Data generalization abstracts data from a low conceptual level to higher levels. Different cube materialization methods include full, iceberg, closed, and shell cubes. The Apriori property states that if a cell does not meet minimum support, neither will its descendants, and can reduce iceberg cube computation. BUC constructs cubes from the apex downward, allowing pruning using Apriori and sharing partitioning costs. Discovery-driven exploration assists users in intelligently exploring aggregated data cubes. Constrained gradient analysis incorporates significance, probe, and gradient constraints to reduce the search space. Attribute-oriented induction generalizes based on attribute values to characterize data. Attribute generalization is controlled through thresholds and relations.