SlideShare a Scribd company logo
Gremlin’s Graph Traversal Machinery
Dr. Marko A. Rodriguez
Director of Engineering at DataStax, Inc.
Project Management Committee, Apache TinkerPop
http://tinkerpop.apache.org
f : X ! X
The function f is a process that maps a structure of type X to a structure of type X.
f(x1) = x2
The function f maps the object x1 (from the set of X) to the object x2 (from the set of X).
x1 2 X x2 2 X
f(x)
A step is a function.
f(x)
Assume that this step rotates an X by 90°.
90°
90°
The algorithm of the step is a “black box.”
90°
A traverser wraps a value of type V.
class Traverser<V> {
V value;
}
class Traverser<V> {
V value;
}
90°
The step maps an integer traverser to an integer traverser.
class Traverser<V> {
V value;
}
class Traverser<V> {
V value;
}
Traverser<Integer> Traverser<Integer>
90°
A traverser of with a rotation of 0° becomes a traverser with a rotation of 90°.
Traverser(0) Traverser(90)
class Traverser<V> {
V value;
}
class Traverser<V> {
V value;
}
90°
Both the input and output traversers are of type Traverser<Integer>.
90°
T[N] ! T[N]
2 T[N]
2 T[N]
A stream of input traversers…
90°
…yields a stream of output traversers.
90°
A traverser can have a bulk which denotes how many V values it represents.
90°
class Traverser<V> {
V value;
long bulk;
}
class Traverser<V> {
V value;
long bulk;
}
4
4
Bulking groups identical traversers to reduce the number of evaluations of a step.
90°
class Traverser<V> {
V value;
long bulk;
}
class Traverser<V> {
V value;
long bulk;
}
A variegated stream of input traversers yields a variegated stream of output traversers.
90°
1
2
1 1
1
2
Bulking can reduce the size of the stream.
90°
class Traverser<V> {
V value;
long bulk;
}
class Traverser<V> {
V value;
long bulk;
}
If the order of the stream does not matter…
90°
…then reordering can increase the likelihood of bulking.
90°
1
21
total bulk = 4
total count = 4
total bulk = 4
total count = 3
90°
180°
270°
360°
A traversal is a list of one or more steps.
90° 90° 90°
90°
f : X ! Y
Different functions can yield different mappings between different domains and ranges.
h : Y ! Z
The output of f can be the input to h because the range of f is the domain of h (i.e. Y).
Y y = f(x)
Z z = h(y)
y = f(x)
z = h(y)
y = f(x)
z = h(y)
f(x) = y
h(y) = z
f(x) = y
h(y) = z
f(x) = yh(y) = z
f(x) h = z
f h = zx
f h = zx · ·
x · f · h = z
h(f(x)) = z
readable
unreadable
≣
z = x · f · h
z = x.f().h().next()
z = x · f · h
stream/iterator/traversalhead/start
90° 225°
315°
Different types of steps exist and their various compositions yield query expressivity.
90° 225°
315°
Steps process traverser streams/flows and their composition is a traversal/iterator.
= . (). ().next()90° 225°
repeat( ).times(2)
180°
Anonymous traversals can serve as step arguments.
90°
traversal with a single step
90°
repeat( ).times(2)
180°
Some functions serve as step-modulators instead of steps.
90°
…groupCount().by(out().count())
…select(“a”,”b”).by(“name”)
…addE(“knows”).from(“a”).to(“b”)
…order().by(“age”,decr)
repeat( ).times(2)
≣
90° 90°
180°
During optimization, traversal strategies may rewrite a traversal to a more efficient,
semantically equivalent form.
90°
RepeatUnrollStrategy
interface TraversalStrategy {
void apply(Traversal traversal);
Set<TraversalStrategy> applyPrior();
Set<TraversalStrategy> applyPost();
}
repeat( ).until(0°)90°
Continuously process a traverser until some condition is met.
repeat( ).until(0°)
4 loops
2 loops
1 loop
90° 180° 360°
90°do while(x != )
repeat().until() provides do/while-semantics.
90°
≣
until(0°).repeat( )
0 loops
2 loops
1 loop
90° 180° 0°
90°dowhile(x != )
90°
≣
until().repeat() provides while/do-semantics.
until(0°).repeat( )
3
Even if the traversers in the input stream can not be bulked, the output traversers may be able to be.
90°
filter(x)map(x) sideEffect(x)flatMap(x)
one-to-one one-to-many one-to-(one-or-none) one-to-same
m
filter(x)map(x) sideEffect(x)flatMap(x)
one-to-one one-to-many one-to-(one-or-none) one-to-same
out(“knows”)
has(“name”,”gremlin”)
groupCount(“m”)
where(“a”,eq(“b”))
select(“a”,”b”)
path()
mean()
sum()
count()
groupCount()
many-to-one(reducers)
order()
values(“age”)
values(“name”)
and(x,y)
or(x,y)
coin(0.5)
sample(10)
simplePath()
dedup()
store(“m”)
tree(“m”)
subgraph(“m”)
in(“created”)
group(“m”)
m
label()
id()
* A collection of examples. Not the full step library.
match(x,y,z)
properties()
outE(“knows”)
V()
values(“age”)
filter(x)map(x) sideEffect(x)flatMap(x)
one-to-one one-to-many one-to-(one-or-none) one-to-same
out(“knows”)
has(“name”,”gremlin”)
path()
groupCount()
simplePath()
m
label()
outE(“knows”)
group(“m”)
V()
T[V [ E] ! T[N+
]
values(“age”)
filter(x)map(x) sideEffect(x)flatMap(x)
one-to-one one-to-many one-to-(one-or-none) one-to-same
out(“knows”)
has(“name”,”gremlin”)
path()
groupCount()
simplePath()
m
label()
outE(“knows”)
T[?] ! T[path]
T[V [ E] ! T[string]
T[?] ! T[?]
T[V [ E] ! ; [ T[V [ E]
T[?] ! ; [ T[?]
T[V ] ! T[V ]⇤
T[V ] ! T[E]⇤
group(“m”)
V()T[?] ! T[map[?, N+
]]
T[G] ! T[V ]⇤
T[V [ E] ! T[N+
]
values(“age”)
out(“knows”)
has(“name”,”gremlin”)
groupCount()
T[V [ E] ! ; [ T[V [ E]
T[V ] ! T[V ]⇤
V()T[?] ! T[map[?, N+
]]
T[G] ! T[V ]⇤
g.V().has(“name”,”gremlin”).
out(“knows”).values(“age”).
groupCount()
T[V [ E] ! T[N+
]values(“age”)
out(“knows”)
has(“name”,”gremlin”)
groupCount()
T[V ] ! T[V ]⇤
V()
T[?] ! T[map[?, N+
]]
T[G] ! T[V ]⇤
g.V().has(“name”,”gremlin”).
out(“knows”).values(“age”).
groupCount()
Steps can be composed if their respective domains and ranges match.
T[V [ E] ! ; [ T[V [ E]
values(“age”)
out(“knows”)
has(“name”,”gremlin”)
groupCount()
T[V ] ! T[V ]⇤
V() T[G] ! T[V ]⇤
g.V().has(“name”,”gremlin”).
out(“knows”).values(“age”).
groupCount()
T[V ] ! ; [ T[V ]
T[V ] ! T[N+
]
T[N+
] ! T[map[N+
, N+
]]
g.V().has(“name”,”gremlin”).
out(“knows”).values(“age”).
groupCount()
What is the distribution of ages of the people that Gremlin knows?
g.V().has(“name”,”gremlin”).
out(“knows”).values(“age”).
groupCount()
one graph to many vertices
(flatMap)
…
g.V().has(“name”,”gremlin”).
out(“knows”).values(“age”).
groupCount()
one graph to many vertices
(flatMap)
one vertex
to that vertex or no vertex
(filter)
?
…
g.V().has(“name”,”gremlin”).
out(“knows”).values(“age”).
groupCount()
one graph to many vertices
(flatMap)
one vertex
to that vertex or no vertex
(filter)
one vertex
to many friend vertices
(flatMap)
?
…
name=gremlin
g.V().has(“name”,”gremlin”).
out(“knows”).values(“age”).
groupCount()
one graph to many vertices
(flatMap)
one vertex
to that vertex or no vertex
(filter)
one vertex
to many friend vertices
(flatMap)
one vertex to
one age value
(map)
?
…
37
name=gremlin
g.V().has(“name”,”gremlin”).
out(“knows”).values(“age”).
groupCount()
one graph to many vertices
(flatMap)
one vertex
to that vertex or no vertex
(filter)
one vertex
to many friend vertices
(flatMap)
one vertex to
one age value
(map)
many age values
to an age distribution
(map — reducer)
?
…
37 [37:2, 41:1,
24:1, 35:4]37
37
24
35
35
35
35 41
name=gremlin
The Gremlin Traversal Language
The Gremlin Traversal Machine
a b c
a b c
Traversal creation via
step composition
Step parameterization via
traversal and constant nesting
a().b().c()
a(b().c()).d(x)d(x)
function
com
position
function
nesting
fluent m
ethods
m
ethod
argum
ents
Any language that supports function composition and function nesting can host Gremlin.
Gremlin Traversal Language
class Traverser<V> {
V value;
long bulk;
}
class Step<S,E> {
Traverser<E> processNextStart();
}
f(x)
class Traversal<S,E> implements Iterator<E> {
E next();
Traverser<E> nextTraverser();
}
The fundamental constructs of Gremlin’s machinery.
Gremlin Traversal Machine
interface TraversalStrategy {
void apply(Traversal traversal);
Set<TraversalStrategy> applyPrior();
Set<TraversalStrategy> applyPost();
}
a db c
a de
≣
1
Bytecode
Gremlin-Java
g.V(1).
repeat(out(“knows”)).times(2).
groupCount().by(“age”)
[[V, 1]
[repeat, [[out, knows]]]
[times, 2]
[groupCount]
[by, age]]
Traversal GraphStep GroupCountStep
RepeatStep
VertexStep
GraphStep GroupCountStepVertexStep VertexStep
Traversal
Strategies
GraphStep GroupCountStepVertexStep VertexStep
translates
compiles
optimizes
executes
[29:2, 30:1,
31:1, 35:10]
1
Bytecode
Gremlin-Python
g.V(1).
repeat(out(‘knows’)).times(2).
groupCount().by(‘age’)
[[V, 1]
[repeat, [[out, knows]]]
[times, 2]
[groupCount]
[by, age]]
Traversal GraphStep GroupCountStep
RepeatStep
VertexStep
GraphStep GroupCountStepVertexStep VertexStep
Traversal
Strategies
GraphStep GroupCountStepVertexStep VertexStep
translates
compiles
optimizes
executes
[29:2, 30:1,
31:1, 35:10]
1
Bytecode
Gremlin-Python
g.V(1).
repeat(out(‘knows’)).times(2).
groupCount().by(‘age’)
[[V, 1]
[repeat, [[out, knows]]]
[times, 2]
[groupCount]
[by, age]]
Traversal GraphStep GroupCountStep
RepeatStep
VertexStep
GraphStep GroupCountStepVertexStep VertexStep
Traversal
Strategies
GraphStep GroupCountStepVertexStep VertexStep
translates
compiles
optimizes
executes
[29:2, 30:1,
31:1, 35:10]
Gremlin language variant
Language agnostic bytecode
Execution engine assembly
Execution engine optimization
Execution engine evaluation
LanguageMachine
LanguageMachine
Gremlin-Python
Gremlin-Groovy
Gremlin-Java
Gremlin-JavaScriptGremlin-Ruby
Gremlin-Scala
Gremlin-Clojure
Bytecode
Java-based Implementation
?
?-based Implementation
?
?
Python 2.7.2 (default, Oct 11 2012, 20:14:37)
[GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Apple/clang-418.0.60)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from gremlin_python.structure.graph import Graph
>>> from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection
Gremlin-Python
CPython
Python 2.7.2 (default, Oct 11 2012, 20:14:37)
[GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Apple/clang-418.0.60)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from gremlin_python.structure.graph import Graph
>>> from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection
>>> graph = Graph()
>>> g = graph.traversal().withRemote(DriverRemoteConnection('ws://localhost:8182','g'))
Gremlin-Python
DriverRemoteConnection
CPython
Python 2.7.2 (default, Oct 11 2012, 20:14:37)
[GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Apple/clang-418.0.60)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from gremlin_python.structure.graph import Graph
>>> from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection
>>> graph = Graph()
>>> g = graph.traversal().withRemote(DriverRemoteConnection('ws://localhost:8182','g'))
# nested traversal with Python slicing and attribute interception extensions
>>> g.V().hasLabel("person").repeat(both()).times(2).name[0:2].toList()
[u'marko', u'marko']
Gremlin-Python
Bytecode
DriverRemoteConnection
Gremlin Traversal Machine
CPython JVM
Python 2.7.2 (default, Oct 11 2012, 20:14:37)
[GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Apple/clang-418.0.60)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from gremlin_python.structure.graph import Graph
>>> from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection
>>> graph = Graph()
>>> g = graph.traversal().withRemote(DriverRemoteConnection('ws://localhost:8182','g'))
# nested traversal with Python slicing and attribute interception extensions
>>> g.V().hasLabel("person").repeat(both()).times(2).name[0:2].toList()
[u'marko', u'marko']
# a complex, nested multi-line traversal
>>> g.V().match( 
... as_(“a”).out("created").as_(“b”), 
... as_(“b”).in_(“created").as_(“c”), 
... as_(“a”).out("knows").as_(“c”)). 
... select("c"). 
... union(in_(“knows"),out("created")). 
... name.toList()
[u'ripple', u'marko', u'lop']
>>>
Gremlin-Python
Bytecode
DriverRemoteConnection
Gremlin Traversal Machine
CPython JVM
Cypher
Bytecode
Distinct query languages (not only Gremlin language variants) can generate bytecode for
evaluation by any OLTP/OLAP TinkerPop-enabled graph system.
Gremlin Traversal Machine
SELECT DISTINCT ?c
WHERE {
?a v:label "person" .
?a e:created ?b .
?b v:name ?c .
?a v:age ?d .
FILTER (?d > 30)
}
[
[V],
[match,
[[as, a], [hasLabel, person]],
[[as, a], [out, created], [as, b]],
[[as, a], [has, age, gt(30)]]],
[select, b],
[by, name],
[dedup]
]
Bytecode
Graph
Database
OLTP
Graph
Processor
OLAP
Bytecode
Bytecode
Bytecode
TinkerGraph
DSE Graph
Titan
Neo4j
OrientDB
IBM Graph
…
TinkerComputer
Spark
Giraph
Hadoop
Fulgora
…
Gremlin Traversal Machine
Traversal
Traversal
Traversal
Gremlin traversals can be executed against OLTP graph databases and OLAP graph processors.
That means that if, e.g., SPARQL compiles to bytecode, it can execute both OLTP and OLAP.
Graph
Database
OLTP
Graph
Processor
OLAP
Gremlin Traversal Machine
Traversal
Traversal
Traversal
TraversalStrategies TraversalStrategies
optimizes
Graph system providers (OLTP/OLAP) typically have custom strategies registered
with the Gremlin traversal machine that take advantage of unique, provider-specific features.
Most OLTP graph systems have a traversal strategy that combines
[V,has*]-sequences into a single global index-based flatMap-step.
g.V().has(“name”,”gremlin”).
out(“knows”).values(“age”).
groupCount()
one graph to many vertices using index lookup
(flatMap)
GraphStepStrategy
one graph to many vertices
(flatMap)
one vertex to that vertex or no vertex
(filter)
?
…
compiles
optimizes
name=gremlin
DataStax 
Enterprise Graph
Most OLAP graph systems have a traversal strategy that bypasses Traversal semantics
and implements reducers using the native API of the system.
g.V().count()
one graph to long
(map — reducer)
rdd.count() 12,146,934
compiles
one graph to many vertices
(flatMap)
many vertices to long
(map — reducer)
… 12,146,934
optimizes
SparkInterceptorStrategy
…
Physical Machine
DataProgram Traversal
Heap/DiskMemory Memory
Memory/Graph System
Physical Machine
Java
Virtual Machine
bytecode
steps
DataProgram
Memory/DiskMemory
Physical Machine
instructions
Java
Virtual Machine
Gremlin
Traversal Machine
From the physical computing machine to the Gremlin traversal machine.
Stakeholders
Language Providers
Gremlin Language Variant
Distinct Query Language
Application Developers Graph System Providers
OLAP Provider
OLTP Provider
Stakeholders
Application Developers
One query language for
all OLTP/OLAP systems.
GremlinG = (V, E)
Real-time and analytic queries are represented in Gremlin.
Graph
Database
OLTP
Graph
Processor
OLAP
Stakeholders
Application Developers
One query language for
all OLTP/OLAP systems.
No vendor lock-in.
Apache TinkerPop as the JDBC for graphs.
DataStax 
Enterprise Graph
Stakeholders
Application Developers
One query language for
all OLTP/OLAP systems.
No vendor lock-in.
Gremlin is embedded in
the developer’s language.
Iterator<String> result =
g.V().hasLabel(“person”).
order().by(“age”).
limit(10).values(“name”)
vs.
ResultSet result = statement.executeQuery(
“SELECT name FROM People n” +
“ ORDER BY age n” +
“ LIMIT 10”)
Grem
lin-Java
SQL
in
Java
No “fat strings.” The developer writes their graph database/processor
queries in their native programming language.
Stakeholders
Language Providers
Gremlin Language Variant
Distinct Query Language
Easy to generate bytecode.
GraphTraversal.getMethods()
.findAll { GraphTraversal.class == it.returnType }
.collect { it.name }
.unique()
.each {
pythonClass.append(
""" def ${it}(self, *args):
self.bytecode.add_step(“${it}”, *args)
return self
“””)}
Gremlin-Python’s source code is
programmatically generated using Java reflection.
Stakeholders
Language Providers
Gremlin Language Variant
Distinct Query Language
Easy to generate bytecode.
Bytecode executes against
TinkerPop-enabled systems.
Language providers write a translator for the Gremlin traversal machine,
not a particular graph database/processor.
DataStax 
Enterprise Graph
Graph
Database
OLTP
Graph
Processor
OLAP
Stakeholders
Language Providers
Gremlin Language Variant
Distinct Query Language
Easy to generate bytecode.
Bytecode executes against
TinkerPop-enabled systems.
Provider can focus on design,
not evaluation.
Gremlin Traversal Machine
The language designer does not have to concern themselves with
OLTP or OLAP execution. They simply generate bytecode and the
Gremlin traversal machine handles the rest.
Easy to implement core
interfaces.
Graph System Providers
Stakeholders
OLAP Provider
OLTP Provider
Vertex
Edge
Graph
Transaction
TraversalStrategy
Property
key=value
?
? ?
Provider supports all
provided languages.
Easy to implement core
interfaces.
Graph System Providers
Stakeholders
OLAP Provider
OLTP Provider
The provider automatically supports all query languages
that have compilers that generate Gremlin bytecode.
OLTP providers can leverage
existing OLAP systems.
Provider supports all
provided languages.
Easy to implement core
interfaces.
Graph System Providers
Stakeholders
OLAP Provider
OLTP Provider
DSE Graph leverages SparkGraphComputer for OLAP processing.
DataStax 
Enterprise Graph
Stakeholders
Language Providers
Gremlin Language Variant
Distinct Query Language
Application Developers Graph System Providers
OLAP Provider
OLTP Provider
One query language for
all OLTP/OLAP systems.
No vendor lock-in.
Gremlin is embedded in
the developer’s language.
Easy to generate bytecode.
Bytecode executes against
TinkerPop-enabled systems.
Provider can focus on design,
not evaluation.
Easy to implement core
interfaces.
Provider supports all
provided languages.
OLTP providers can leverage
existing OLAP systems.
Thank you.
http://tinkerpop.apache.org
http://www.datastax.com/products/datastax-enterprise-graph

More Related Content

PDF
Gremlin's Graph Traversal Machinery
PDF
Building Machine Learning Algorithms on Apache Spark: Scaling Out and Up with...
PDF
Abstracting over the Monad yielded by a for comprehension and its generators
PPT
Stomata Membrane
PDF
Monad Transformers - Part 1
PDF
Overlap Layout Consensus assembly
PDF
Monad presentation scala as a category
PDF
APassengerKnockOnDelayModelForTimetableOptimisation_beamer
Gremlin's Graph Traversal Machinery
Building Machine Learning Algorithms on Apache Spark: Scaling Out and Up with...
Abstracting over the Monad yielded by a for comprehension and its generators
Stomata Membrane
Monad Transformers - Part 1
Overlap Layout Consensus assembly
Monad presentation scala as a category
APassengerKnockOnDelayModelForTimetableOptimisation_beamer

What's hot (20)

PPTX
mat lab introduction and basics to learn
PDF
The Ring programming language version 1.3 book - Part 26 of 88
PPTX
Mikhail Khristophorov "Introduction to Regular Expressions"
PDF
Building Machine Learning Algorithms on Apache Spark with William Benton
DOCX
Computer Graphics Lab File C Programs
PDF
The Uncertain Enterprise
PDF
Perm winter school 2014.01.31
PPTX
Edu presentation1
PDF
Reactive Collections
PDF
ggplot2: An Extensible Platform for Publication-quality Graphics
PDF
Twopi.1
PPTX
Seminar PSU 10.10.2014 mme
PDF
Writing DSL with Applicative Functors
PPT
Graphing day 1 worked
PPTX
Seminar psu 20.10.2013
PDF
D3 svg & angular
ODP
Recursion and Functional Programming
PDF
Mit6 094 iap10_lec04
PDF
Matlab plotting
PPTX
Arrays
mat lab introduction and basics to learn
The Ring programming language version 1.3 book - Part 26 of 88
Mikhail Khristophorov "Introduction to Regular Expressions"
Building Machine Learning Algorithms on Apache Spark with William Benton
Computer Graphics Lab File C Programs
The Uncertain Enterprise
Perm winter school 2014.01.31
Edu presentation1
Reactive Collections
ggplot2: An Extensible Platform for Publication-quality Graphics
Twopi.1
Seminar PSU 10.10.2014 mme
Writing DSL with Applicative Functors
Graphing day 1 worked
Seminar psu 20.10.2013
D3 svg & angular
Recursion and Functional Programming
Mit6 094 iap10_lec04
Matlab plotting
Arrays
Ad

Viewers also liked (20)

PPTX
DataStax | Network Analysis Adventure with DSE Graph, DataStax Studio, and Ti...
PDF
Intro to Graph Databases Using Tinkerpop, TitanDB, and Gremlin
PDF
TinkerPop: a story of graphs, DBs, and graph DBs
PDF
Graph Processing with Apache TinkerPop
PDF
Graph Based Recommendation Systems at eBay
PPTX
Bloor Research & DataStax: How graph databases solve previously unsolvable bu...
PDF
Titan: The Rise of Big Graph Data
PDF
Hello DataStax Enterprise Graph
PDF
Thug feb 23 2015 Chen Zhang
PPTX
Graph databases: Tinkerpop and Titan DB
PDF
Graph Database in Graph Intelligence
PDF
Adding Value through graph analysis using Titan and Faunus
PPT
Data structure computer graphs
ODP
Graphs are everywhere! Distributed graph computing with Spark GraphX
PPTX
Cassandra Summit - What's New In Apache TinkerPop?
PPTX
Neo, Titan & Cassandra
PDF
Quantum Processes in Graph Computing
PPTX
Real Time Business Intelligence with Cassandra, Kafka and Hadoop - A Real Sto...
PDF
DataStax | Graph Data Modeling in DataStax Enterprise (Artem Chebotko) | Cass...
PDF
DataStax | Building a Spark Streaming App with DSE File System (Rocco Varela)...
DataStax | Network Analysis Adventure with DSE Graph, DataStax Studio, and Ti...
Intro to Graph Databases Using Tinkerpop, TitanDB, and Gremlin
TinkerPop: a story of graphs, DBs, and graph DBs
Graph Processing with Apache TinkerPop
Graph Based Recommendation Systems at eBay
Bloor Research & DataStax: How graph databases solve previously unsolvable bu...
Titan: The Rise of Big Graph Data
Hello DataStax Enterprise Graph
Thug feb 23 2015 Chen Zhang
Graph databases: Tinkerpop and Titan DB
Graph Database in Graph Intelligence
Adding Value through graph analysis using Titan and Faunus
Data structure computer graphs
Graphs are everywhere! Distributed graph computing with Spark GraphX
Cassandra Summit - What's New In Apache TinkerPop?
Neo, Titan & Cassandra
Quantum Processes in Graph Computing
Real Time Business Intelligence with Cassandra, Kafka and Hadoop - A Real Sto...
DataStax | Graph Data Modeling in DataStax Enterprise (Artem Chebotko) | Cass...
DataStax | Building a Spark Streaming App with DSE File System (Rocco Varela)...
Ad

Similar to DataStax | Graph Computing with Apache TinkerPop (Marko Rodriguez) | Cassandra Summit 2016 (20)

PDF
ML-CheatSheet (1).pdf
PPT
CS 354 Graphics Math
PDF
Data transformation-cheatsheet
PPT
Rate of change and tangent lines
PPT
Differentiation full detail presentation
PDF
Computer Graphics in Java and Scala - Part 1b
PPTX
Advanced Functions Unit 1
PDF
ImplementDijkstra’s algorithm using the graph class you implemente.pdf
PDF
Lesson 2: A Catalog of Essential Functions (slides)
PDF
Lesson 2: A Catalog of Essential Functions (slides)
PDF
3.5 Transformation of Functions
PPT
Introduction to Gradient Methods in machine learning
PDF
Abstract machines for great good
PDF
Mini-curso JavaFX Aula1
PPT
Website designing company in delhi ncr
PPT
Website designing company in delhi ncr
PPTX
Applicationofpartialderivativeswithtwovariables 140225070102-phpapp01 (1)
PDF
A walk in graph databases v1.0
PPT
Graphs.pptGraphs.pptGraphs.pptGraphs.pptGraphs.pptGraphs.ppt
PDF
Monadologie
ML-CheatSheet (1).pdf
CS 354 Graphics Math
Data transformation-cheatsheet
Rate of change and tangent lines
Differentiation full detail presentation
Computer Graphics in Java and Scala - Part 1b
Advanced Functions Unit 1
ImplementDijkstra’s algorithm using the graph class you implemente.pdf
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
3.5 Transformation of Functions
Introduction to Gradient Methods in machine learning
Abstract machines for great good
Mini-curso JavaFX Aula1
Website designing company in delhi ncr
Website designing company in delhi ncr
Applicationofpartialderivativeswithtwovariables 140225070102-phpapp01 (1)
A walk in graph databases v1.0
Graphs.pptGraphs.pptGraphs.pptGraphs.pptGraphs.pptGraphs.ppt
Monadologie

More from DataStax (20)

PPTX
Is Your Enterprise Ready to Shine This Holiday Season?
PPTX
Designing Fault-Tolerant Applications with DataStax Enterprise and Apache Cas...
PPTX
Running DataStax Enterprise in VMware Cloud and Hybrid Environments
PPTX
Best Practices for Getting to Production with DataStax Enterprise Graph
PPTX
Webinar | Data Management for Hybrid and Multi-Cloud: A Four-Step Journey
PPTX
Webinar | How to Understand Apache Cassandra™ Performance Through Read/Writ...
PDF
Webinar | Better Together: Apache Cassandra and Apache Kafka
PDF
Top 10 Best Practices for Apache Cassandra and DataStax Enterprise
PDF
Introduction to Apache Cassandra™ + What’s New in 4.0
PPTX
Webinar: How Active Everywhere Database Architecture Accelerates Hybrid Cloud...
PPTX
Webinar | Aligning GDPR Requirements with Today's Hybrid Cloud Realities
PDF
Designing a Distributed Cloud Database for Dummies
PDF
How to Power Innovation with Geo-Distributed Data Management in Hybrid Cloud
PDF
How to Evaluate Cloud Databases for eCommerce
PPTX
Webinar: DataStax Enterprise 6: 10 Ways to Multiply the Power of Apache Cassa...
PPTX
Webinar: DataStax and Microsoft Azure: Empowering the Right-Now Enterprise wi...
PPTX
Webinar - Real-Time Customer Experience for the Right-Now Enterprise featurin...
PPTX
Datastax - The Architect's guide to customer experience (CX)
PPTX
An Operational Data Layer is Critical for Transformative Banking Applications
PPTX
Becoming a Customer-Centric Enterprise Via Real-Time Data and Design Thinking
Is Your Enterprise Ready to Shine This Holiday Season?
Designing Fault-Tolerant Applications with DataStax Enterprise and Apache Cas...
Running DataStax Enterprise in VMware Cloud and Hybrid Environments
Best Practices for Getting to Production with DataStax Enterprise Graph
Webinar | Data Management for Hybrid and Multi-Cloud: A Four-Step Journey
Webinar | How to Understand Apache Cassandra™ Performance Through Read/Writ...
Webinar | Better Together: Apache Cassandra and Apache Kafka
Top 10 Best Practices for Apache Cassandra and DataStax Enterprise
Introduction to Apache Cassandra™ + What’s New in 4.0
Webinar: How Active Everywhere Database Architecture Accelerates Hybrid Cloud...
Webinar | Aligning GDPR Requirements with Today's Hybrid Cloud Realities
Designing a Distributed Cloud Database for Dummies
How to Power Innovation with Geo-Distributed Data Management in Hybrid Cloud
How to Evaluate Cloud Databases for eCommerce
Webinar: DataStax Enterprise 6: 10 Ways to Multiply the Power of Apache Cassa...
Webinar: DataStax and Microsoft Azure: Empowering the Right-Now Enterprise wi...
Webinar - Real-Time Customer Experience for the Right-Now Enterprise featurin...
Datastax - The Architect's guide to customer experience (CX)
An Operational Data Layer is Critical for Transformative Banking Applications
Becoming a Customer-Centric Enterprise Via Real-Time Data and Design Thinking

Recently uploaded (20)

PDF
How to Choose the Right IT Partner for Your Business in Malaysia
PPTX
history of c programming in notes for students .pptx
PPTX
Lecture 3: Operating Systems Introduction to Computer Hardware Systems
PDF
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
PDF
System and Network Administration Chapter 2
PDF
Nekopoi APK 2025 free lastest update
PDF
Odoo Companies in India – Driving Business Transformation.pdf
PPTX
Transform Your Business with a Software ERP System
PDF
EN-Survey-Report-SAP-LeanIX-EA-Insights-2025.pdf
PDF
Claude Code: Everyone is a 10x Developer - A Comprehensive AI-Powered CLI Tool
PPTX
CHAPTER 2 - PM Management and IT Context
PDF
Which alternative to Crystal Reports is best for small or large businesses.pdf
PPT
Introduction Database Management System for Course Database
PDF
medical staffing services at VALiNTRY
PPTX
Introduction to Artificial Intelligence
PDF
Why TechBuilder is the Future of Pickup and Delivery App Development (1).pdf
PDF
How to Migrate SBCGlobal Email to Yahoo Easily
PDF
System and Network Administraation Chapter 3
PDF
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
PDF
Adobe Illustrator 28.6 Crack My Vision of Vector Design
How to Choose the Right IT Partner for Your Business in Malaysia
history of c programming in notes for students .pptx
Lecture 3: Operating Systems Introduction to Computer Hardware Systems
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
System and Network Administration Chapter 2
Nekopoi APK 2025 free lastest update
Odoo Companies in India – Driving Business Transformation.pdf
Transform Your Business with a Software ERP System
EN-Survey-Report-SAP-LeanIX-EA-Insights-2025.pdf
Claude Code: Everyone is a 10x Developer - A Comprehensive AI-Powered CLI Tool
CHAPTER 2 - PM Management and IT Context
Which alternative to Crystal Reports is best for small or large businesses.pdf
Introduction Database Management System for Course Database
medical staffing services at VALiNTRY
Introduction to Artificial Intelligence
Why TechBuilder is the Future of Pickup and Delivery App Development (1).pdf
How to Migrate SBCGlobal Email to Yahoo Easily
System and Network Administraation Chapter 3
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
Adobe Illustrator 28.6 Crack My Vision of Vector Design

DataStax | Graph Computing with Apache TinkerPop (Marko Rodriguez) | Cassandra Summit 2016

  • 1. Gremlin’s Graph Traversal Machinery Dr. Marko A. Rodriguez Director of Engineering at DataStax, Inc. Project Management Committee, Apache TinkerPop http://tinkerpop.apache.org
  • 2. f : X ! X The function f is a process that maps a structure of type X to a structure of type X.
  • 3. f(x1) = x2 The function f maps the object x1 (from the set of X) to the object x2 (from the set of X). x1 2 X x2 2 X
  • 4. f(x) A step is a function.
  • 5. f(x) Assume that this step rotates an X by 90°. 90°
  • 6. 90° The algorithm of the step is a “black box.”
  • 7. 90° A traverser wraps a value of type V. class Traverser<V> { V value; } class Traverser<V> { V value; }
  • 8. 90° The step maps an integer traverser to an integer traverser. class Traverser<V> { V value; } class Traverser<V> { V value; } Traverser<Integer> Traverser<Integer>
  • 9. 90° A traverser of with a rotation of 0° becomes a traverser with a rotation of 90°. Traverser(0) Traverser(90) class Traverser<V> { V value; } class Traverser<V> { V value; }
  • 10. 90°
  • 11. Both the input and output traversers are of type Traverser<Integer>. 90° T[N] ! T[N] 2 T[N] 2 T[N]
  • 12. A stream of input traversers… 90°
  • 13. …yields a stream of output traversers. 90°
  • 14. A traverser can have a bulk which denotes how many V values it represents. 90° class Traverser<V> { V value; long bulk; } class Traverser<V> { V value; long bulk; }
  • 15. 4 4 Bulking groups identical traversers to reduce the number of evaluations of a step. 90° class Traverser<V> { V value; long bulk; } class Traverser<V> { V value; long bulk; }
  • 16. A variegated stream of input traversers yields a variegated stream of output traversers. 90°
  • 17. 1 2 1 1 1 2 Bulking can reduce the size of the stream. 90° class Traverser<V> { V value; long bulk; } class Traverser<V> { V value; long bulk; }
  • 18. If the order of the stream does not matter… 90°
  • 19. …then reordering can increase the likelihood of bulking. 90° 1 21 total bulk = 4 total count = 4 total bulk = 4 total count = 3
  • 20. 90° 180° 270° 360° A traversal is a list of one or more steps. 90° 90° 90° 90°
  • 21. f : X ! Y Different functions can yield different mappings between different domains and ranges. h : Y ! Z
  • 22. The output of f can be the input to h because the range of f is the domain of h (i.e. Y). Y y = f(x) Z z = h(y)
  • 23. y = f(x) z = h(y)
  • 24. y = f(x) z = h(y)
  • 28. f(x) h = z
  • 29. f h = zx
  • 30. f h = zx · ·
  • 31. x · f · h = z h(f(x)) = z readable unreadable ≣
  • 32. z = x · f · h
  • 33. z = x.f().h().next() z = x · f · h stream/iterator/traversalhead/start
  • 34. 90° 225° 315° Different types of steps exist and their various compositions yield query expressivity.
  • 35. 90° 225° 315° Steps process traverser streams/flows and their composition is a traversal/iterator. = . (). ().next()90° 225°
  • 36. repeat( ).times(2) 180° Anonymous traversals can serve as step arguments. 90° traversal with a single step 90°
  • 37. repeat( ).times(2) 180° Some functions serve as step-modulators instead of steps. 90° …groupCount().by(out().count()) …select(“a”,”b”).by(“name”) …addE(“knows”).from(“a”).to(“b”) …order().by(“age”,decr)
  • 38. repeat( ).times(2) ≣ 90° 90° 180° During optimization, traversal strategies may rewrite a traversal to a more efficient, semantically equivalent form. 90° RepeatUnrollStrategy interface TraversalStrategy { void apply(Traversal traversal); Set<TraversalStrategy> applyPrior(); Set<TraversalStrategy> applyPost(); }
  • 39. repeat( ).until(0°)90° Continuously process a traverser until some condition is met.
  • 40. repeat( ).until(0°) 4 loops 2 loops 1 loop 90° 180° 360° 90°do while(x != ) repeat().until() provides do/while-semantics. 90° ≣
  • 41. until(0°).repeat( ) 0 loops 2 loops 1 loop 90° 180° 0° 90°dowhile(x != ) 90° ≣ until().repeat() provides while/do-semantics.
  • 42. until(0°).repeat( ) 3 Even if the traversers in the input stream can not be bulked, the output traversers may be able to be. 90°
  • 44. filter(x)map(x) sideEffect(x)flatMap(x) one-to-one one-to-many one-to-(one-or-none) one-to-same out(“knows”) has(“name”,”gremlin”) groupCount(“m”) where(“a”,eq(“b”)) select(“a”,”b”) path() mean() sum() count() groupCount() many-to-one(reducers) order() values(“age”) values(“name”) and(x,y) or(x,y) coin(0.5) sample(10) simplePath() dedup() store(“m”) tree(“m”) subgraph(“m”) in(“created”) group(“m”) m label() id() * A collection of examples. Not the full step library. match(x,y,z) properties() outE(“knows”) V()
  • 45. values(“age”) filter(x)map(x) sideEffect(x)flatMap(x) one-to-one one-to-many one-to-(one-or-none) one-to-same out(“knows”) has(“name”,”gremlin”) path() groupCount() simplePath() m label() outE(“knows”) group(“m”) V()
  • 46. T[V [ E] ! T[N+ ] values(“age”) filter(x)map(x) sideEffect(x)flatMap(x) one-to-one one-to-many one-to-(one-or-none) one-to-same out(“knows”) has(“name”,”gremlin”) path() groupCount() simplePath() m label() outE(“knows”) T[?] ! T[path] T[V [ E] ! T[string] T[?] ! T[?] T[V [ E] ! ; [ T[V [ E] T[?] ! ; [ T[?] T[V ] ! T[V ]⇤ T[V ] ! T[E]⇤ group(“m”) V()T[?] ! T[map[?, N+ ]] T[G] ! T[V ]⇤
  • 47. T[V [ E] ! T[N+ ] values(“age”) out(“knows”) has(“name”,”gremlin”) groupCount() T[V [ E] ! ; [ T[V [ E] T[V ] ! T[V ]⇤ V()T[?] ! T[map[?, N+ ]] T[G] ! T[V ]⇤ g.V().has(“name”,”gremlin”). out(“knows”).values(“age”). groupCount()
  • 48. T[V [ E] ! T[N+ ]values(“age”) out(“knows”) has(“name”,”gremlin”) groupCount() T[V ] ! T[V ]⇤ V() T[?] ! T[map[?, N+ ]] T[G] ! T[V ]⇤ g.V().has(“name”,”gremlin”). out(“knows”).values(“age”). groupCount() Steps can be composed if their respective domains and ranges match. T[V [ E] ! ; [ T[V [ E]
  • 49. values(“age”) out(“knows”) has(“name”,”gremlin”) groupCount() T[V ] ! T[V ]⇤ V() T[G] ! T[V ]⇤ g.V().has(“name”,”gremlin”). out(“knows”).values(“age”). groupCount() T[V ] ! ; [ T[V ] T[V ] ! T[N+ ] T[N+ ] ! T[map[N+ , N+ ]]
  • 52. g.V().has(“name”,”gremlin”). out(“knows”).values(“age”). groupCount() one graph to many vertices (flatMap) one vertex to that vertex or no vertex (filter) ? …
  • 53. g.V().has(“name”,”gremlin”). out(“knows”).values(“age”). groupCount() one graph to many vertices (flatMap) one vertex to that vertex or no vertex (filter) one vertex to many friend vertices (flatMap) ? … name=gremlin
  • 54. g.V().has(“name”,”gremlin”). out(“knows”).values(“age”). groupCount() one graph to many vertices (flatMap) one vertex to that vertex or no vertex (filter) one vertex to many friend vertices (flatMap) one vertex to one age value (map) ? … 37 name=gremlin
  • 55. g.V().has(“name”,”gremlin”). out(“knows”).values(“age”). groupCount() one graph to many vertices (flatMap) one vertex to that vertex or no vertex (filter) one vertex to many friend vertices (flatMap) one vertex to one age value (map) many age values to an age distribution (map — reducer) ? … 37 [37:2, 41:1, 24:1, 35:4]37 37 24 35 35 35 35 41 name=gremlin
  • 56. The Gremlin Traversal Language The Gremlin Traversal Machine
  • 57. a b c a b c Traversal creation via step composition Step parameterization via traversal and constant nesting a().b().c() a(b().c()).d(x)d(x) function com position function nesting fluent m ethods m ethod argum ents Any language that supports function composition and function nesting can host Gremlin. Gremlin Traversal Language
  • 58. class Traverser<V> { V value; long bulk; } class Step<S,E> { Traverser<E> processNextStart(); } f(x) class Traversal<S,E> implements Iterator<E> { E next(); Traverser<E> nextTraverser(); } The fundamental constructs of Gremlin’s machinery. Gremlin Traversal Machine interface TraversalStrategy { void apply(Traversal traversal); Set<TraversalStrategy> applyPrior(); Set<TraversalStrategy> applyPost(); } a db c a de ≣
  • 59. 1 Bytecode Gremlin-Java g.V(1). repeat(out(“knows”)).times(2). groupCount().by(“age”) [[V, 1] [repeat, [[out, knows]]] [times, 2] [groupCount] [by, age]] Traversal GraphStep GroupCountStep RepeatStep VertexStep GraphStep GroupCountStepVertexStep VertexStep Traversal Strategies GraphStep GroupCountStepVertexStep VertexStep translates compiles optimizes executes [29:2, 30:1, 31:1, 35:10]
  • 60. 1 Bytecode Gremlin-Python g.V(1). repeat(out(‘knows’)).times(2). groupCount().by(‘age’) [[V, 1] [repeat, [[out, knows]]] [times, 2] [groupCount] [by, age]] Traversal GraphStep GroupCountStep RepeatStep VertexStep GraphStep GroupCountStepVertexStep VertexStep Traversal Strategies GraphStep GroupCountStepVertexStep VertexStep translates compiles optimizes executes [29:2, 30:1, 31:1, 35:10]
  • 61. 1 Bytecode Gremlin-Python g.V(1). repeat(out(‘knows’)).times(2). groupCount().by(‘age’) [[V, 1] [repeat, [[out, knows]]] [times, 2] [groupCount] [by, age]] Traversal GraphStep GroupCountStep RepeatStep VertexStep GraphStep GroupCountStepVertexStep VertexStep Traversal Strategies GraphStep GroupCountStepVertexStep VertexStep translates compiles optimizes executes [29:2, 30:1, 31:1, 35:10] Gremlin language variant Language agnostic bytecode Execution engine assembly Execution engine optimization Execution engine evaluation LanguageMachine
  • 63. Python 2.7.2 (default, Oct 11 2012, 20:14:37) [GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Apple/clang-418.0.60)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> from gremlin_python.structure.graph import Graph >>> from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection Gremlin-Python CPython
  • 64. Python 2.7.2 (default, Oct 11 2012, 20:14:37) [GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Apple/clang-418.0.60)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> from gremlin_python.structure.graph import Graph >>> from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection >>> graph = Graph() >>> g = graph.traversal().withRemote(DriverRemoteConnection('ws://localhost:8182','g')) Gremlin-Python DriverRemoteConnection CPython
  • 65. Python 2.7.2 (default, Oct 11 2012, 20:14:37) [GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Apple/clang-418.0.60)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> from gremlin_python.structure.graph import Graph >>> from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection >>> graph = Graph() >>> g = graph.traversal().withRemote(DriverRemoteConnection('ws://localhost:8182','g')) # nested traversal with Python slicing and attribute interception extensions >>> g.V().hasLabel("person").repeat(both()).times(2).name[0:2].toList() [u'marko', u'marko'] Gremlin-Python Bytecode DriverRemoteConnection Gremlin Traversal Machine CPython JVM
  • 66. Python 2.7.2 (default, Oct 11 2012, 20:14:37) [GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Apple/clang-418.0.60)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> from gremlin_python.structure.graph import Graph >>> from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection >>> graph = Graph() >>> g = graph.traversal().withRemote(DriverRemoteConnection('ws://localhost:8182','g')) # nested traversal with Python slicing and attribute interception extensions >>> g.V().hasLabel("person").repeat(both()).times(2).name[0:2].toList() [u'marko', u'marko'] # a complex, nested multi-line traversal >>> g.V().match( ... as_(“a”).out("created").as_(“b”), ... as_(“b”).in_(“created").as_(“c”), ... as_(“a”).out("knows").as_(“c”)). ... select("c"). ... union(in_(“knows"),out("created")). ... name.toList() [u'ripple', u'marko', u'lop'] >>> Gremlin-Python Bytecode DriverRemoteConnection Gremlin Traversal Machine CPython JVM
  • 67. Cypher Bytecode Distinct query languages (not only Gremlin language variants) can generate bytecode for evaluation by any OLTP/OLAP TinkerPop-enabled graph system. Gremlin Traversal Machine
  • 68. SELECT DISTINCT ?c WHERE { ?a v:label "person" . ?a e:created ?b . ?b v:name ?c . ?a v:age ?d . FILTER (?d > 30) } [ [V], [match, [[as, a], [hasLabel, person]], [[as, a], [out, created], [as, b]], [[as, a], [has, age, gt(30)]]], [select, b], [by, name], [dedup] ] Bytecode
  • 69. Graph Database OLTP Graph Processor OLAP Bytecode Bytecode Bytecode TinkerGraph DSE Graph Titan Neo4j OrientDB IBM Graph … TinkerComputer Spark Giraph Hadoop Fulgora … Gremlin Traversal Machine Traversal Traversal Traversal Gremlin traversals can be executed against OLTP graph databases and OLAP graph processors. That means that if, e.g., SPARQL compiles to bytecode, it can execute both OLTP and OLAP.
  • 70. Graph Database OLTP Graph Processor OLAP Gremlin Traversal Machine Traversal Traversal Traversal TraversalStrategies TraversalStrategies optimizes Graph system providers (OLTP/OLAP) typically have custom strategies registered with the Gremlin traversal machine that take advantage of unique, provider-specific features.
  • 71. Most OLTP graph systems have a traversal strategy that combines [V,has*]-sequences into a single global index-based flatMap-step. g.V().has(“name”,”gremlin”). out(“knows”).values(“age”). groupCount() one graph to many vertices using index lookup (flatMap) GraphStepStrategy one graph to many vertices (flatMap) one vertex to that vertex or no vertex (filter) ? … compiles optimizes name=gremlin DataStax Enterprise Graph
  • 72. Most OLAP graph systems have a traversal strategy that bypasses Traversal semantics and implements reducers using the native API of the system. g.V().count() one graph to long (map — reducer) rdd.count() 12,146,934 compiles one graph to many vertices (flatMap) many vertices to long (map — reducer) … 12,146,934 optimizes SparkInterceptorStrategy …
  • 73. Physical Machine DataProgram Traversal Heap/DiskMemory Memory Memory/Graph System Physical Machine Java Virtual Machine bytecode steps DataProgram Memory/DiskMemory Physical Machine instructions Java Virtual Machine Gremlin Traversal Machine From the physical computing machine to the Gremlin traversal machine.
  • 74. Stakeholders Language Providers Gremlin Language Variant Distinct Query Language Application Developers Graph System Providers OLAP Provider OLTP Provider
  • 75. Stakeholders Application Developers One query language for all OLTP/OLAP systems. GremlinG = (V, E) Real-time and analytic queries are represented in Gremlin. Graph Database OLTP Graph Processor OLAP
  • 76. Stakeholders Application Developers One query language for all OLTP/OLAP systems. No vendor lock-in. Apache TinkerPop as the JDBC for graphs. DataStax Enterprise Graph
  • 77. Stakeholders Application Developers One query language for all OLTP/OLAP systems. No vendor lock-in. Gremlin is embedded in the developer’s language. Iterator<String> result = g.V().hasLabel(“person”). order().by(“age”). limit(10).values(“name”) vs. ResultSet result = statement.executeQuery( “SELECT name FROM People n” + “ ORDER BY age n” + “ LIMIT 10”) Grem lin-Java SQL in Java No “fat strings.” The developer writes their graph database/processor queries in their native programming language.
  • 78. Stakeholders Language Providers Gremlin Language Variant Distinct Query Language Easy to generate bytecode. GraphTraversal.getMethods() .findAll { GraphTraversal.class == it.returnType } .collect { it.name } .unique() .each { pythonClass.append( """ def ${it}(self, *args): self.bytecode.add_step(“${it}”, *args) return self “””)} Gremlin-Python’s source code is programmatically generated using Java reflection.
  • 79. Stakeholders Language Providers Gremlin Language Variant Distinct Query Language Easy to generate bytecode. Bytecode executes against TinkerPop-enabled systems. Language providers write a translator for the Gremlin traversal machine, not a particular graph database/processor. DataStax Enterprise Graph
  • 80. Graph Database OLTP Graph Processor OLAP Stakeholders Language Providers Gremlin Language Variant Distinct Query Language Easy to generate bytecode. Bytecode executes against TinkerPop-enabled systems. Provider can focus on design, not evaluation. Gremlin Traversal Machine The language designer does not have to concern themselves with OLTP or OLAP execution. They simply generate bytecode and the Gremlin traversal machine handles the rest.
  • 81. Easy to implement core interfaces. Graph System Providers Stakeholders OLAP Provider OLTP Provider Vertex Edge Graph Transaction TraversalStrategy Property key=value ? ? ?
  • 82. Provider supports all provided languages. Easy to implement core interfaces. Graph System Providers Stakeholders OLAP Provider OLTP Provider The provider automatically supports all query languages that have compilers that generate Gremlin bytecode.
  • 83. OLTP providers can leverage existing OLAP systems. Provider supports all provided languages. Easy to implement core interfaces. Graph System Providers Stakeholders OLAP Provider OLTP Provider DSE Graph leverages SparkGraphComputer for OLAP processing. DataStax Enterprise Graph
  • 84. Stakeholders Language Providers Gremlin Language Variant Distinct Query Language Application Developers Graph System Providers OLAP Provider OLTP Provider One query language for all OLTP/OLAP systems. No vendor lock-in. Gremlin is embedded in the developer’s language. Easy to generate bytecode. Bytecode executes against TinkerPop-enabled systems. Provider can focus on design, not evaluation. Easy to implement core interfaces. Provider supports all provided languages. OLTP providers can leverage existing OLAP systems.