data processing and processor organisation
PPTX
Computer Architecture Binary Arithmetic Lecture.pptx
PPT
3810-08.ppt
PPT
09 arithmetic
PPT
3810-08.ppttttttttttttttttptptptpttptppttptp
PPT
09 arithmetic
PPT
09 arithmetic 2
PPTX
Decimal arithematic operation
UNIT - I.pptx
Unit-1 Digital Design and Binary Numbers:
Counit2
Digital Electronics: UNIT-I DIGITAL FUNDAMENTALS
Chapter_02_Data_Representation Yifeng Zhu
chapter 3 000Number_Systems.ppt
Arithmetic unit.ppt
L3 ARITHMETIC OPERATIONS.pptx
Number system
IN 1300 LEC_D02(B15) Basic electronic 2.pdf
Pertemuan 2 - Sistem Bilangan
Binary Arithmetic
Data processing and processor organisation
Computer Architecture Binary Arithmetic Lecture.pptx
3810-08.ppt
09 arithmetic
3810-08.ppttttttttttttttttptptptpttptppttptp
09 arithmetic
09 arithmetic 2
Decimal arithematic operation
Ad

More from Gunasundari Selvaraj (7)

PPTX
PROCESSOR AND CONTROL UNIT - unit 3 Architecture
PPTX
Introduction to Computer Architecture: unit 1
PROCESSOR AND CONTROL UNIT - unit 3 Architecture
Introduction to Computer Architecture: unit 1
Ad

Recently uploaded (20)

PPTX
Lesson 3_Tessellation.pptx finite Mathematics
DOCX
573137875-Attendance-Management-System-original
PDF
Digital Logic Computer Design lecture notes
PDF
composite construction of structures.pdf
PPTX
additive manufacturing of ss316l using mig welding
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
MET 305 MODULE 1 KTU 2019 SCHEME 25.pptx
PPT
Drone Technology Electronics components_1
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Fluid Mechanics, Module 3: Basics of Fluid Mechanics
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Arduino robotics embedded978-1-4302-3184-4.pdf
Lesson 3_Tessellation.pptx finite Mathematics
573137875-Attendance-Management-System-original
Digital Logic Computer Design lecture notes
composite construction of structures.pdf
additive manufacturing of ss316l using mig welding
CH1 Production IntroductoryConcepts.pptx
Internet of Things (IOT) - A guide to understanding
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Operating System & Kernel Study Guide-1 - converted.pdf
CYBER-CRIMES AND SECURITY A guide to understanding
Lecture Notes Electrical Wiring System Components
MET 305 MODULE 1 KTU 2019 SCHEME 25.pptx
Drone Technology Electronics components_1
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Fluid Mechanics, Module 3: Basics of Fluid Mechanics
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Arduino robotics embedded978-1-4302-3184-4.pdf

Computer Architecture: ARITHMETIC FOR COMPUTERS

  • 1. Velammal Engineering College Department of Computer Science and Engineering Welcome…
  • 2. Subject Code / Name: 19IT202T / Computer Architecture
  • 3. Syllabus – Unit II UNIT-II ARITHMETIC FOR COMPUTERS Addition and Subtraction – Multiplication – Division – Floating Point Representation – Floating Point Addition and Subtraction.
  • 4. Text Books • Book 1: o Name: Computer Organization and Design: The Hardware/Software Interface o Authors: David A. Patterson and John L. Hennessy o Publisher: Morgan Kaufmann / Elsevier o Edition: Fifth Edition, 2014 • Book 2: o Name: Computer Organization and Embedded Systems Interface o Authors: Carl Hamacher, Zvonko Vranesic, Safwat Zaky and Naraig Manjikian o Publisher: Tata McGraw Hill o Edition: Sixth Edition, 2012
  • 5. • numbers may be represented in any base • Computer - base 2 numbers are called binary numbers • A single digit of a binary number is the “atom” of computing, since all information is composed of binary digits or bit. • Alternatives: high or low, on or off , true or false, or 1 or 0 • Least Significant Bit(LSB): The rightmost bit in a MIPS word. • Most Significant Bit(MSB): The left most bit in a MIPS word. Numbers
  • 6. The Binary Number System • Name o “binarius” (Latin) => two • Characteristics o Two symbols • 0 1 o Positional • 1010B ≠ 1100B • Most (digital) computers use the binary number system Terminology • •Bit: a binary digit • •Byte: (typically) 8 bits
  • 7. Number Representation • Three systems: o Sign-and-magnitude o 1’s complement o 2’s complement • In all three systems, the leftmost bit is 0 for positive numbers and 1 for negative numbers. • Positive values have identical representations in all systems. • Negative values have different representations. • Ex: 10112
  • 8. • Sign Magnitude: One's Complement Two's Complement 000 = 0 000 = 0 000 = 0 001 = +1 001 = +1 001 = +1 010 = +2 010 = +2 010 = +2 011 = +3 011 = +3 011 = +3 100 = 0 100 = -3 100 = -4 101 = -1 101 = -2 101 = -3 110 = -2 110 = -1 110 = -2 111 = -3 111 = 0 111 = -1 • Issues: o balance – equal number of negatives and positives o ambiguous zero – whether more than one zero representation o ease of arithmetic operations • Which representation is best? Can we get both balance and non-ambiguous zero? Possible Representations ambiguous zero ambiguous zero
  • 9. Signed Magnitude • In this notation, an extra bit is added to the left of the number to notate its sign. • 0 indicates +ve and 1 indicates -ve. • Using 8 bits, • +13 is 00001101 and +11 is 00001011. • -13 is 10001101 and -11 is 10001011.
  • 10. 1's Complement • In this notation positive numbers are represented exactly as regular binary numbers. • Negative numbers are represented simply by flipping the bit, i.e. 0's become 1 and 1's become 0. • So 13 will be 00001101 and 11 will be 00001011. • -13 will be 11110010 and -11 will be 11110100.
  • 11. 2's Complement • In this method a negative number is notated by first determining the 1's complement of the positive number and then adding 1 to it. • So 8-bit -13 will be 11110010 • (1's complement) + 1 = 11110011; • -11 will be 11110101.
  • 12. Question • Find the 2’s-complement of 1011010? • 0100110
  • 13. • 32 bit signed numbers: 0000 0000 0000 0000 0000 0000 0000 0000two = 0ten 0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten 0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten ... 0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten 0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten 1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten 1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten 1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten ... 1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten 1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten 1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten MIPS – 2’s complement maxint minint Negative integers are exactly those that have leftmost bit 1
  • 15. Binary Addition • 710 + 610 0000 0000 0000 0000 0000 0000 0000 01112 = 710 0000 0000 0000 0000 0000 0000 0000 01102 = 610
  • 16. Binary Addition • 710 + 610 0000 0000 0000 0000 0000 0000 0000 011 1 2 = 710 0000 0000 0000 0000 0000 0000 0000 011 0 2 = 610 1 2
  • 17. Binary Addition • 710 + 610 1 0000 0000 0000 0000 0000 0000 0000 01 1 12 = 710 0000 0000 0000 0000 0000 0000 0000 01 1 02 = 610 12 0
  • 18. Binary Addition • 710 + 610 1 0000 0000 0000 0000 0000 0000 0000 0 1 112 = 710 0000 0000 0000 0000 0000 0000 0000 0 1 102 = 610 012 1 1
  • 19. Binary Addition • 710 + 610 1 1 0000 0000 0000 0000 0000 0000 0000 0 1112 = 710 0000 0000 0000 0000 0000 0000 0000 0 1102 = 610 1012 1
  • 20. Binary Addition • 710 + 610 11 0000 0000 0000 0000 0000 0000 0000 01112 = 710 0000 0000 0000 0000 0000 0000 0000 01102 = 610 0000 0000 0000 0000 0000 0000 0000 11012
  • 21. Binary Addition • 710 + 610 11 0000 0000 0000 0000 0000 0000 0000 01112 = 710 0000 0000 0000 0000 0000 0000 0000 01102 = 610 0000 0000 0000 0000 0000 0000 0000 11012 = 1310
  • 23. Binary Subtraction • Direct Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 01112 = 710 0000 0000 0000 0000 0000 0000 0000 01102 = 610
  • 24. Binary Subtraction • Direct Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 011 1 2 = 710 0000 0000 0000 0000 0000 0000 0000 011 0 2 = 610 1
  • 25. Binary Subtraction • Direct Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 01 1 12 = 710 0000 0000 0000 0000 0000 0000 0000 01 1 02 = 610 1 0
  • 26. Binary Subtraction • Direct Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 0 1 112 = 710 0000 0000 0000 0000 0000 0000 0000 0 1 102 = 610 0 01
  • 27. Binary Subtraction • Direct Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 01112 = 710 0000 0000 0000 0000 0000 0000 0000 01102 = 610 0000 0000 0000 0000 0000 0000 0000 00012
  • 28. Binary Subtraction • Direct Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 01112 = 710 0000 0000 0000 0000 0000 0000 0000 01102 = 610 0000 0000 0000 0000 0000 0000 0000 00012 = 110
  • 29. Binary Subtraction • 2’s Complement Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 01112 = 710 2’s c of - 610=1111 1111 1111 1111 1111 1111 1111 10102 = 610 0000 0000 0000 0000 0000 0000 0000 00012 = 110
  • 30. Example • When adding or subtracting 2's complement binary numbers, any extra (carry over) bits are discarded. • 13–11 • 13 + (-11) • 00001101 + 11110101 • 100000010
  • 31. Overflow • When the actual result of an arithmetic operation is outside the representable range, an arithmetic overflow has occurred. • No overflow when adding a positive and a negative number • No overflow when subtracting numbers with the same sign • Overflow occurs when adding two positive numbers produces a negative result, or when adding two negative numbers produces a positive result.
  • 33. Overflow - Example • No overflow when adding a positive and a negative number • A+B • A = +3 • B = -2 +3 => 011 -2 => 110 • ----------- +1 => 001 • Result - representable range n=3 bits => Range: - 4 to +3 +3 011 +2 010 +1 001 0 000 -1 111 -2 110 -3 101 -4 100
  • 34. Overflow - Example • No overflow when subtracting numbers with the same sign • A - B • A = - 3 • B = - 2 • (-3) – (-2) => -3 + 2 -3 => 101 +2 => 010 • ----------- -1 => 111 • Result - representable range n=3 bits => Range: - 4 to +3 +3 011 +2 010 +1 001 0 000 -1 111 -2 110 -3 101 -4 100
  • 35. Overflow - Example • Overflow occurs when adding two positive numbers produces a negative result, or when adding two negative numbers produces a positive result. • A + B • A = + 3 • B = + 3 +3 => 011 +3 => 011 • ----------- -2 => 110 X n=3 bits => Range: - 4 to +3 +3 011 +2 010 +1 001 0 000 -1 111 -2 110 -3 101 -4 100
  • 36. • No overflow when adding a positive and a negative number • No overflow when subtracting numbers with the same sign • Overflow occurs when the result has “wrong” sign (verify!): Operation Operand A Operand B Result Indicating Overflow A + B  0  0  0 A + B  0  0  0 A – B  0  0  0 A – B  0  0  0 • Consider the operations A + B, and A – B o can overflow occur if B is 0 ? o can overflow occur if A is 0 ? Detecting Overflow
  • 37. Questions 1. Subtract (11010)2 – (10000)2 using 2’s complement method. 2. Subtract (11011)2 – (10011)2 using 2’s complement. Solution:
  • 38. Questions 1. Add −8 to +3 2. Add −5 to −2 use 8-bit two’s complement numbers Solution: (+3) 0000 0011 +(−8) 1111 1000 ----------------- (−5) 1111 1011 (−2) 1111 1110 +(−5) 1111 1011 ----------------- (−7) 1 1111 1001 : discard carry-out
  • 39. Multiply • Grade school shift-add method: Multiplicand 1000 Multiplier 1001 x 1000 0000 0000 1000 Product 01001000 • m bits x n bits = m+n bit product • Binary makes it easy: o multiplier bit 1 => copy multiplicand (1 x multiplicand) o multiplier bit 0 => place 0 (0 x multiplicand) x Intermediate products
  • 40. Sequential Version of the Multiplication Algorithm and Hardware 64-bit ALU Control test Multiplier Shift right Product Write Multiplicand Shift left 64 bits 64 bits 32 bits Done 1. Test Multiplier0 1a. Add multiplicand to product and place the result in Product register 2. Shift the Multiplicand register left 1 bit 3. Shift the Multiplier register right 1 bit 32nd repetition? Start Multiplier0 = 0 Multiplier0 = 1 No: < 32 repetitions Yes: 32 repetitions Multiplicand register, product register, ALU are 64-bit wide; multiplier register is 32-bit wide Algorithm 32-bit multiplicand starts at right half of multiplicand register Product register is initialized at 0 Hardware
  • 41. Sequential Version of the Multiplication Algorithm and Hardware • Basic 3 steps: 1. if LSB multiplier ==1 Product = Product + Multiplicand else No operation 2. Shift the multiplicand left 3. Shift the multiplier right These three steps are repeated 32 times.
  • 42. Shift-add Multiplier Itera Step Multiplier Multiplicand Product -tion 0 init 0011 0000 0010 0000 0000 values 1 1a 0011 0000 0010 0000 0010 2 0011 0000 0100 0000 0010 3 0001 0000 0100 0000 0010 2 1a 0001 0000 0100 0000 0110 2 0001 0000 1000 0000 0110 3 0000 0000 1000 0000 0110 3 1 0000 0000 1000 0000 0110 2 0000 0001 0000 0000 0110 3 0000 0001 0000 0000 0110 4 1 0000 0001 0000 0000 0110 2 0000 0010 0000 0000 0110 3 0000 0010 0000 0000 0110 Example: 0010 * 0011: Algorithm Done 1. Test Multiplier0 1a. Add multiplicand to product and place the result in Product register 2. Shift the Multiplicand register left 1 bit 3. Shift the Multiplier register right 1 bit 32nd repetition? Start Multiplier0 = 0 Multiplier0 = 1 No: < 32 repetitions Yes: 32 repetitions Final Product
  • 43. Multiplication Exercises • 1) 13 * 11 • 2) 7 * 5
  • 44. Signed Multiplication Booth Algorithm The Booth Algorithm: • The Booth algorithm generates a 2n-bit product and treats both positive and negative 2’scomplement n-bit operands uniformly. • The Booth algorithm has two attractive features. First, it handles both positive and negative multipliers uniformly. Second, it achieves some efficiency in the number of additions required when the multiplier has a few large blocks of 1s.
  • 45. Signed Multiplication Booth Algorithm Booth multiplier recoding table
  • 46. Booth Algorithm Booth Recoded Multipliers Ex: -6 -6 in 2’s complement is 11010 11010 0 Peform recoding 1 1 0 1 0 0 Add a zero to the RHS of the multiplier 0 -1 +1 -1 So this is the recoded multiplier 0
  • 47. Questions • Find the Booth recoded multiplier for the given numbers: 1. -14 2. -5 3. -12
  • 48. Booth Multiplication • Let us perform +13 * -6 Steps: • Recode the multiplier -6 when recoded is 0 -1 +1 -1 0 +13 = 0 1 1 0 1 - 6 = 0-1+1-10 Note: Multiplier bit is : 0 All 0s +1 multiplicand -1 2’s c of multiplicand 0 1 1 0 1 X 0-1+1-10 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 Final Product = 11101100102 = -7810 Carry is ignored
  • 49. Normal and Booth multiplication
  • 50. 1001 Quotient Divisor 1000 1001010 Dividend –1000 10 101 1010 –1000 10 Remainder • Junior school method: see how big a multiple of the divisor can be subtracted, creating quotient digit at each step • Binary makes it easy  first, try 1 * divisor; if too big, 0 * divisor • Dividend = (Quotient * Divisor) + Remainder Division
  • 51. Restoring Division 64-bit ALU Control test Quotient Shift left Remainder Write Divisor Shift right 64 bits 64 bits 32 bits Done Test Remainder 2a. Shift the Quotient register to the left, setting the new rightmost bit to 1 3. Shift the Divisor register right 1 bit 33rd repetition? Start Remainder < 0 No: < 33 repetitions Yes: 33 repetitions 2b. Restore the original value by adding the Divisor register to the Remainder register and place the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0 1. Subtract the Divisor register from the Remainder register and place the result in the Remainder register Remainder > 0 – Divisor register, remainder register, ALU are 64-bit wide; quotient register is 32-bit wide Algorithm 32-bit divisor starts at left half of divisor register Remainder register is initialized with the dividend at right Why 33? We shall see later… Quotient register is initialized to be 0
  • 52. Division Done Test Remainder 2a. Shift the Quotient register to the left, setting the new rightmost bit to 1 3. Shift the Divisor register right 1 bit 33rd repetition? Start Remainder < 0 No: < 33 repetitions Yes: 33 repetitions 2b. Restore the original value by adding the Divisor register to the Remainder register and place the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0 1. Subtract the Divisor register from the Remainder register and place the result in the Remainder register Remainder > 0 – Itera- Step Quotient Divisor Remainder tion 0 init 0000 0010 0000 0000 0111 1 1 0000 0010 0000 1110 0111 2b 0000 0010 0000 0000 0111 3 0000 0001 0000 0000 0111 2 1 0000 0001 0000 1111 0111 2b 0000 0001 0000 0000 0111 3 0000 0000 1000 0000 0111 3 1 0000 0000 1000 1111 1111 2b 0000 0000 1000 0000 0111 3 0000 0000 0100 0000 0111 4 1 0000 0000 0100 0000 0011 2a 0001 0000 0100 0000 0011 3 0001 0000 0010 0000 0011 5 1 0001 0000 0010 0000 0001 2a 0011 0000 0010 0000 0001 3 0011 0000 0001 0000 0001 Example: 0111 / 0010: Algorithm R = Reminder – Divisor R = 0000 0111 – 0010 0000 R = 1110 0111 Restore, R = R + D R = Reminder – Divisor R = 0000 0111 – 0001 0000 R = 1111 0111 Restore, R = R + D R = Reminder – Divisor R = 0000 0111 – 0000 1000 R = 1111 1111 Restore, R = R + D R = Reminder – Divisor R = 0000 0111 – 0000 0100 R = 0000 0011 R = Reminder – Divisor R = 0000 0011 – 0000 0010 R = 0000 0001
  • 53. Signed Division • Remainder = Dividend - (Quotient · Divisor) • Four cases:
  • 54. Division Exercises • 13 / 5 • 6 / 2
  • 56. Floating Point • We need a way to represent o numbers with fractions, e.g., 3.1416 o very small numbers (in absolute value), e.g., .00000000023 o very large numbers (in absolute value) , e.g., – 3.15576 * 1046
  • 57. Floating Point • Scientific Notation: o A notation that renders numbers with a single digit to the left of the decimal point. o Ex: 1.0 X 10-9 o 3.15576 X 109 • Normalized Number: o A number in floating point notation that has no leading 0s. o Ex: 1.0 X 10-9 o 1.0 X 2-1 • Binary form: 1.xxxxxx X 2yyyy
  • 58. Exercise Change the following binary numbers into normalized number: Hint: a single non-zero digit to the left of the binary point. Binary Value Normalized Value 10000.11 1.000011 x 24 10.0 × 2-9 (0.010101)2×24 .0000011001 10000011.0 .00101
  • 59. Floating Point Representation • IEEE 754 floating point standard: o single precision: one word o double precision: two words 31 sign bits 30 to 23 8-bit exponent bits 22 to 0 23-bit fraction 31 sign bits 30 to 20 11-bit exponent bits 19 to 0 upper 20 bits of 52-bit fraction bits 31 to 0 lower 32 bits of 52-bit fraction
  • 60. Floating Point Representation • Sign bit o The sign of a binary floating-point number is represented by a single bit. o A 1 bit indicates a negative number, and a 0 bit indicates a positive number. • Fraction: o The value, generally between 0 and 1, placed in the fraction field. The fraction is also called the mantissa. • Exponent: o In the numerical representation system of floating-point arithmetic, the value that is placed in the exponent field. • Example: +1.10101 x 25 Sign bit = 0 (positive) Fraction = .10101 Exponent = 5
  • 61. Floating Point • Still use a fixed number of bits o Sign bit S, exponent E, significand F o Value: (-1)S x (1+F) x 2E • IEEE 754 standard 6 1 Size Sign bit Exponent Fraction or Significand Range Single precision 32b 1b 8b 23b 2x10+/-38 Double precision 64b 1b 11b 52b 2x10+/-308 S E F
  • 62. Biased Exponent • A biased exponent is the result of adding some constant(called the bias) to the exponent to make the range of the exponent nonnegative. • Biased exponent = Exponent + bias • Bias = 2n-1 – 1 • Single : 127 , Double : 1023 • Example: 1.101 x 25 Biased Exponent = 5 + 127 =132 (1000 0100) • Example: 1.01001 x 2-3 Biased Exponent = -3 + 127 =124 (0111 1100)
  • 63. Exercise Exponent (E) Biased exponent (E + 127) Binary Representation 5 +162 10100010 0 -10 127 -1
  • 64. Excess or Biased Exponent • Value: (-1)S x (1 + F) x 2(E-bias) o SP: bias is 127 o DP: bias is 1023 6 4 Exponent 2’s Compl Excess-127 -127 1000 0001 0000 0000 -126 1000 0010 0000 0001 … … … +127 0111 1111 1111 1110
  • 65. FP Overflow/Underflow • FP Overflow o Analogous to integer overflow o Result is too big to represent o Means exponent is too big • FP Underflow o Result is too small to represent o Means exponent is too small (too negative) • Both can raise an exception under IEEE754 6 5
  • 66. IEEE754 Special Cases 6 6 Single Precision Double Precision Value Exponent Significand Exponent Significand 0 0 0 0 0 0 nonzero 0 nonzero denormalized 1-254 anything 1-2046 anything fp number 255 0 2047 0 infinity 255 nonzero 2047 nonzero NaN (Not a Number)
  • 67. Show the IEEE 754 binary representation of the number -0.75ten in single and double precision Converting -0.75ten to binary 0.75 x 2 = 1.50 (take only integral part, ie 1) 0.50 x 2 = 1.00 0.11 x 2 0 After Normalizing the above value is 1.1 x 2 -1 The general representation for a single precision no is (-1)S x (1 + F) x 2(E-127) Subtracting the bias 127 from the exponent of -1.1two x 2-1 yields (-1)1 x (1+.1000 0000 0000 0000 0000 000two) x 2(126-127) (Contd…)
  • 68. (Contd…) The single precision binary representation of -0.75ten is then The double precision representation is Show the IEEE 754 binary representation of the number -0.75ten in single and double precision
  • 69. Exercise • Represent the following numbers in Single and Double precision formats. 1. +.0000001101011 2. -.00101
  • 70. Exercise • What decimal number is represented by this single precision float?
  • 71. Exercise • Assuming single precision IEEE 754 format, what decimal number is represent by this word? 1 01111101 00100000000000000000000
  • 72. Floating Point Addition • Binary floating point addition: • Steps: 1. Compare the exponents of the two numbers; shift the smaller number to the right until its exponent would match the larger exponent 2. Add the significands 3. Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent 4. Round the significand to the appropriate number of bits