SlideShare a Scribd company logo
Derivation of Convolutional Neural
Network from Fully Connected
Network Step-by-Step
Ahmed Fawzy Gad
ahmed.fawzy@ci.menofia.edu.eg
MENOUFIA UNIVERSITY
FACULTY OF COMPUTERS AND INFORMATION
‫المنوفية‬ ‫جامعة‬
‫الحاسبات‬ ‫كلية‬‫والمعلومات‬
‫المنوفية‬ ‫جامعة‬
Ahmed F. Gad 18-May-2018
15 8 9
10 17 22
20 3015
Input Image
3x3
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Hidden Layer
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Fully Connected
Network
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Fully Connected
Network
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝒚
𝒙
𝒙: Pixel Index
𝒚: Hidden Neuron Index
Fully Connected
Network
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝒚
𝒙
𝒙: Pixel Index
𝒚: Hidden Neuron Index
𝒘 𝟎
𝟎
Fully Connected
Network
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝒚
𝒙
𝒙: Pixel Index
𝒚: Hidden Neuron Index
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
Fully Connected
Network
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝒚
𝒙
𝒙: Pixel Index
𝒚: Hidden Neuron Index
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
𝒘 𝟐
𝟎
Fully Connected
Network
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
𝒘 𝟐
𝟎
𝒘 𝟑
𝟎
𝒘 𝟒
𝟎
𝒘 𝟓
𝟎
𝒘 𝟔
𝟎
𝒘 𝟕
𝟎
𝒘 𝟖
𝟎
𝒘 𝟗
𝟎
𝒘 𝟏𝟎
𝟎
𝒘 𝟏𝟏
𝟎
𝒘 𝟏𝟐
𝟎
𝒘 𝟏𝟑
𝟎
𝒘 𝟏𝟒
𝟎
𝒘 𝟏𝟓
𝟎
𝒘 𝒚
𝒙
𝒙: Pixel Index
𝒚: Hidden Neuron Index
Fully Connected
Network
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
𝒘 𝟐
𝟎
𝒘 𝟑
𝟎
𝒘 𝟒
𝟎
𝒘 𝟓
𝟎
𝒘 𝟔
𝟎
𝒘 𝟕
𝟎
𝒘 𝟖
𝟎
𝒘 𝟗
𝟎
𝒘 𝟏𝟎
𝟎
𝒘 𝟏𝟏
𝟎
𝒘 𝟏𝟐
𝟎
𝒘 𝟏𝟑
𝟎
𝒘 𝟏𝟒
𝟎
𝒘 𝟏𝟓
𝟎
Weight 16
𝒘 𝟎
𝟎
𝒘 𝟏𝟓
𝟎
Total Number of Weights
For First Pixel
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟏
𝒘 𝟏
𝟏
𝒘 𝟐
𝟏
𝒘 𝟑
𝟏
𝒘 𝟒
𝟏
𝒘 𝟓
𝟏
𝒘 𝟔
𝟏
𝒘 𝟕
𝟏
𝒘 𝟖
𝟏
𝒘 𝟗
𝟏
𝒘 𝟏𝟎
𝟏
𝒘 𝟏𝟏
𝟏
𝒘 𝟏𝟐
𝟏
𝒘 𝟏𝟑
𝟏
𝒘 𝟏𝟒
𝟏
𝒘 𝟏𝟓
𝟏
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟏
𝒘 𝟏
𝟏
𝒘 𝟐
𝟏
𝒘 𝟑
𝟏
𝒘 𝟒
𝟏
𝒘 𝟓
𝟏
𝒘 𝟔
𝟏
𝒘 𝟕
𝟏
𝒘 𝟖
𝟏
𝒘 𝟗
𝟏
𝒘 𝟏𝟎
𝟏
𝒘 𝟏𝟏
𝟏
𝒘 𝟏𝟐
𝟏
𝒘 𝟏𝟑
𝟏
𝒘 𝟏𝟒
𝟏
𝒘 𝟏𝟓
𝟏
Weight 16
𝒘 𝟎
𝟏
𝒘 𝟏𝟓
𝟏
Total Number of Weights
For Second Pixel
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟐
𝒘 𝟏
𝟐
𝒘 𝟐
𝟐
𝒘 𝟑
𝟐
𝒘 𝟒
𝟐
𝒘 𝟓
𝟐
𝒘 𝟔
𝟐
𝒘 𝟕
𝟐
𝒘 𝟖
𝟐
𝒘 𝟗
𝟐
𝒘 𝟏𝟎
𝟐
𝒘 𝟏𝟏
𝟐
𝒘 𝟏𝟐
𝟐
𝒘 𝟏𝟑
𝟐
𝒘 𝟏𝟒
𝟐
𝒘 𝟏𝟓
𝟐
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟑
𝒘 𝟏
𝟑
𝒘 𝟐
𝟑
𝒘 𝟑
𝟑
𝒘 𝟒
𝟑
𝒘 𝟓
𝟑
𝒘 𝟔
𝟑
𝒘 𝟕
𝟑
𝒘 𝟖
𝟑
𝒘 𝟗
𝟑
𝒘 𝟏𝟎
𝟑
𝒘 𝟏𝟏
𝟑
𝒘 𝟏𝟐
𝟑
𝒘 𝟏𝟑
𝟑
𝒘 𝟏𝟒
𝟑
𝒘 𝟏𝟓
𝟑
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟒
𝒘 𝟏
𝟒
𝒘 𝟐
𝟒
𝒘 𝟑
𝟒
𝒘 𝟒
𝟒
𝒘 𝟓
𝟒
𝒘 𝟔
𝟒
𝒘 𝟕
𝟒
𝒘 𝟖
𝟒
𝒘 𝟗
𝟒
𝒘 𝟏𝟎
𝟒
𝒘 𝟏𝟏
𝟒
𝒘 𝟏𝟐
𝟒
𝒘 𝟏𝟑
𝟒
𝒘 𝟏𝟒
𝟒
𝒘 𝟏𝟓
𝟒
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟓
𝒘 𝟏
𝟓
𝒘 𝟐
𝟓
𝒘 𝟑
𝟓
𝒘 𝟒
𝟓
𝒘 𝟓
𝟓
𝒘 𝟔
𝟓
𝒘 𝟕
𝟓
𝒘 𝟖
𝟓
𝒘 𝟗
𝟓
𝒘 𝟏𝟎
𝟓
𝒘 𝟏𝟏
𝟓
𝒘 𝟏𝟐
𝟓
𝒘 𝟏𝟑
𝟓
𝒘 𝟏𝟒
𝟓
𝒘 𝟏𝟓
𝟓
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟔
𝒘 𝟏
𝟔
𝒘 𝟐
𝟔
𝒘 𝟑
𝟔
𝒘 𝟒
𝟔
𝒘 𝟓
𝟔
𝒘 𝟔
𝟔
𝒘 𝟕
𝟔
𝒘 𝟖
𝟔
𝒘 𝟗
𝟔
𝒘 𝟏𝟎
𝟔
𝒘 𝟏𝟏
𝟔
𝒘 𝟏𝟐
𝟔
𝒘 𝟏𝟑
𝟔
𝒘 𝟏𝟒
𝟔
𝒘 𝟏𝟓
𝟔
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟕
𝒘 𝟏
𝟕
𝒘 𝟐
𝟕
𝒘 𝟑
𝟕
𝒘 𝟒
𝟕
𝒘 𝟓
𝟕
𝒘 𝟔
𝟕
𝒘 𝟕
𝟕
𝒘 𝟖
𝟕
𝒘 𝟗
𝟕
𝒘 𝟏𝟎
𝟕
𝒘 𝟏𝟏
𝟕
𝒘 𝟏𝟐
𝟕
𝒘 𝟏𝟑
𝟕
𝒘 𝟏𝟒
𝟕
𝒘 𝟏𝟓
𝟕
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟖
𝒘 𝟏
𝟖
𝒘 𝟐
𝟖
𝒘 𝟑
𝟖
𝒘 𝟒
𝟖
𝒘 𝟓
𝟖
𝒘 𝟔
𝟖
𝒘 𝟕
𝟖
𝒘 𝟖
𝟖
𝒘 𝟗
𝟖
𝒘 𝟏𝟎
𝟖
𝒘 𝟏𝟏
𝟖
𝒘 𝟏𝟐
𝟖
𝒘 𝟏𝟑
𝟖
𝒘 𝟏𝟒
𝟖
𝒘 𝟏𝟓
𝟖
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Total Number of
Parameters
For the Entire Network
9 Pixels 16 Weight
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Total Number of
Parameters
For the Entire Network
9 Pixels 16 Weight
Total Parameters =
9*16=144
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Total Number of
Parameters
For the Entire Network
9 Pixels 16 Weight
Total Parameters =
9*16=144
Bias is Neglected.
Ahmed F. Gad
Hidden Layer 1
90 Neuron
Input Layer
9 Neuron
Hidden Layer 2
50 Neuron
Too Many Parameters
Ahmed F. Gad
9*90=810
Hidden Layer 1
90 Neuron
Input Layer
9 Neuron
Hidden Layer 2
50 Neuron
Too Many Parameters
Ahmed F. Gad
9*90=810
Hidden Layer 1
90 Neuron
Input Layer
9 Neuron
Hidden Layer 2
50 Neuron
90*50=4,500
Too Many Parameters
Ahmed F. Gad
9*90=810
Hidden Layer 1
90 Neuron
Input Layer
9 Neuron
Hidden Layer 2
50 Neuron
90*50=4,500+ 810+4,500=5,310=
Too Many Parameters
Ahmed F. Gad
Input Image
32x32 Too Many Parameters
Ahmed F. Gad
Hidden Layer 1
500 Neuron
Input Layer
1,024 Neuron
Input Image
32x32 Too Many Parameters
Ahmed F. Gad
1,024*500
Hidden Layer 1
500 Neuron
Input Layer
1,024 Neuron
512,000=
Input Image
32x32 Too Many Parameters
Ahmed F. Gad
1,024*500
Hidden Layer 1
500 Neuron
Input Layer
1,024 Neuron
512,000=
Input Image
32x32
CNN can create a large network but with less number of
parameters than FC networks
Too Many Parameters
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
𝒘 𝟐
𝟎
𝒘 𝟑
𝟎
𝒘 𝟒
𝟎
𝒘 𝟓
𝟎
𝒘 𝟔
𝟎
𝒘 𝟕
𝟎
𝒘 𝟖
𝟎
𝒘 𝟗
𝟎
𝒘 𝟏𝟎
𝟎
𝒘 𝟏𝟏
𝟎
𝒘 𝟏𝟐
𝟎
𝒘 𝟏𝟑
𝟎
𝒘 𝟏𝟒
𝟎
𝒘 𝟏𝟓
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
𝒘 𝟐
𝟎
𝒘 𝟑
𝟎
𝒘 𝟒
𝟎
𝒘 𝟓
𝟎
𝒘 𝟔
𝟎
𝒘 𝟕
𝟎
𝒘 𝟖
𝟎
𝒘 𝟗
𝟎
𝒘 𝟏𝟎
𝟎
𝒘 𝟏𝟏
𝟎
𝒘 𝟏𝟐
𝟎
𝒘 𝟏𝟑
𝟎
𝒘 𝟏𝟒
𝟎
𝒘 𝟏𝟓
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
𝒘 𝟐
𝟎
𝒘 𝟑
𝟎
𝒘 𝟒
𝟎
𝒘 𝟓
𝟎
𝒘 𝟔
𝟎
𝒘 𝟕
𝟎
𝒘 𝟖
𝟎
𝒘 𝟗
𝟎
𝒘 𝟏𝟎
𝟎
𝒘 𝟏𝟏
𝟎
𝒘 𝟏𝟐
𝟎
𝒘 𝟏𝟑
𝟎
𝒘 𝟏𝟒
𝟎
𝒘 𝟏𝟓
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟎
𝒘 𝟒
𝟎
𝒘 𝟓
𝟎
𝒘 𝟔
𝟎
𝒘 𝟕
𝟎
𝒘 𝟖
𝟎
𝒘 𝟗
𝟎
𝒘 𝟏𝟎
𝟎
𝒘 𝟏𝟏
𝟎
𝒘 𝟏𝟐
𝟎
𝒘 𝟏𝟑
𝟎
𝒘 𝟏𝟒
𝟎
𝒘 𝟏𝟓
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
𝒘 𝟖
𝟎
𝒘 𝟗
𝟎
𝒘 𝟏𝟎
𝟎
𝒘 𝟏𝟏
𝟎
𝒘 𝟏𝟐
𝟎
𝒘 𝟏𝟑
𝟎
𝒘 𝟏𝟒
𝟎
𝒘 𝟏𝟓
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
𝒘 𝟐
𝟎
𝒘 𝟏𝟐
𝟎
𝒘 𝟏𝟑
𝟎
𝒘 𝟏𝟒
𝟎
𝒘 𝟏𝟓
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
𝒘 𝟐
𝟎
𝒘 𝟑
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
𝒘 𝟐
𝟎
𝒘 𝟑
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
𝒘 𝟐
𝟎
𝒘 𝟑
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟎
𝒘 𝟏
𝟎
𝒘 𝟐
𝟎
𝒘 𝟑
𝟎
Number of Parameters for
First Pixel
After Grouping Neurons
16/4=4 Weights
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟏
𝒘 𝟏
𝟏
𝒘 𝟐
𝟏
𝒘 𝟑
𝟏
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟏
𝒘 𝟏
𝟏
𝒘 𝟐
𝟏
𝒘 𝟑
𝟏
Number of Parameters for
Second Pixel
After Grouping Neurons
16/4=4 Weights
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟐
𝒘 𝟏
𝟐
𝒘 𝟐
𝟐
𝒘 𝟑
𝟐
Continue
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟑
𝒘 𝟏
𝟑
𝒘 𝟐
𝟑
𝒘 𝟑
𝟑
Continue
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟒
𝒘 𝟏
𝟒
𝒘 𝟐
𝟒
𝒘 𝟑
𝟒
Continue
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟓
𝒘 𝟏
𝟓
𝒘 𝟐
𝟓
𝒘 𝟑
𝟓
Continue
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟔
𝒘 𝟏
𝟔
𝒘 𝟐
𝟔
𝒘 𝟑
𝟔
Continue
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟕
𝒘 𝟏
𝟕
𝒘 𝟐
𝟕
𝒘 𝟑
𝟕
Continue
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘 𝟎
𝟖
𝒘 𝟏
𝟖
𝒘 𝟐
𝟖
𝒘 𝟑
𝟖
Continue
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
All Connections
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Total Parameters
Before Grouping
Neurons
9 Pixels 16 Weight
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Total Parameters
Before Grouping
Hidden Neurons
9 Pixels 16 Weight
Total Parameters =
9*16=144
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Total Parameters
Before Grouping
Neurons
9 Pixels 16 Weight
Total Parameters =
9*16=144
Total Parameters
After Grouping
Neurons
9 Pixels 4 Weight
Total Parameters =
9*4=36Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Before 144
After 36
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Before 144
After 36
Saved
Parameters
144-36=108
Reduction %
(108/144)*100
=75%
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Before 144
After 36
Saved
Parameters
144-36=108
Reduction %
(108/144)*100
=75%
More Reduction
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
In image analysis, each pixel is highly correlated
to pixels surrounding it (i.e. neighbors)
Ahmed F. Gad
In image analysis, each pixel is highly correlated
to pixels surrounding it (i.e. neighbors)
Ahmed F. Gad
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Hidden Layer
4 Groups
4 Filters
4 Feature Maps
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Hidden Layer
4 Groups
4 Filters
4 Feature Maps
Ahmed F. Gad
4 Neurons
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Hidden Layer
4 Groups
4 Filters
4 Feature Maps
Ahmed F. Gad
4 Neurons
Each neuron will process an
image region of a specific size.
In this example, region size is
2x2.
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
𝒘` 𝒚
𝒙
𝒙: Group Index
𝒚: Index of Group Input
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
Ahmed F. Gad
𝒘` 𝒚
𝒙
𝒙: Group Index
𝒚: Index of Group Input
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟏
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟏
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
𝒘` 𝟏
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Correlated
Pixels
4 Weights
Parameters for First
Hidden Neurons Group
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Correlated
Pixels
Parameters for First
Hidden Neurons Group
4*4=16 Weights
Parameters for Entire
Network
4 Weights
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Before 144
After 16
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Before 144
After 16
Saved
Parameters
144-16=128
Reduction %
(128/144)*100
=88.89%
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
𝒘` 𝟏
𝟎
15*𝒘` 𝟎
𝟎
+8*𝒘` 𝟏
𝟎
+10*𝒘` 𝟐
𝟎
+17𝒘` 𝟑
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
15 8 9
10 17 22
20 3015
15*𝒘` 𝟎
𝟎
+8*𝒘` 𝟏
𝟎
+10*𝒘` 𝟐
𝟎
+17𝒘` 𝟑
𝟎
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎*
𝒘` 𝟎
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
𝒘` 𝟏
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
15 8 9
10 17 22
20 3015
15*𝒘` 𝟎
𝟎
+8*𝒘` 𝟏
𝟎
+10*𝒘` 𝟐
𝟎
+17𝒘 𝟑
`𝟎
*
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
𝒘` 𝟎
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
𝒘` 𝟏
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
15 8 9
10 17 22
20 3015
8*𝒘` 𝟎
𝟎
+9*𝒘` 𝟏
𝟎
+17*𝒘` 𝟐
𝟎
+22𝒘` 𝟑
𝟎
*
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎 15 8 9
10 17 22
20 3015
10*𝒘` 𝟎
𝟎
+17*𝒘` 𝟏
𝟎
+20*𝒘` 𝟐
𝟎
+15𝒘` 𝟑
𝟎
*
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
15 8 9
10 17 22
20 3015
17*𝒘 𝟎
𝟎
+22*𝒘 𝟏
𝟎
+15*𝒘 𝟐
𝟎
+30𝒘 𝟑
𝟎
*
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
15 8 9
10 17 22
20 3015
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎*
15 8 9
10 17 22
20 3015
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎*
15 8 9
10 17 22
20 3015
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎*
15 8 9
10 17 22
20 3015
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎*
Ahmed F. Gad
15 8 9
10 17 22
20 3015
15
8
9
10
17
22
20
30
15
Input Image
3x3
Vector 9x1 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
15 8 9
10 17 22
20 3015
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎*
15 8 9
10 17 22
20 3015
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎*
15 8 9
10 17 22
20 3015
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎*
15 8 9
10 17 22
20 3015
𝒘` 𝟎
𝟎
𝒘` 𝟏
𝟎
𝒘` 𝟐
𝟎
𝒘` 𝟑
𝟎*
Ahmed F. Gad
References
• Aghdam, Hamed Habibi, and Elnaz Jahani Heravi. Guide to
Convolutional Neural Networks: A Practical Application to Traffic-
Sign Detection and Classification. Springer, 2017.
• Derivation of Convolutional Neural Network from Fully Connected
Network Step-By-Step
• https://www.linkedin.com/pulse/derivation-convolutional-neural-network-
from-fully-connected-gad
• https://www.slideshare.net/AhmedGadFCIT/derivation-of-convolutional-
neural-network-convnet-from-fully-connected-network
• https://www.kdnuggets.com/2018/04/derivation-convolutional-neural-
network-fully-connected-step-by-step.html
Ahmed F. Gad

More Related Content

PDF
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
PDF
Backpropagation: Understanding How to Update ANNs Weights Step-by-Step
PPTX
DBSCAN : A Clustering Algorithm
PPTX
Knapsack Problem
PPTX
Support vector machines (svm)
PPT
Knapsack problem
PDF
Gradient descent method
PPTX
PCA and LDA in machine learning
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
Backpropagation: Understanding How to Update ANNs Weights Step-by-Step
DBSCAN : A Clustering Algorithm
Knapsack Problem
Support vector machines (svm)
Knapsack problem
Gradient descent method
PCA and LDA in machine learning

What's hot (20)

PPTX
Introduction to Linear Discriminant Analysis
PDF
Neural Networks: Principal Component Analysis (PCA)
PDF
Syntactic analysis in NLP
PDF
Matrix Factorization
PDF
Word Embeddings - Introduction
PPTX
Single server queue (Simulation Project)
PPTX
K-Nearest Neighbor(KNN)
PPTX
Fractional Knapsack Problem
PDF
Confusion Matrix Explained
PDF
Approximation Algorithms
PPT
Np cooks theorem
PPTX
Fuzzy logic and application in AI
PDF
P, NP, NP-Complete, and NP-Hard
PPTX
Strassen's matrix multiplication
PPTX
Theory of computation:Finite Automata, Regualr Expression, Pumping Lemma
PDF
Perspective in Informatics 3 - Assignment 2 - Answer Sheet
PPTX
Naive Bayes Presentation
Introduction to Linear Discriminant Analysis
Neural Networks: Principal Component Analysis (PCA)
Syntactic analysis in NLP
Matrix Factorization
Word Embeddings - Introduction
Single server queue (Simulation Project)
K-Nearest Neighbor(KNN)
Fractional Knapsack Problem
Confusion Matrix Explained
Approximation Algorithms
Np cooks theorem
Fuzzy logic and application in AI
P, NP, NP-Complete, and NP-Hard
Strassen's matrix multiplication
Theory of computation:Finite Automata, Regualr Expression, Pumping Lemma
Perspective in Informatics 3 - Assignment 2 - Answer Sheet
Naive Bayes Presentation
Ad

More from Ahmed Gad (20)

PPTX
ICEIT'20 Cython for Speeding-up Genetic Algorithm
PDF
NumPyCNNAndroid: A Library for Straightforward Implementation of Convolutiona...
PDF
Python for Computer Vision - Revision 2nd Edition
PDF
Multi-Objective Optimization using Non-Dominated Sorting Genetic Algorithm wi...
PDF
M.Sc. Thesis - Automatic People Counting in Crowded Scenes
PDF
Introduction to Optimization with Genetic Algorithm (GA)
PDF
Derivation of Convolutional Neural Network (ConvNet) from Fully Connected Net...
PDF
Avoid Overfitting with Regularization
PDF
Genetic Algorithm (GA) Optimization - Step-by-Step Example
PDF
ICCES 2017 - Crowd Density Estimation Method using Regression Analysis
PDF
Computer Vision: Correlation, Convolution, and Gradient
PDF
Python for Computer Vision - Revision
PDF
Anime Studio Pro 10 Tutorial as Part of Multimedia Course
PDF
Brief Introduction to Deep Learning + Solving XOR using ANNs
PDF
Operations in Digital Image Processing + Convolution by Example
PDF
MATLAB Code + Description : Real-Time Object Motion Detection and Tracking
PDF
MATLAB Code + Description : Very Simple Automatic English Optical Character R...
PDF
Graduation Project - Face Login : A Robust Face Identification System for Sec...
PDF
Introduction to MATrices LABoratory (MATLAB) as Part of Digital Signal Proces...
PDF
Introduction to Digital Signal Processing (DSP) - Course Notes
ICEIT'20 Cython for Speeding-up Genetic Algorithm
NumPyCNNAndroid: A Library for Straightforward Implementation of Convolutiona...
Python for Computer Vision - Revision 2nd Edition
Multi-Objective Optimization using Non-Dominated Sorting Genetic Algorithm wi...
M.Sc. Thesis - Automatic People Counting in Crowded Scenes
Introduction to Optimization with Genetic Algorithm (GA)
Derivation of Convolutional Neural Network (ConvNet) from Fully Connected Net...
Avoid Overfitting with Regularization
Genetic Algorithm (GA) Optimization - Step-by-Step Example
ICCES 2017 - Crowd Density Estimation Method using Regression Analysis
Computer Vision: Correlation, Convolution, and Gradient
Python for Computer Vision - Revision
Anime Studio Pro 10 Tutorial as Part of Multimedia Course
Brief Introduction to Deep Learning + Solving XOR using ANNs
Operations in Digital Image Processing + Convolution by Example
MATLAB Code + Description : Real-Time Object Motion Detection and Tracking
MATLAB Code + Description : Very Simple Automatic English Optical Character R...
Graduation Project - Face Login : A Robust Face Identification System for Sec...
Introduction to MATrices LABoratory (MATLAB) as Part of Digital Signal Proces...
Introduction to Digital Signal Processing (DSP) - Course Notes
Ad

Recently uploaded (20)

PPTX
Computer network topology notes for revision
PPTX
Database Infoormation System (DBIS).pptx
PPTX
climate analysis of Dhaka ,Banglades.pptx
PPTX
Leprosy and NLEP programme community medicine
PDF
Mega Projects Data Mega Projects Data
PPT
Predictive modeling basics in data cleaning process
PDF
.pdf is not working space design for the following data for the following dat...
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
Managing Community Partner Relationships
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPTX
Introduction to Knowledge Engineering Part 1
PPT
ISS -ESG Data flows What is ESG and HowHow
PPTX
modul_python (1).pptx for professional and student
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PDF
annual-report-2024-2025 original latest.
PDF
Introduction to Data Science and Data Analysis
PDF
Transcultural that can help you someday.
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PDF
Introduction to the R Programming Language
Computer network topology notes for revision
Database Infoormation System (DBIS).pptx
climate analysis of Dhaka ,Banglades.pptx
Leprosy and NLEP programme community medicine
Mega Projects Data Mega Projects Data
Predictive modeling basics in data cleaning process
.pdf is not working space design for the following data for the following dat...
Introduction-to-Cloud-ComputingFinal.pptx
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
Managing Community Partner Relationships
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
Introduction to Knowledge Engineering Part 1
ISS -ESG Data flows What is ESG and HowHow
modul_python (1).pptx for professional and student
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
annual-report-2024-2025 original latest.
Introduction to Data Science and Data Analysis
Transcultural that can help you someday.
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
Introduction to the R Programming Language

Derivation of Convolutional Neural Network from Fully Connected Network Step-by-Step

  • 1. Derivation of Convolutional Neural Network from Fully Connected Network Step-by-Step Ahmed Fawzy Gad [email protected] MENOUFIA UNIVERSITY FACULTY OF COMPUTERS AND INFORMATION ‫المنوفية‬ ‫جامعة‬ ‫الحاسبات‬ ‫كلية‬‫والمعلومات‬ ‫المنوفية‬ ‫جامعة‬ Ahmed F. Gad 18-May-2018
  • 2. 15 8 9 10 17 22 20 3015 Input Image 3x3 Ahmed F. Gad
  • 3. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 Ahmed F. Gad
  • 4. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 Ahmed F. Gad
  • 5. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 Ahmed F. Gad
  • 6. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 Ahmed F. Gad
  • 7. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 Ahmed F. Gad
  • 8. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 Ahmed F. Gad
  • 9. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 Ahmed F. Gad
  • 10. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 Ahmed F. Gad
  • 11. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 Ahmed F. Gad
  • 12. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 Ahmed F. Gad
  • 13. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 Ahmed F. Gad
  • 14. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hidden Layer Ahmed F. Gad
  • 15. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Fully Connected Network Ahmed F. Gad
  • 16. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Fully Connected Network Ahmed F. Gad
  • 17. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝒚 𝒙 𝒙: Pixel Index 𝒚: Hidden Neuron Index Fully Connected Network Ahmed F. Gad
  • 18. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝒚 𝒙 𝒙: Pixel Index 𝒚: Hidden Neuron Index 𝒘 𝟎 𝟎 Fully Connected Network Ahmed F. Gad
  • 19. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝒚 𝒙 𝒙: Pixel Index 𝒚: Hidden Neuron Index 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 Fully Connected Network Ahmed F. Gad
  • 20. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝒚 𝒙 𝒙: Pixel Index 𝒚: Hidden Neuron Index 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 𝒘 𝟐 𝟎 Fully Connected Network Ahmed F. Gad
  • 21. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 𝒘 𝟐 𝟎 𝒘 𝟑 𝟎 𝒘 𝟒 𝟎 𝒘 𝟓 𝟎 𝒘 𝟔 𝟎 𝒘 𝟕 𝟎 𝒘 𝟖 𝟎 𝒘 𝟗 𝟎 𝒘 𝟏𝟎 𝟎 𝒘 𝟏𝟏 𝟎 𝒘 𝟏𝟐 𝟎 𝒘 𝟏𝟑 𝟎 𝒘 𝟏𝟒 𝟎 𝒘 𝟏𝟓 𝟎 𝒘 𝒚 𝒙 𝒙: Pixel Index 𝒚: Hidden Neuron Index Fully Connected Network Ahmed F. Gad
  • 22. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 𝒘 𝟐 𝟎 𝒘 𝟑 𝟎 𝒘 𝟒 𝟎 𝒘 𝟓 𝟎 𝒘 𝟔 𝟎 𝒘 𝟕 𝟎 𝒘 𝟖 𝟎 𝒘 𝟗 𝟎 𝒘 𝟏𝟎 𝟎 𝒘 𝟏𝟏 𝟎 𝒘 𝟏𝟐 𝟎 𝒘 𝟏𝟑 𝟎 𝒘 𝟏𝟒 𝟎 𝒘 𝟏𝟓 𝟎 Weight 16 𝒘 𝟎 𝟎 𝒘 𝟏𝟓 𝟎 Total Number of Weights For First Pixel Ahmed F. Gad
  • 23. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 24. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟏 𝒘 𝟏 𝟏 𝒘 𝟐 𝟏 𝒘 𝟑 𝟏 𝒘 𝟒 𝟏 𝒘 𝟓 𝟏 𝒘 𝟔 𝟏 𝒘 𝟕 𝟏 𝒘 𝟖 𝟏 𝒘 𝟗 𝟏 𝒘 𝟏𝟎 𝟏 𝒘 𝟏𝟏 𝟏 𝒘 𝟏𝟐 𝟏 𝒘 𝟏𝟑 𝟏 𝒘 𝟏𝟒 𝟏 𝒘 𝟏𝟓 𝟏 Ahmed F. Gad
  • 25. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟏 𝒘 𝟏 𝟏 𝒘 𝟐 𝟏 𝒘 𝟑 𝟏 𝒘 𝟒 𝟏 𝒘 𝟓 𝟏 𝒘 𝟔 𝟏 𝒘 𝟕 𝟏 𝒘 𝟖 𝟏 𝒘 𝟗 𝟏 𝒘 𝟏𝟎 𝟏 𝒘 𝟏𝟏 𝟏 𝒘 𝟏𝟐 𝟏 𝒘 𝟏𝟑 𝟏 𝒘 𝟏𝟒 𝟏 𝒘 𝟏𝟓 𝟏 Weight 16 𝒘 𝟎 𝟏 𝒘 𝟏𝟓 𝟏 Total Number of Weights For Second Pixel Ahmed F. Gad
  • 26. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟐 𝒘 𝟏 𝟐 𝒘 𝟐 𝟐 𝒘 𝟑 𝟐 𝒘 𝟒 𝟐 𝒘 𝟓 𝟐 𝒘 𝟔 𝟐 𝒘 𝟕 𝟐 𝒘 𝟖 𝟐 𝒘 𝟗 𝟐 𝒘 𝟏𝟎 𝟐 𝒘 𝟏𝟏 𝟐 𝒘 𝟏𝟐 𝟐 𝒘 𝟏𝟑 𝟐 𝒘 𝟏𝟒 𝟐 𝒘 𝟏𝟓 𝟐 Ahmed F. Gad
  • 27. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟑 𝒘 𝟏 𝟑 𝒘 𝟐 𝟑 𝒘 𝟑 𝟑 𝒘 𝟒 𝟑 𝒘 𝟓 𝟑 𝒘 𝟔 𝟑 𝒘 𝟕 𝟑 𝒘 𝟖 𝟑 𝒘 𝟗 𝟑 𝒘 𝟏𝟎 𝟑 𝒘 𝟏𝟏 𝟑 𝒘 𝟏𝟐 𝟑 𝒘 𝟏𝟑 𝟑 𝒘 𝟏𝟒 𝟑 𝒘 𝟏𝟓 𝟑 Ahmed F. Gad
  • 28. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟒 𝒘 𝟏 𝟒 𝒘 𝟐 𝟒 𝒘 𝟑 𝟒 𝒘 𝟒 𝟒 𝒘 𝟓 𝟒 𝒘 𝟔 𝟒 𝒘 𝟕 𝟒 𝒘 𝟖 𝟒 𝒘 𝟗 𝟒 𝒘 𝟏𝟎 𝟒 𝒘 𝟏𝟏 𝟒 𝒘 𝟏𝟐 𝟒 𝒘 𝟏𝟑 𝟒 𝒘 𝟏𝟒 𝟒 𝒘 𝟏𝟓 𝟒 Ahmed F. Gad
  • 29. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟓 𝒘 𝟏 𝟓 𝒘 𝟐 𝟓 𝒘 𝟑 𝟓 𝒘 𝟒 𝟓 𝒘 𝟓 𝟓 𝒘 𝟔 𝟓 𝒘 𝟕 𝟓 𝒘 𝟖 𝟓 𝒘 𝟗 𝟓 𝒘 𝟏𝟎 𝟓 𝒘 𝟏𝟏 𝟓 𝒘 𝟏𝟐 𝟓 𝒘 𝟏𝟑 𝟓 𝒘 𝟏𝟒 𝟓 𝒘 𝟏𝟓 𝟓 Ahmed F. Gad
  • 30. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟔 𝒘 𝟏 𝟔 𝒘 𝟐 𝟔 𝒘 𝟑 𝟔 𝒘 𝟒 𝟔 𝒘 𝟓 𝟔 𝒘 𝟔 𝟔 𝒘 𝟕 𝟔 𝒘 𝟖 𝟔 𝒘 𝟗 𝟔 𝒘 𝟏𝟎 𝟔 𝒘 𝟏𝟏 𝟔 𝒘 𝟏𝟐 𝟔 𝒘 𝟏𝟑 𝟔 𝒘 𝟏𝟒 𝟔 𝒘 𝟏𝟓 𝟔 Ahmed F. Gad
  • 31. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟕 𝒘 𝟏 𝟕 𝒘 𝟐 𝟕 𝒘 𝟑 𝟕 𝒘 𝟒 𝟕 𝒘 𝟓 𝟕 𝒘 𝟔 𝟕 𝒘 𝟕 𝟕 𝒘 𝟖 𝟕 𝒘 𝟗 𝟕 𝒘 𝟏𝟎 𝟕 𝒘 𝟏𝟏 𝟕 𝒘 𝟏𝟐 𝟕 𝒘 𝟏𝟑 𝟕 𝒘 𝟏𝟒 𝟕 𝒘 𝟏𝟓 𝟕 Ahmed F. Gad
  • 32. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟖 𝒘 𝟏 𝟖 𝒘 𝟐 𝟖 𝒘 𝟑 𝟖 𝒘 𝟒 𝟖 𝒘 𝟓 𝟖 𝒘 𝟔 𝟖 𝒘 𝟕 𝟖 𝒘 𝟖 𝟖 𝒘 𝟗 𝟖 𝒘 𝟏𝟎 𝟖 𝒘 𝟏𝟏 𝟖 𝒘 𝟏𝟐 𝟖 𝒘 𝟏𝟑 𝟖 𝒘 𝟏𝟒 𝟖 𝒘 𝟏𝟓 𝟖 Ahmed F. Gad
  • 33. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 34. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total Number of Parameters For the Entire Network 9 Pixels 16 Weight Ahmed F. Gad
  • 35. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total Number of Parameters For the Entire Network 9 Pixels 16 Weight Total Parameters = 9*16=144 Ahmed F. Gad
  • 36. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total Number of Parameters For the Entire Network 9 Pixels 16 Weight Total Parameters = 9*16=144 Bias is Neglected. Ahmed F. Gad
  • 37. Hidden Layer 1 90 Neuron Input Layer 9 Neuron Hidden Layer 2 50 Neuron Too Many Parameters Ahmed F. Gad
  • 38. 9*90=810 Hidden Layer 1 90 Neuron Input Layer 9 Neuron Hidden Layer 2 50 Neuron Too Many Parameters Ahmed F. Gad
  • 39. 9*90=810 Hidden Layer 1 90 Neuron Input Layer 9 Neuron Hidden Layer 2 50 Neuron 90*50=4,500 Too Many Parameters Ahmed F. Gad
  • 40. 9*90=810 Hidden Layer 1 90 Neuron Input Layer 9 Neuron Hidden Layer 2 50 Neuron 90*50=4,500+ 810+4,500=5,310= Too Many Parameters Ahmed F. Gad
  • 41. Input Image 32x32 Too Many Parameters Ahmed F. Gad
  • 42. Hidden Layer 1 500 Neuron Input Layer 1,024 Neuron Input Image 32x32 Too Many Parameters Ahmed F. Gad
  • 43. 1,024*500 Hidden Layer 1 500 Neuron Input Layer 1,024 Neuron 512,000= Input Image 32x32 Too Many Parameters Ahmed F. Gad
  • 44. 1,024*500 Hidden Layer 1 500 Neuron Input Layer 1,024 Neuron 512,000= Input Image 32x32 CNN can create a large network but with less number of parameters than FC networks Too Many Parameters Ahmed F. Gad
  • 45. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 𝒘 𝟐 𝟎 𝒘 𝟑 𝟎 𝒘 𝟒 𝟎 𝒘 𝟓 𝟎 𝒘 𝟔 𝟎 𝒘 𝟕 𝟎 𝒘 𝟖 𝟎 𝒘 𝟗 𝟎 𝒘 𝟏𝟎 𝟎 𝒘 𝟏𝟏 𝟎 𝒘 𝟏𝟐 𝟎 𝒘 𝟏𝟑 𝟎 𝒘 𝟏𝟒 𝟎 𝒘 𝟏𝟓 𝟎 Ahmed F. Gad
  • 46. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 𝒘 𝟐 𝟎 𝒘 𝟑 𝟎 𝒘 𝟒 𝟎 𝒘 𝟓 𝟎 𝒘 𝟔 𝟎 𝒘 𝟕 𝟎 𝒘 𝟖 𝟎 𝒘 𝟗 𝟎 𝒘 𝟏𝟎 𝟎 𝒘 𝟏𝟏 𝟎 𝒘 𝟏𝟐 𝟎 𝒘 𝟏𝟑 𝟎 𝒘 𝟏𝟒 𝟎 𝒘 𝟏𝟓 𝟎 Ahmed F. Gad
  • 47. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 𝒘 𝟐 𝟎 𝒘 𝟑 𝟎 𝒘 𝟒 𝟎 𝒘 𝟓 𝟎 𝒘 𝟔 𝟎 𝒘 𝟕 𝟎 𝒘 𝟖 𝟎 𝒘 𝟗 𝟎 𝒘 𝟏𝟎 𝟎 𝒘 𝟏𝟏 𝟎 𝒘 𝟏𝟐 𝟎 𝒘 𝟏𝟑 𝟎 𝒘 𝟏𝟒 𝟎 𝒘 𝟏𝟓 𝟎 Ahmed F. Gad
  • 48. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟎 𝒘 𝟒 𝟎 𝒘 𝟓 𝟎 𝒘 𝟔 𝟎 𝒘 𝟕 𝟎 𝒘 𝟖 𝟎 𝒘 𝟗 𝟎 𝒘 𝟏𝟎 𝟎 𝒘 𝟏𝟏 𝟎 𝒘 𝟏𝟐 𝟎 𝒘 𝟏𝟑 𝟎 𝒘 𝟏𝟒 𝟎 𝒘 𝟏𝟓 𝟎 Ahmed F. Gad
  • 49. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 𝒘 𝟖 𝟎 𝒘 𝟗 𝟎 𝒘 𝟏𝟎 𝟎 𝒘 𝟏𝟏 𝟎 𝒘 𝟏𝟐 𝟎 𝒘 𝟏𝟑 𝟎 𝒘 𝟏𝟒 𝟎 𝒘 𝟏𝟓 𝟎 Ahmed F. Gad
  • 50. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 𝒘 𝟐 𝟎 𝒘 𝟏𝟐 𝟎 𝒘 𝟏𝟑 𝟎 𝒘 𝟏𝟒 𝟎 𝒘 𝟏𝟓 𝟎 Ahmed F. Gad
  • 51. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 𝒘 𝟐 𝟎 𝒘 𝟑 𝟎 Ahmed F. Gad
  • 52. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 𝒘 𝟐 𝟎 𝒘 𝟑 𝟎 Ahmed F. Gad
  • 53. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 𝒘 𝟐 𝟎 𝒘 𝟑 𝟎 Ahmed F. Gad
  • 54. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟎 𝒘 𝟏 𝟎 𝒘 𝟐 𝟎 𝒘 𝟑 𝟎 Number of Parameters for First Pixel After Grouping Neurons 16/4=4 Weights Ahmed F. Gad
  • 55. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟏 𝒘 𝟏 𝟏 𝒘 𝟐 𝟏 𝒘 𝟑 𝟏 Ahmed F. Gad
  • 56. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟏 𝒘 𝟏 𝟏 𝒘 𝟐 𝟏 𝒘 𝟑 𝟏 Number of Parameters for Second Pixel After Grouping Neurons 16/4=4 Weights Ahmed F. Gad
  • 57. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟐 𝒘 𝟏 𝟐 𝒘 𝟐 𝟐 𝒘 𝟑 𝟐 Continue Ahmed F. Gad
  • 58. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟑 𝒘 𝟏 𝟑 𝒘 𝟐 𝟑 𝒘 𝟑 𝟑 Continue Ahmed F. Gad
  • 59. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟒 𝒘 𝟏 𝟒 𝒘 𝟐 𝟒 𝒘 𝟑 𝟒 Continue Ahmed F. Gad
  • 60. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟓 𝒘 𝟏 𝟓 𝒘 𝟐 𝟓 𝒘 𝟑 𝟓 Continue Ahmed F. Gad
  • 61. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟔 𝒘 𝟏 𝟔 𝒘 𝟐 𝟔 𝒘 𝟑 𝟔 Continue Ahmed F. Gad
  • 62. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟕 𝒘 𝟏 𝟕 𝒘 𝟐 𝟕 𝒘 𝟑 𝟕 Continue Ahmed F. Gad
  • 63. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘 𝟎 𝟖 𝒘 𝟏 𝟖 𝒘 𝟐 𝟖 𝒘 𝟑 𝟖 Continue Ahmed F. Gad
  • 64. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 All Connections Ahmed F. Gad
  • 65. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total Parameters Before Grouping Neurons 9 Pixels 16 Weight Ahmed F. Gad
  • 66. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total Parameters Before Grouping Hidden Neurons 9 Pixels 16 Weight Total Parameters = 9*16=144 Ahmed F. Gad
  • 67. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total Parameters Before Grouping Neurons 9 Pixels 16 Weight Total Parameters = 9*16=144 Total Parameters After Grouping Neurons 9 Pixels 4 Weight Total Parameters = 9*4=36Ahmed F. Gad
  • 68. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Before 144 After 36 Ahmed F. Gad
  • 69. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Before 144 After 36 Saved Parameters 144-36=108 Reduction % (108/144)*100 =75% Ahmed F. Gad
  • 70. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Before 144 After 36 Saved Parameters 144-36=108 Reduction % (108/144)*100 =75% More Reduction Ahmed F. Gad
  • 71. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 72. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 73. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 74. In image analysis, each pixel is highly correlated to pixels surrounding it (i.e. neighbors) Ahmed F. Gad
  • 75. In image analysis, each pixel is highly correlated to pixels surrounding it (i.e. neighbors) Ahmed F. Gad
  • 79. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hidden Layer 4 Groups 4 Filters 4 Feature Maps Ahmed F. Gad
  • 80. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hidden Layer 4 Groups 4 Filters 4 Feature Maps Ahmed F. Gad 4 Neurons
  • 81. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hidden Layer 4 Groups 4 Filters 4 Feature Maps Ahmed F. Gad 4 Neurons Each neuron will process an image region of a specific size. In this example, region size is 2x2.
  • 82. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 83. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 84. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 85. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 86. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 87. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad 𝒘` 𝒚 𝒙 𝒙: Group Index 𝒚: Index of Group Input
  • 88. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 Ahmed F. Gad 𝒘` 𝒚 𝒙 𝒙: Group Index 𝒚: Index of Group Input
  • 89. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 Ahmed F. Gad
  • 90. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 Ahmed F. Gad
  • 91. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 Ahmed F. Gad
  • 92. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟏 𝟎 Ahmed F. Gad
  • 93. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟏 𝟎 Ahmed F. Gad
  • 94. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 𝒘` 𝟏 𝟎 Ahmed F. Gad
  • 95. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 96. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 97. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 98. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 99. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 Ahmed F. Gad
  • 100. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 101. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 102. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 103. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 104. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 Ahmed F. Gad
  • 105. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 106. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 107. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 108. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 Ahmed F. Gad
  • 109. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Ahmed F. Gad
  • 110. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Correlated Pixels 4 Weights Parameters for First Hidden Neurons Group Ahmed F. Gad
  • 111. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Correlated Pixels Parameters for First Hidden Neurons Group 4*4=16 Weights Parameters for Entire Network 4 Weights Ahmed F. Gad
  • 112. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Before 144 After 16 Ahmed F. Gad
  • 113. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Before 144 After 16 Saved Parameters 144-16=128 Reduction % (128/144)*100 =88.89% Ahmed F. Gad
  • 114. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 𝒘` 𝟏 𝟎 15*𝒘` 𝟎 𝟎 +8*𝒘` 𝟏 𝟎 +10*𝒘` 𝟐 𝟎 +17𝒘` 𝟑 𝟎 Ahmed F. Gad
  • 115. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 8 9 10 17 22 20 3015 15*𝒘` 𝟎 𝟎 +8*𝒘` 𝟏 𝟎 +10*𝒘` 𝟐 𝟎 +17𝒘` 𝟑 𝟎 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎* 𝒘` 𝟎 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 𝒘` 𝟏 𝟎 Ahmed F. Gad
  • 116. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 8 9 10 17 22 20 3015 15*𝒘` 𝟎 𝟎 +8*𝒘` 𝟏 𝟎 +10*𝒘` 𝟐 𝟎 +17𝒘 𝟑 `𝟎 * 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 𝒘` 𝟎 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 𝒘` 𝟏 𝟎 Ahmed F. Gad
  • 117. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 15 8 9 10 17 22 20 3015 8*𝒘` 𝟎 𝟎 +9*𝒘` 𝟏 𝟎 +17*𝒘` 𝟐 𝟎 +22𝒘` 𝟑 𝟎 * 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 Ahmed F. Gad
  • 118. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 15 8 9 10 17 22 20 3015 10*𝒘` 𝟎 𝟎 +17*𝒘` 𝟏 𝟎 +20*𝒘` 𝟐 𝟎 +15𝒘` 𝟑 𝟎 * 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 Ahmed F. Gad
  • 119. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 15 8 9 10 17 22 20 3015 17*𝒘 𝟎 𝟎 +22*𝒘 𝟏 𝟎 +15*𝒘 𝟐 𝟎 +30𝒘 𝟑 𝟎 * 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎 Ahmed F. Gad
  • 120. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 8 9 10 17 22 20 3015 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎* 15 8 9 10 17 22 20 3015 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎* 15 8 9 10 17 22 20 3015 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎* 15 8 9 10 17 22 20 3015 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎* Ahmed F. Gad
  • 121. 15 8 9 10 17 22 20 3015 15 8 9 10 17 22 20 30 15 Input Image 3x3 Vector 9x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 8 9 10 17 22 20 3015 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎* 15 8 9 10 17 22 20 3015 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎* 15 8 9 10 17 22 20 3015 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎* 15 8 9 10 17 22 20 3015 𝒘` 𝟎 𝟎 𝒘` 𝟏 𝟎 𝒘` 𝟐 𝟎 𝒘` 𝟑 𝟎* Ahmed F. Gad
  • 122. References • Aghdam, Hamed Habibi, and Elnaz Jahani Heravi. Guide to Convolutional Neural Networks: A Practical Application to Traffic- Sign Detection and Classification. Springer, 2017. • Derivation of Convolutional Neural Network from Fully Connected Network Step-By-Step • https://www.linkedin.com/pulse/derivation-convolutional-neural-network- from-fully-connected-gad • https://www.slideshare.net/AhmedGadFCIT/derivation-of-convolutional- neural-network-convnet-from-fully-connected-network • https://www.kdnuggets.com/2018/04/derivation-convolutional-neural- network-fully-connected-step-by-step.html Ahmed F. Gad