SlideShare a Scribd company logo
DATA STRUCTURES
AND
ALGORITHMS
Lecture Notes 3
Prepared by İnanç TAHRALI
2
ROAD MAP
 Abstract Data Types (ADT)
 The List ADT
 Implementation of Lists

Array implementation of lists

Linked list implementation of lists

Cursor implementation of lists
3
Abstract Data Types (ADT)
 Definition :
Is a set of operation
Mathematical abstraction
No implementation detail
 Example :
Lists, sets, graphs, stacks are examples of
ADT along with their operations
4
Why ADT ?
 Modularity
 divide program into small functions
 easy to debug and maintain
 easy to modify
 group work
 Reuse
 do some operations only once
 Easy to change of implementation
 transparent to the program
5
THE LIST ADT
 Ordered sequence of data items called
elements
 A1, A2, A3, …,AN is a list of size N
 size of an empty list is 0
 Ai+1 succeeds Ai
 Ai-1 preceeds Ai
 position of Ai is i
 first element is A1 called “head”
 last element is AN called “tail”
Operations ?
6
THE LIST ADT
 Operations
 PrintList
 Find
 FindKth
 Insert
 Delete
 Next
 Previous
 MakeEmpty
7
THE LIST ADT
 Example:
the elements of a list are
34, 12, 52, 16, 12
 Find (52)  3
 Insert (20, 3)  34, 12, 52, 20, 16, 12
 Delete (52)  34, 12, 20, 16, 12
 FindKth (3)  20
8
Implementation of Lists
 Many Implementations
 Array
 Linked List
 Cursor (linked list using arrays)
9
ROAD MAP
 Abstract Data Types (ADT)
 The List ADT
 Implementation of Lists

Array implementation of lists

Linked list implementation of lists

Cursor implementation of lists
10
Array Implementation of List ADT
 Need to define a size for array
 High overestimate (waste of space)
 Operations Running Times
PrintList O(N)
Find
Insert O(N) (on avarage half needs to be moved)
Delete
FindKth
Next O(1)
Previous
11
Array Implementation of List ADT
 Disadvantages :
 insertion and deletion is very slow

need to move elements of the list
 redundant memory space

it is difficult to estimate the size of array
12
ROAD MAP
 Abstract Data Types (ADT)
 The List ADT
 Implementation of Lists

Array implementation of lists

Linked list implementation of lists

Cursor implementation of lists
13
Linked List Implementation of Lists
 Series of nodes
 not adjacent in memory
 contain the element and a pointer to a node containing its
succesor
 Avoids the linear cost of insertion and deletion !
14
Linked List Implementation of Lists
 Insertion into a linked list
15
Linked List Implementation of Lists
 Deletion from a linked list
16
Linked List Implementation of Lists
 Need to know where the first node is
 the rest of the nodes can be accessed
 No need to move the list for insertion and
deletion operations
 No memory waste
17
Linked List Implementation of Lists
Linked List Array
PrintList O(N) (traverse the list)
O(N)
Find
FindKth (L,i) O(i)
O(1)
Delete O(1)
O(N)
18
Programming Details
 There are 3 special cases for linked lists
 Insert an element at the front of the list

there is no really obvious way
 Delete an element from the front of the list

changes the start of the list
 Delete an element in general

requires to keep track of the node before the deleted one
How can we solve these three problems ?
19
Programming Details
Keep a header node in position 0
 Write a FindPrevious routine
 returns the predecessor of the cell
 To delete the first element
 FindPrevious routine returns the position of
header
Use of header node is controversial !
20
Type decleration for link list node
template <class Object>
class List; // Incomplete declaration.
template <class Object>
class ListItr; // Incomplete declaration.
template <class Object>
class ListNode {
ListNode( const Object & theElement = Object( ),
ListNode*n=NULL) : element(theElement),next(n)
{}
Object element;
ListNode *next;
friend class List<Object>;
friend class ListItr<Object>;
};
21
Iterator class for linked lists
template <class Object>
class ListItr {
public:
ListItr( ) : current( NULL ) { }
bool isPastEnd( ) const { return current == NULL; }
void advance( )
{ if( !isPastEnd( ) ) current = current->next; }
const Object & retrieve( ) const
{ if( isPastEnd( ) )
throw BadIterator( );
return current->element; }
private:
ListNode<Object> *current; // Current position
ListItr(ListNode<Object> *theNode):current( theNode ) { }
friend class List<Object>; // Grant access to constructor
};
22
List class interface
template <class Object>
class List {
public:
List( );
List( const List & rhs );
~List( );
bool isEmpty( ) const;
void makeEmpty( );
ListItr<Object> zeroth( ) const;
ListItr<Object> first( ) const;
void insert( const Object & x, const ListItr<Object> & p );
ListItr<Object> find( const Object & x ) const;
ListItr<Object> findPrevious( const Object & x ) const;
void remove( const Object & x );
const List & operator=( const List & rhs );
private:
ListNode<Object> *header;
};
23
Function to print a list
template <class Object>
void printList( const List<Object> &the List)
{
if (theList.isEmpty())
cout<< “Empty list” << endl;
else
{
ListItr<Object> itr = theList.first();
for (; !itr.isPastEnd(); itr.advance())
cout << itr.retrieve() <<“ ”;
}
cout << endl;
}
24
Some list one-liners
/* Construct the list */
template <class Object>
List<Object>::List( )
{
header = new ListNode<Object>;
}
/* Test if the list is logically empty */
template <class Object>
bool List<Object>::isEmpty( ) const
{
return header->next == NULL;
}
25
Some list one liners
/* Return an iterator representing the header node
template <class Object>
ListItr<Object> List<Object>::zeroth( ) const
{
return ListItr<Object>( header );
}
/* Return an iterator representing the first node
in the list. This operation is valid for empty
lists. */
template <class Object>
ListItr<Object> List<Object>::first( ) const
{
return ListItr<Object>( header->next );
}
26
Find routine
/* Return iterator corresponding to the first
node containing an item x. Iterator isPastEnd
if item is not found. */
template <class Object>
ListItr<Object> List<Object>::find( const
Object & x ) const
{
ListNode<Object> *itr = header->next;
while( itr != NULL && itr->element != x )
itr = itr->next;
return ListItr<Object>( itr );
}
27
Deletion routine for linked lists
/* Remove the first occurrence of an item x. */
template <class Object>
void List<Object>::remove( const Object & x )
{
ListItr<Object> p = findPrevious( x );
if( p.current->next != NULL )
{
ListNode<Object> *oldNode = p.current->next;
p.current->next = p.current->next->next;
delete oldNode;
}
}
28
findPrevious-the find routine for
use with remove
/*Return iterator prior to the first node containing an
item x.
template <class Object>
ListItr<Object> List<Object>::findPrevious( const Object &
x ) const
{
ListNode<Object> *itr = header;
while( itr->next != NULL && itr->next->element != x )
itr = itr->next;
return ListItr<Object>( itr );
}
29
Insertion routine for linked lists
/* Insert item x after p. */
template <class Object>
void List<Object>::insert( const Object & x,
const ListItr<Object> & p )
{
if( p.current != NULL )
p.current->next = new ListNode<Object>
( x, p.current->next );
}
30
makeEmpty and List destructor
/* Make the list logically empty. */
template <class Object>
void List<Object>::makeEmpty( )
{
while( !isEmpty( ) )
remove( first( ).retrieve( ) );
}
/* Destructor */
template <class Object>
List<Object>::~List( )
{
makeEmpty( );
delete header;
}
31
List copy routines: operator=
/*Deep copy of linked lists.
template <class Object>
const List<Object> & List<Object>::operator=( const
List<Object> & rhs )
{
ListItr<Object> ritr = rhs.first( );
ListItr<Object> itr = zeroth( );
if( this != &rhs )
{
makeEmpty( );
for( ; !ritr.isPastEnd( );
ritr.advance( ),itr.advance( ))
insert( ritr.retrieve( ), itr );
}
return *this;
}
32
List copy routines : copy constructor
/* Copy constructor
template <class Object>
List<Object>::List( const List<Object> & rhs )
{
header = new ListNode<Object>;
*this = rhs;
}
33
Doubly Linked List
 Traversing list backwards
 not easy with regular lists
 Insertion and deletion more pointer fixing
 Deletion is easier
 Previous node is easy to find
34
Circulary Linked List
 Last node points the first
35
ROAD MAP
 Abstract Data Types (ADT)
 The List ADT
 Implementation of Lists

Array implementation of lists

Linked list implementation of lists

Cursor implementation of lists
36
Cursor Implementation of Linked List
Problems with linked list implementation:
 Same language do not support pointers !
 Then how can you use linked lists ?
 new and free operations are slow
 Actually not constant time
37
Cursor Implementation of Linked List
SOLUTION: Implement linked list on an array
called CURSOR
38
Cursor Implementation of Linked List
 Cursor operation simulates the features
 Collection of structures

uses array for nodes
 Array index is pointer
 new and delete operation

Keep a free list
 new returns an element from freelist
 delete place the node in freelist

Freelist
 Use cell 0 as header
 All nodes are free initially
 0 is a NULL pointer
39
Cursor Implementation of Linked List
If L = 5, then L represents list (A, B, E)
If M = 3, then M represents list (C, D, F)
40
Iterator for cursor implementation
of linked lists
template <class Object>
class ListItr
{
public:
ListItr( ) : current( 0 ) { }
bool isPastEnd( ) const {return current == 0; }
void advance( ){
if( !isPastEnd( ) )
current = List<Object>::cursorSpace[ current ].next; }
const Object & retrieve( ) const {
if( isPastEnd( ) ) throw BadIterator( );
return List<Object>::cursorSpace[ current ].element; }
private:
int current; // Current position
friend class List<Object>;
ListItr( int theNode ) : current( theNode ) { }
};
41
Class skeleton for cursor-based List
template <class Object>
class ListItr; // Incomplete declaration.
template <class Object>
class List
{
public:
List( );
List( const List & rhs );
~List( );
bool isEmpty( ) const;
void makeEmpty( );
ListItr<Object> zeroth( ) const;
ListItr<Object> first( ) const;
void insert( const Object & x, const ListItr<Object> & p );
ListItr<Object> find( const Object & x ) const;
ListItr<Object> findPrevious( const Object & x ) const;
void remove( const Object & x );
42
Class skeleton for cursor-based List
public:
struct CursorNode
{
CursorNode( ) : next( 0 ) { }
private:
CursorNode( const Object & theElement, int n )
: element( theElement ), next( n ) {}
Object element;
int next;
friend class List<Object>;
friend class ListItr<Object>;
};
const List & operator=( const List & rhs );
43
Class skeleton for cursor-based List
private:
int header;
static vector<CursorNode> cursorSpace;
static void initializeCursorSpace( );
static int alloc( );
static void free( int p );
friend class ListItr<Object>;
};
44
cursorSpace initialization
/* Routine to initialize the cursorSpace. */
template <class Object>
void List<Object>::initializeCursorSpace( )
{
static int cursorSpaceIsInitialized = false;
if( !cursorSpaceIsInitialized )
{
cursorSpace.resize( 100 );
for( int i = 0; i < cursorSpace.size( ); i++ )
cursorSpace[ i ].next = i + 1;
cursorSpace[ cursorSpace.size( ) - 1 ].next = 0;
cursorSpaceIsInitialized = true;
}
}
45
Routines : alloc and free
/* Allocate a CursorNode
template <class Object>
int List<Object>::alloc( )
{
int p = cursorSpace[ 0 ].next;
cursorSpace[ 0 ].next = cursorSpace[ p ].next;
return p;
}
/* Free a CursorNode
template <class Object>
void List<Object>::free( int p )
{
cursorSpace[ p ].next = cursorSpace[ 0 ].next;
cursorSpace[ 0 ].next = p;
}
46
Short routines for cursor-based lists
/* Construct the list
template <class Object>
List<Object>::List( )
{
initializeCursorSpace( );
header = alloc( );
cursorSpace[ header ].next = 0;
}
/* Destroy the list
template <class Object>
List<Object>::~List( )
{
makeEmpty( );
free( header );
}
47
Short routines for cursor-based lists
/* Test if the list is logically empty. return true if
empty
template <class Object>
bool List<Object>::isEmpty( ) const
{
return cursorSpace[ header ].next == 0;
}
/* Return an iterator representing the first node in
the list. This operation is valid for empty lists.
template <class Object>
ListItr<Object> List<Object>::first( ) const
{
return ListItr<Object>( cursorSpace[ header ].next );
}
48
find routine - cursor implementation
/*Return iterator corresponding to the first node containing
an item x. Iterator isPastEnd if item is not found.
template <class Object>
ListItr<Object> List<Object>::find( const Object & x ) const
{
int itr = cursorSpace[ header ].next;
while( itr != 0 && cursorSpace[ itr ].element != x )
itr = cursorSpace[ itr ].next;
return ListItr<Object>( itr );
}
49
insertion routine-cursor implementation
/* Insert item x after p.
template <class Object>
void List<Object>::insert(const Object & x,const ListItr<Object> & p)
{
if( p.current != 0 )
{
int pos = p.current;
int tmp = alloc( );
cursorSpace[ tmp ] = CursorNode( x, cursorSpace[ pos ].next );
cursorSpace[ pos ].next = tmp;
}
}
50
deletion routine - cursor implementation
/* Remove the first occurrence of an item x.
template <class Object>
void List<Object>::remove( const Object & x )
{
ListItr<Object> p = findPrevious( x );
int pos = p.current;
if( cursorSpace[ pos ].next != 0 )
{
int tmp = cursorSpace[ pos ].next;
cursorSpace[ pos ].next = cursorSpace[ tmp ].next;
free ( tmp );
}
}

More Related Content

What's hot (20)

PPT
Sorting Techniques
Rafay Farooq
 
PPT
Red black tree
Rajendran
 
PPTX
Priority Queue in Data Structure
Meghaj Mallick
 
PPTX
Abstract Data Types
karthikeyanC40
 
PPT
Greedy Algorihm
Muhammad Amjad Rana
 
PPTX
Hashing Technique In Data Structures
SHAKOOR AB
 
PPTX
Forms of learning in ai
Robert Antony
 
PPTX
Deadlock dbms
Vardhil Patel
 
PPT
Data Structure and Algorithms
ManishPrajapati78
 
PPTX
Arrays in Data Structure and Algorithm
KristinaBorooah
 
PDF
Algorithms Lecture 2: Analysis of Algorithms I
Mohamed Loey
 
PDF
Queue as data_structure
eShikshak
 
PPTX
Data structure array
MajidHamidAli
 
PPTX
Problem solving agents
Megha Sharma
 
PPTX
Entity Relationship Diagrams
sadique_ghitm
 
PDF
Queues
Hareem Aslam
 
PDF
Heap and heapsort
Amit Kumar Rathi
 
PDF
UNIT I LINEAR DATA STRUCTURES – LIST
Kathirvel Ayyaswamy
 
PPTX
Introduction to data structure ppt
NalinNishant3
 
PPTX
Data Mining: Outlier analysis
DataminingTools Inc
 
Sorting Techniques
Rafay Farooq
 
Red black tree
Rajendran
 
Priority Queue in Data Structure
Meghaj Mallick
 
Abstract Data Types
karthikeyanC40
 
Greedy Algorihm
Muhammad Amjad Rana
 
Hashing Technique In Data Structures
SHAKOOR AB
 
Forms of learning in ai
Robert Antony
 
Deadlock dbms
Vardhil Patel
 
Data Structure and Algorithms
ManishPrajapati78
 
Arrays in Data Structure and Algorithm
KristinaBorooah
 
Algorithms Lecture 2: Analysis of Algorithms I
Mohamed Loey
 
Queue as data_structure
eShikshak
 
Data structure array
MajidHamidAli
 
Problem solving agents
Megha Sharma
 
Entity Relationship Diagrams
sadique_ghitm
 
Queues
Hareem Aslam
 
Heap and heapsort
Amit Kumar Rathi
 
UNIT I LINEAR DATA STRUCTURES – LIST
Kathirvel Ayyaswamy
 
Introduction to data structure ppt
NalinNishant3
 
Data Mining: Outlier analysis
DataminingTools Inc
 

Viewers also liked (16)

PPT
Cursor implementation
vicky201
 
PPTX
Data structures and algorithms
Harry Potter
 
PDF
Linked lists
Piyush Mittal
 
PPT
358 33 powerpoint-slides_8-linked-lists_chapter-8
sumitbardhan
 
PPT
data structure
hashim102
 
PDF
Data structures and algorithms made easy
CareerMonk Publications
 
PPTX
Linked List
Ashim Lamichhane
 
PPT
Introduction of data structure
eShikshak
 
PDF
C++ idioms by example (Nov 2008)
Olve Maudal
 
PPTX
linked list
Mohaimin Rahat
 
PDF
Solid C++ by Example
Olve Maudal
 
PDF
How A Compiler Works: GNU Toolchain
National Cheng Kung University
 
PPTX
Data structures and algorithms
Julie Iskander
 
PPTX
Linked list
akshat360
 
PDF
TDD in C - Recently Used List Kata
Olve Maudal
 
PDF
Deep C
Olve Maudal
 
Cursor implementation
vicky201
 
Data structures and algorithms
Harry Potter
 
Linked lists
Piyush Mittal
 
358 33 powerpoint-slides_8-linked-lists_chapter-8
sumitbardhan
 
data structure
hashim102
 
Data structures and algorithms made easy
CareerMonk Publications
 
Linked List
Ashim Lamichhane
 
Introduction of data structure
eShikshak
 
C++ idioms by example (Nov 2008)
Olve Maudal
 
linked list
Mohaimin Rahat
 
Solid C++ by Example
Olve Maudal
 
How A Compiler Works: GNU Toolchain
National Cheng Kung University
 
Data structures and algorithms
Julie Iskander
 
Linked list
akshat360
 
TDD in C - Recently Used List Kata
Olve Maudal
 
Deep C
Olve Maudal
 
Ad

Similar to Data structures & algorithms lecture 3 (20)

PPT
Array linked list.ppt
Waf1231
 
PPT
List
Amit Vats
 
PPT
Chapter 5 ds
Hanif Durad
 
PPTX
List,Stacks and Queues.pptx
UmatulSaboohSaleem1
 
PPT
linked-list - Abstract data type (ADT) Linked Lists
Anil Yadav
 
PPT
Abstract data types
JAGDEEPKUMAR23
 
PPT
Lecture 3 List of Data Structures & Algorithms
haseebanjum2611
 
PPTX
EC2311 – Data Structures and C Programming
Padma Priya
 
PPT
Algo>ADT list & linked list
Ain-ul-Moiz Khawaja
 
PPT
dynamicList.ppt
ssuser0be977
 
PPT
Data Structure lec#2
University of Gujrat, Pakistan
 
PPTX
DS_LinkedList.pptx
msohail37
 
PPT
lecture 02.2.ppt
NathanielAdika
 
PPT
Lec6 mod linked list
Ibrahim El-Torbany
 
PPT
linked-list - Finding a node Deleting a node
Anil Yadav
 
PPTX
Data structures and Algorithm analysis_Lecture 2.pptx
AhmedEldesoky24
 
PPTX
Linked lists a
Khuram Shahzad
 
PPT
LINKEDb2bb22bb3b3b3b3n3_LIST_UKL_1-2.ppt
Farhana859326
 
PDF
C++ problemPart 1 Recursive Print (40 pts)Please write the recu.pdf
callawaycorb73779
 
Array linked list.ppt
Waf1231
 
List
Amit Vats
 
Chapter 5 ds
Hanif Durad
 
List,Stacks and Queues.pptx
UmatulSaboohSaleem1
 
linked-list - Abstract data type (ADT) Linked Lists
Anil Yadav
 
Abstract data types
JAGDEEPKUMAR23
 
Lecture 3 List of Data Structures & Algorithms
haseebanjum2611
 
EC2311 – Data Structures and C Programming
Padma Priya
 
Algo>ADT list & linked list
Ain-ul-Moiz Khawaja
 
dynamicList.ppt
ssuser0be977
 
Data Structure lec#2
University of Gujrat, Pakistan
 
DS_LinkedList.pptx
msohail37
 
lecture 02.2.ppt
NathanielAdika
 
Lec6 mod linked list
Ibrahim El-Torbany
 
linked-list - Finding a node Deleting a node
Anil Yadav
 
Data structures and Algorithm analysis_Lecture 2.pptx
AhmedEldesoky24
 
Linked lists a
Khuram Shahzad
 
LINKEDb2bb22bb3b3b3b3n3_LIST_UKL_1-2.ppt
Farhana859326
 
C++ problemPart 1 Recursive Print (40 pts)Please write the recu.pdf
callawaycorb73779
 
Ad

More from Poojith Chowdhary (20)

PPT
Voltage multiplier
Poojith Chowdhary
 
PPT
Implementation of MIS and its methods
Poojith Chowdhary
 
PPT
THE LIGHT EMITTING DIODE
Poojith Chowdhary
 
PPT
High k dielectric
Poojith Chowdhary
 
PPTX
The science of thought
Poojith Chowdhary
 
PPT
Child prodigy,savant and late boomers
Poojith Chowdhary
 
PPTX
Us wireless cable television
Poojith Chowdhary
 
PPTX
1116297 634468886714442500
Poojith Chowdhary
 
PPTX
Photo transistors
Poojith Chowdhary
 
PPT
8086 micro processor
Poojith Chowdhary
 
PPT
8051 micro controller
Poojith Chowdhary
 
PPT
8085 micro processor
Poojith Chowdhary
 
PPTX
Quantum mechanics
Poojith Chowdhary
 
PPTX
Function generator
Poojith Chowdhary
 
PPTX
Resistors
Poojith Chowdhary
 
PPT
The new seven wonders of the world
Poojith Chowdhary
 
PPT
Abstract data types
Poojith Chowdhary
 
PPT
The new seven wonders of the world
Poojith Chowdhary
 
PPTX
Animal lifecycles
Poojith Chowdhary
 
PPTX
Resistors
Poojith Chowdhary
 
Voltage multiplier
Poojith Chowdhary
 
Implementation of MIS and its methods
Poojith Chowdhary
 
THE LIGHT EMITTING DIODE
Poojith Chowdhary
 
High k dielectric
Poojith Chowdhary
 
The science of thought
Poojith Chowdhary
 
Child prodigy,savant and late boomers
Poojith Chowdhary
 
Us wireless cable television
Poojith Chowdhary
 
1116297 634468886714442500
Poojith Chowdhary
 
Photo transistors
Poojith Chowdhary
 
8086 micro processor
Poojith Chowdhary
 
8051 micro controller
Poojith Chowdhary
 
8085 micro processor
Poojith Chowdhary
 
Quantum mechanics
Poojith Chowdhary
 
Function generator
Poojith Chowdhary
 
The new seven wonders of the world
Poojith Chowdhary
 
Abstract data types
Poojith Chowdhary
 
The new seven wonders of the world
Poojith Chowdhary
 
Animal lifecycles
Poojith Chowdhary
 

Recently uploaded (20)

PPTX
How to Add New Item in CogMenu in Odoo 18
Celine George
 
PPTX
Peer Teaching Observations During School Internship
AjayaMohanty7
 
PDF
Romanticism in Love and Sacrifice An Analysis of Oscar Wilde’s The Nightingal...
KaryanaTantri21
 
PPTX
How to Create & Manage Stages in Odoo 18 Helpdesk
Celine George
 
PPTX
Martyrs of Ireland - who kept the faith of St. Patrick.pptx
Martin M Flynn
 
PDF
Our Guide to the July 2025 USPS® Rate Change
Postal Advocate Inc.
 
PPTX
How to Manage Wins & Losses in Odoo 18 CRM
Celine George
 
PPTX
SYMPATHOMIMETICS[ADRENERGIC AGONISTS] pptx
saip95568
 
PPTX
Aerobic and Anaerobic respiration and CPR.pptx
Olivier Rochester
 
PPTX
Elo the Hero is an story about a young boy who became hero.
TeacherEmily1
 
PDF
Gladiolous Cultivation practices by AKL.pdf
kushallamichhame
 
PPT
M&A5 Q1 1 differentiate evolving early Philippine conventional and contempora...
ErlizaRosete
 
PPTX
2025 Completing the Pre-SET Plan Form.pptx
mansk2
 
PDF
Wikinomics How Mass Collaboration Changes Everything Don Tapscott
wcsqyzf5909
 
PDF
Free eBook ~100 Common English Proverbs (ebook) pdf.pdf
OH TEIK BIN
 
PPTX
How to use _name_search() method in Odoo 18
Celine George
 
PPTX
How Physics Enhances Our Quality of Life.pptx
AngeliqueTolentinoDe
 
PDF
DIGESTION OF CARBOHYDRATES ,PROTEINS AND LIPIDS
raviralanaresh2
 
PPTX
How to Configure Refusal of Applicants in Odoo 18 Recruitment
Celine George
 
PPTX
How to Setup Automatic Reordering Rule in Odoo 18 Inventory
Celine George
 
How to Add New Item in CogMenu in Odoo 18
Celine George
 
Peer Teaching Observations During School Internship
AjayaMohanty7
 
Romanticism in Love and Sacrifice An Analysis of Oscar Wilde’s The Nightingal...
KaryanaTantri21
 
How to Create & Manage Stages in Odoo 18 Helpdesk
Celine George
 
Martyrs of Ireland - who kept the faith of St. Patrick.pptx
Martin M Flynn
 
Our Guide to the July 2025 USPS® Rate Change
Postal Advocate Inc.
 
How to Manage Wins & Losses in Odoo 18 CRM
Celine George
 
SYMPATHOMIMETICS[ADRENERGIC AGONISTS] pptx
saip95568
 
Aerobic and Anaerobic respiration and CPR.pptx
Olivier Rochester
 
Elo the Hero is an story about a young boy who became hero.
TeacherEmily1
 
Gladiolous Cultivation practices by AKL.pdf
kushallamichhame
 
M&A5 Q1 1 differentiate evolving early Philippine conventional and contempora...
ErlizaRosete
 
2025 Completing the Pre-SET Plan Form.pptx
mansk2
 
Wikinomics How Mass Collaboration Changes Everything Don Tapscott
wcsqyzf5909
 
Free eBook ~100 Common English Proverbs (ebook) pdf.pdf
OH TEIK BIN
 
How to use _name_search() method in Odoo 18
Celine George
 
How Physics Enhances Our Quality of Life.pptx
AngeliqueTolentinoDe
 
DIGESTION OF CARBOHYDRATES ,PROTEINS AND LIPIDS
raviralanaresh2
 
How to Configure Refusal of Applicants in Odoo 18 Recruitment
Celine George
 
How to Setup Automatic Reordering Rule in Odoo 18 Inventory
Celine George
 

Data structures & algorithms lecture 3

  • 1. DATA STRUCTURES AND ALGORITHMS Lecture Notes 3 Prepared by İnanç TAHRALI
  • 2. 2 ROAD MAP  Abstract Data Types (ADT)  The List ADT  Implementation of Lists  Array implementation of lists  Linked list implementation of lists  Cursor implementation of lists
  • 3. 3 Abstract Data Types (ADT)  Definition : Is a set of operation Mathematical abstraction No implementation detail  Example : Lists, sets, graphs, stacks are examples of ADT along with their operations
  • 4. 4 Why ADT ?  Modularity  divide program into small functions  easy to debug and maintain  easy to modify  group work  Reuse  do some operations only once  Easy to change of implementation  transparent to the program
  • 5. 5 THE LIST ADT  Ordered sequence of data items called elements  A1, A2, A3, …,AN is a list of size N  size of an empty list is 0  Ai+1 succeeds Ai  Ai-1 preceeds Ai  position of Ai is i  first element is A1 called “head”  last element is AN called “tail” Operations ?
  • 6. 6 THE LIST ADT  Operations  PrintList  Find  FindKth  Insert  Delete  Next  Previous  MakeEmpty
  • 7. 7 THE LIST ADT  Example: the elements of a list are 34, 12, 52, 16, 12  Find (52)  3  Insert (20, 3)  34, 12, 52, 20, 16, 12  Delete (52)  34, 12, 20, 16, 12  FindKth (3)  20
  • 8. 8 Implementation of Lists  Many Implementations  Array  Linked List  Cursor (linked list using arrays)
  • 9. 9 ROAD MAP  Abstract Data Types (ADT)  The List ADT  Implementation of Lists  Array implementation of lists  Linked list implementation of lists  Cursor implementation of lists
  • 10. 10 Array Implementation of List ADT  Need to define a size for array  High overestimate (waste of space)  Operations Running Times PrintList O(N) Find Insert O(N) (on avarage half needs to be moved) Delete FindKth Next O(1) Previous
  • 11. 11 Array Implementation of List ADT  Disadvantages :  insertion and deletion is very slow  need to move elements of the list  redundant memory space  it is difficult to estimate the size of array
  • 12. 12 ROAD MAP  Abstract Data Types (ADT)  The List ADT  Implementation of Lists  Array implementation of lists  Linked list implementation of lists  Cursor implementation of lists
  • 13. 13 Linked List Implementation of Lists  Series of nodes  not adjacent in memory  contain the element and a pointer to a node containing its succesor  Avoids the linear cost of insertion and deletion !
  • 14. 14 Linked List Implementation of Lists  Insertion into a linked list
  • 15. 15 Linked List Implementation of Lists  Deletion from a linked list
  • 16. 16 Linked List Implementation of Lists  Need to know where the first node is  the rest of the nodes can be accessed  No need to move the list for insertion and deletion operations  No memory waste
  • 17. 17 Linked List Implementation of Lists Linked List Array PrintList O(N) (traverse the list) O(N) Find FindKth (L,i) O(i) O(1) Delete O(1) O(N)
  • 18. 18 Programming Details  There are 3 special cases for linked lists  Insert an element at the front of the list  there is no really obvious way  Delete an element from the front of the list  changes the start of the list  Delete an element in general  requires to keep track of the node before the deleted one How can we solve these three problems ?
  • 19. 19 Programming Details Keep a header node in position 0  Write a FindPrevious routine  returns the predecessor of the cell  To delete the first element  FindPrevious routine returns the position of header Use of header node is controversial !
  • 20. 20 Type decleration for link list node template <class Object> class List; // Incomplete declaration. template <class Object> class ListItr; // Incomplete declaration. template <class Object> class ListNode { ListNode( const Object & theElement = Object( ), ListNode*n=NULL) : element(theElement),next(n) {} Object element; ListNode *next; friend class List<Object>; friend class ListItr<Object>; };
  • 21. 21 Iterator class for linked lists template <class Object> class ListItr { public: ListItr( ) : current( NULL ) { } bool isPastEnd( ) const { return current == NULL; } void advance( ) { if( !isPastEnd( ) ) current = current->next; } const Object & retrieve( ) const { if( isPastEnd( ) ) throw BadIterator( ); return current->element; } private: ListNode<Object> *current; // Current position ListItr(ListNode<Object> *theNode):current( theNode ) { } friend class List<Object>; // Grant access to constructor };
  • 22. 22 List class interface template <class Object> class List { public: List( ); List( const List & rhs ); ~List( ); bool isEmpty( ) const; void makeEmpty( ); ListItr<Object> zeroth( ) const; ListItr<Object> first( ) const; void insert( const Object & x, const ListItr<Object> & p ); ListItr<Object> find( const Object & x ) const; ListItr<Object> findPrevious( const Object & x ) const; void remove( const Object & x ); const List & operator=( const List & rhs ); private: ListNode<Object> *header; };
  • 23. 23 Function to print a list template <class Object> void printList( const List<Object> &the List) { if (theList.isEmpty()) cout<< “Empty list” << endl; else { ListItr<Object> itr = theList.first(); for (; !itr.isPastEnd(); itr.advance()) cout << itr.retrieve() <<“ ”; } cout << endl; }
  • 24. 24 Some list one-liners /* Construct the list */ template <class Object> List<Object>::List( ) { header = new ListNode<Object>; } /* Test if the list is logically empty */ template <class Object> bool List<Object>::isEmpty( ) const { return header->next == NULL; }
  • 25. 25 Some list one liners /* Return an iterator representing the header node template <class Object> ListItr<Object> List<Object>::zeroth( ) const { return ListItr<Object>( header ); } /* Return an iterator representing the first node in the list. This operation is valid for empty lists. */ template <class Object> ListItr<Object> List<Object>::first( ) const { return ListItr<Object>( header->next ); }
  • 26. 26 Find routine /* Return iterator corresponding to the first node containing an item x. Iterator isPastEnd if item is not found. */ template <class Object> ListItr<Object> List<Object>::find( const Object & x ) const { ListNode<Object> *itr = header->next; while( itr != NULL && itr->element != x ) itr = itr->next; return ListItr<Object>( itr ); }
  • 27. 27 Deletion routine for linked lists /* Remove the first occurrence of an item x. */ template <class Object> void List<Object>::remove( const Object & x ) { ListItr<Object> p = findPrevious( x ); if( p.current->next != NULL ) { ListNode<Object> *oldNode = p.current->next; p.current->next = p.current->next->next; delete oldNode; } }
  • 28. 28 findPrevious-the find routine for use with remove /*Return iterator prior to the first node containing an item x. template <class Object> ListItr<Object> List<Object>::findPrevious( const Object & x ) const { ListNode<Object> *itr = header; while( itr->next != NULL && itr->next->element != x ) itr = itr->next; return ListItr<Object>( itr ); }
  • 29. 29 Insertion routine for linked lists /* Insert item x after p. */ template <class Object> void List<Object>::insert( const Object & x, const ListItr<Object> & p ) { if( p.current != NULL ) p.current->next = new ListNode<Object> ( x, p.current->next ); }
  • 30. 30 makeEmpty and List destructor /* Make the list logically empty. */ template <class Object> void List<Object>::makeEmpty( ) { while( !isEmpty( ) ) remove( first( ).retrieve( ) ); } /* Destructor */ template <class Object> List<Object>::~List( ) { makeEmpty( ); delete header; }
  • 31. 31 List copy routines: operator= /*Deep copy of linked lists. template <class Object> const List<Object> & List<Object>::operator=( const List<Object> & rhs ) { ListItr<Object> ritr = rhs.first( ); ListItr<Object> itr = zeroth( ); if( this != &rhs ) { makeEmpty( ); for( ; !ritr.isPastEnd( ); ritr.advance( ),itr.advance( )) insert( ritr.retrieve( ), itr ); } return *this; }
  • 32. 32 List copy routines : copy constructor /* Copy constructor template <class Object> List<Object>::List( const List<Object> & rhs ) { header = new ListNode<Object>; *this = rhs; }
  • 33. 33 Doubly Linked List  Traversing list backwards  not easy with regular lists  Insertion and deletion more pointer fixing  Deletion is easier  Previous node is easy to find
  • 34. 34 Circulary Linked List  Last node points the first
  • 35. 35 ROAD MAP  Abstract Data Types (ADT)  The List ADT  Implementation of Lists  Array implementation of lists  Linked list implementation of lists  Cursor implementation of lists
  • 36. 36 Cursor Implementation of Linked List Problems with linked list implementation:  Same language do not support pointers !  Then how can you use linked lists ?  new and free operations are slow  Actually not constant time
  • 37. 37 Cursor Implementation of Linked List SOLUTION: Implement linked list on an array called CURSOR
  • 38. 38 Cursor Implementation of Linked List  Cursor operation simulates the features  Collection of structures  uses array for nodes  Array index is pointer  new and delete operation  Keep a free list  new returns an element from freelist  delete place the node in freelist  Freelist  Use cell 0 as header  All nodes are free initially  0 is a NULL pointer
  • 39. 39 Cursor Implementation of Linked List If L = 5, then L represents list (A, B, E) If M = 3, then M represents list (C, D, F)
  • 40. 40 Iterator for cursor implementation of linked lists template <class Object> class ListItr { public: ListItr( ) : current( 0 ) { } bool isPastEnd( ) const {return current == 0; } void advance( ){ if( !isPastEnd( ) ) current = List<Object>::cursorSpace[ current ].next; } const Object & retrieve( ) const { if( isPastEnd( ) ) throw BadIterator( ); return List<Object>::cursorSpace[ current ].element; } private: int current; // Current position friend class List<Object>; ListItr( int theNode ) : current( theNode ) { } };
  • 41. 41 Class skeleton for cursor-based List template <class Object> class ListItr; // Incomplete declaration. template <class Object> class List { public: List( ); List( const List & rhs ); ~List( ); bool isEmpty( ) const; void makeEmpty( ); ListItr<Object> zeroth( ) const; ListItr<Object> first( ) const; void insert( const Object & x, const ListItr<Object> & p ); ListItr<Object> find( const Object & x ) const; ListItr<Object> findPrevious( const Object & x ) const; void remove( const Object & x );
  • 42. 42 Class skeleton for cursor-based List public: struct CursorNode { CursorNode( ) : next( 0 ) { } private: CursorNode( const Object & theElement, int n ) : element( theElement ), next( n ) {} Object element; int next; friend class List<Object>; friend class ListItr<Object>; }; const List & operator=( const List & rhs );
  • 43. 43 Class skeleton for cursor-based List private: int header; static vector<CursorNode> cursorSpace; static void initializeCursorSpace( ); static int alloc( ); static void free( int p ); friend class ListItr<Object>; };
  • 44. 44 cursorSpace initialization /* Routine to initialize the cursorSpace. */ template <class Object> void List<Object>::initializeCursorSpace( ) { static int cursorSpaceIsInitialized = false; if( !cursorSpaceIsInitialized ) { cursorSpace.resize( 100 ); for( int i = 0; i < cursorSpace.size( ); i++ ) cursorSpace[ i ].next = i + 1; cursorSpace[ cursorSpace.size( ) - 1 ].next = 0; cursorSpaceIsInitialized = true; } }
  • 45. 45 Routines : alloc and free /* Allocate a CursorNode template <class Object> int List<Object>::alloc( ) { int p = cursorSpace[ 0 ].next; cursorSpace[ 0 ].next = cursorSpace[ p ].next; return p; } /* Free a CursorNode template <class Object> void List<Object>::free( int p ) { cursorSpace[ p ].next = cursorSpace[ 0 ].next; cursorSpace[ 0 ].next = p; }
  • 46. 46 Short routines for cursor-based lists /* Construct the list template <class Object> List<Object>::List( ) { initializeCursorSpace( ); header = alloc( ); cursorSpace[ header ].next = 0; } /* Destroy the list template <class Object> List<Object>::~List( ) { makeEmpty( ); free( header ); }
  • 47. 47 Short routines for cursor-based lists /* Test if the list is logically empty. return true if empty template <class Object> bool List<Object>::isEmpty( ) const { return cursorSpace[ header ].next == 0; } /* Return an iterator representing the first node in the list. This operation is valid for empty lists. template <class Object> ListItr<Object> List<Object>::first( ) const { return ListItr<Object>( cursorSpace[ header ].next ); }
  • 48. 48 find routine - cursor implementation /*Return iterator corresponding to the first node containing an item x. Iterator isPastEnd if item is not found. template <class Object> ListItr<Object> List<Object>::find( const Object & x ) const { int itr = cursorSpace[ header ].next; while( itr != 0 && cursorSpace[ itr ].element != x ) itr = cursorSpace[ itr ].next; return ListItr<Object>( itr ); }
  • 49. 49 insertion routine-cursor implementation /* Insert item x after p. template <class Object> void List<Object>::insert(const Object & x,const ListItr<Object> & p) { if( p.current != 0 ) { int pos = p.current; int tmp = alloc( ); cursorSpace[ tmp ] = CursorNode( x, cursorSpace[ pos ].next ); cursorSpace[ pos ].next = tmp; } }
  • 50. 50 deletion routine - cursor implementation /* Remove the first occurrence of an item x. template <class Object> void List<Object>::remove( const Object & x ) { ListItr<Object> p = findPrevious( x ); int pos = p.current; if( cursorSpace[ pos ].next != 0 ) { int tmp = cursorSpace[ pos ].next; cursorSpace[ pos ].next = cursorSpace[ tmp ].next; free ( tmp ); } }