SlideShare a Scribd company logo
NATIONAL CHENG KUNG UNIVERSITY
Inst. of Manufacturing Information & Systems
DIGITAL IMAGE PROCESSING AND SOFTWARE
IMPLEMENTATION
HOMEWORK 1
Professor name: Chen, Shang-Liang
Student name: Nguyen Van Thanh
Student ID: P96007019
Class: P9-009 Image Processing and Software Implementation
Time: [4] 2  4
1
Table of Contents
PROBLEM................................................................................................................................................................. 2
SOLUTION................................................................................................................................................................ 3
3.2.1 Negative transformation ............................................................................................................................ 3
3.2.2 Log transformation..................................................................................................................................... 3
3.2.3 Power-law transformation ......................................................................................................................... 4
3.2.4 Piecewise-linear transformation ................................................................................................................ 7
3.3.1 Histogram equalization.............................................................................................................................10
3.4.2 Subtraction ...............................................................................................................................................12
3.6.1 Smoothing Linear Filters...........................................................................................................................14
3.6.2 Order-Statistics Filters..............................................................................................................................16
3.7.2 The Laplacian............................................................................................................................................17
3.7.3 The Gradient.............................................................................................................................................19
2
PROBLEM
影像處理與軟體實現[HW1]
課程碼:P953300 授課教授:陳響亮 教授 助教:陳怡瑄 日期:2011/03/10
題目:請以C# 撰寫一程式,可讀入一影像檔,並可執行以下之影像
空間強化功能。
a. 每一程式需設計一適當之人機操作介面。
b. 每一功能請以不同方法分開撰寫,各項參數需讓使用者自行輸入。
c. 以C# 撰寫時,可直接呼叫Matlab 現有函式,但呼叫多寡,將列為評分考量。
(呼叫越少,分數越高)
一、 基本灰階轉換
1. 影像負片轉換
2. Log轉換
3. 乘冪律轉換
4. 逐段線性函數轉換
二、 直方圖處理
1. 直方圖等化處理
2. 直方圖匹配處理
三、 使用算術/邏輯運算做增強
1. 影像相減增強
2. 影像平均增強
四、 平滑空間濾波器
1. 平滑線性濾波器
2. 排序統計濾波器
五、 銳化空間濾波器
1. 拉普拉斯銳化空間濾波器
2. 梯度銳化空間濾波器
3
SOLUTION
Using Matlab for solving the problem
3.2.1 Negative transformation
Given an image (input image) with gray level in the interval [0, L-1], the negative of that
image is obtained by using the expression: s = (L – 1) – r,
Where r is the gray level of the input image, and s is the gray level of the output.
In Matlab, we use the commands,
>> f=imread('Fig3.04(a).jpg');
g = imcomplement(f);
imshow(f), figure, imshow(g)
In/output image Out/in image
3.2.2 Log transformation
The Logarithm transformations are implemented using the expression:
s = c*log (1+r).
In this case, c = 1. The commands,
>> f=imread('Fig3.05(a).jpg');
g=im2uint8 (mat2gray (log (1+double (f))));
imshow(f), figure, imshow(g)
4
In/output image Out/in image
3.2.3 Power-law transformation
Power-law transformations have the basic form,
s = c*r. ^, where c and  are positive constants.
The commands,
>> f = imread ('Fig3.08(a).jpg');
f = im2double (f);
[m n]=size (f);
c = 1;
gama = input('gama value = ');
for i=1:m
for j=1:n
g(i,j)=c*(f(i,j)^gama);
end
end;
imshow(f),figure, imshow(g);
With  = 0.6, 0.4 and 0.3 respectively, we can get three images respectively, as shown in the
following figure,
5
a b
c d
(a) The original image. (b) – (d) result of applying the power -
law transformation with  = 0.6, 0.4 and 0.3 respectively
6
a b
c d
(a) The original image. (b) – (d) result of applying the power -
law transformation with  = 3, 4 and 5 respectively
7
3.2.4 Piecewise-linear transformation
Contrast stretching
The commands,
% function contrast stretching;
>> r1 = 100; s1 = 40;
r2 = 141; s2 = 216;
a = (s1/r1);
b = ((s2-s1)/ (r2-r1));
c = ((255-s2)/ (255-r2));
k = 0:r1;
y1 = a*k;
plot (k,y1); hold on;
k = r1: r2;
y2 = b*(k - r1) + a*r1;
plot (k,y2);
k = r2+1:255;
y3 = c*(k-r2) + b*(r2-r1)+a*r1;
plot (k,y3);
xlim([0 255]);
ylim([0 255]);
xlabel('input gray level, r');
ylabel('outphut gray level, s');
title('Form of transformation');
hold on; figure;
f = imread('Fig3.10(b).jpg');
[m, n] = size (f);
for i = 1:m
for j = 1:n
if((f(i,j)>=0) & (f(i,j)<=r1))
g(i,j) = a*f(i,j);
else
if((f(i,j)>r1) & (f(i,j)<=r2))
g(i,j) = ((b*(f(i,j)-r1)+(a*r1)));
else
if((f(i,j)>r2) & (f(i,j)<=255))
g(i,j) = ((c*(f(i,j)-r2)+(b*(r2-r1)+(a*r1))));
end
end
end
end
end
imshow(f), figure, imshow(g);
% function thresholding
>> f = imread('Fig3.10(b).jpg');
[m, n] = size(f);
for i = 1:m
for j = 1:n
if((f(i,j)>=0) & (f(i,j)<128))
8
g(i,j) = 0;
else
g(i,j) = 255;
end
end
end
imshow(f), figure, imshow(g);
(a) Form of contrast stretching transformation function.
(b) A low-contrast image. (c) Result of contrast stretching. (d)
Result of thresholding
a b
c d
9
(a) An 8-bit image. (b) – (f) The 8 bit plane
a b c
d e f
10
3.3.1 Histogram equalization
The transformation function of histogram equalization is
( ) ∑ ( ) ∑
k = 0, 1, …, L – 1.
% Histogram;
f1 = imread('Fig3.15(a)1top.jpg');
f2 = imread('Fig3.15(a)2.jpg');
f3 = imread('Fig3.15(a)3.jpg');
f4 = imread('Fig3.15(a)4.jpg');
f = input('image: ');
imhist(f), figure;
g = histeq(f, 256);
imshow(g), figure, imhist(g);
a b c
Fig. 3.17 Transformation functions (1) through (4) were obtained from the
images in Fig. 3.17 (a), using histogram equalization
11
a b
Fig. 3.15 Four
basic image
types: dark,
light, low
contrast, high
contrast, and
their
corresponding
histograms
12
a b c
Fig. 3.17 (a) Image from Fig. 3.15. (b) Results of histogram equalization. (c)
Corresponding histograms.
13
3.4.2 Subtraction
The difference between tow images f (x, y) and h (x, y), expressed as
g (x, y) = f (x, y) – h (x, y),
The commands,
f1 = imread('Fig3.28.a.jpg');
f2 = imread('Fig3.28.b.jpg');
f3 = imsubtract(f1,f2);
f4 = histeq(f3,256);
imshow(f3), figure, imshow(f4);
a b
c d
Fig. 3.17 (a) The first image. (b) The second image. (c) Difference between (a) and
(b). (d) Histogram – equalized difference image.
14
3.6.1 Smoothing Linear Filters
The commands,
f = imread('Fig3.35(a).jpg');
w3 = 1/ (3. ^2)*ones (3);
g3 = imfilter (f, w3, 'conv', 'replicate', 'same');
w5 = 1/ (5. ^2)*ones (5);
g5 = imfilter (f, w5, 'conv', 'replicate', 'same');
w9 = 1/ (9. ^2)*ones (9);
g9 = imfilter (f, w9, 'conv', 'replicate', 'same');
w15 = 1/ (15. ^2)*ones (15);
g15 = imfilter (f, w15, 'conv', 'replicate', 'same');
w35 = 1/ (35. ^2)*ones (35);
g35 = imfilter(f, w35, 'conv', 'replicate', 'same');
imshow (g3), figure, imshow (g5), figure, imshow (g9), figure, imshow
(g15), figure, imshow (g35), figure;
h = imread ('Fig3.36(a).jpg');
h15 = imfilter (h, w15, 'conv', 'replicate', 'same');
[m, n] = size (h15);
for i = 1:m
for j = 1:n
if ((h15 (i,j)>=0) & (h15 (i,j)<128))
g (i,j) = 0;
else
g(i,j) = 255;
end
end
end
imshow(h15), figure, imshow(g);
15
Fig. 3.35 (a) Original image, of size 500 x 500 pixels. (b) – (f) Result of
smoothing with square averaging filter masks of size n = 3, 5, 9, 15,
and 35 respectively.
a b
c d
e f
16
3.6.2 Order-Statistics Filters
The commands,
>> f = imread('Fig3.37(a).jpg');
w3 = 1/(3.^2)*ones(3);
g3 = imfilter(f, w3, 'conv', 'replicate', 'same');
g = medfilt2(g3);
imshow(g3), figure, imshow(g);
a b c
Fig. 3.36 (a) Original image. (b) Image processed by a 15 x 15 averaging mask.
(c) Result of thresholding (b)
Fig. 3.37 (a) X – ray image of circuit board corrupted by salt – and –
pepper noise. (b) Noise reduction with a 3 x 3 averaging mask. (c)
Noise reduction with a 3 x 3 median filter
a b c
17
3.7.2 The Laplacian
The Laplacian for image enhancement is as follows:
( )
{
( ) ( )
( ) ( )
( )
The commands,
% Laplacian function
f1 = imread('Fig3.40(a).jpg');
w4 = fspecial('laplacian', 0);
g1 = imfilter(f1, w4, 'replicate');
imshow(g1, [ ]), figure;
f2 = im2double(f1);
g2 = imfilter(f2, w4, 'replicate');
imshow(g2, [ ]), figure;
g3 = imsubtract(f2,g2);
imshow(g3)
Fig. 3.40 (a) Image of
the North Pole
of the moon.
(b) Laplacian
image scaled
for display
purposes. (d)
Image
enhanced by
Eq. (3.7 – 5)
a b
c d
18
% Laplacian simplication
f1 = imread ('Fig3.41(c).jpg');
w5 = [0 -1 0; -1 5 -1; 0 -1 0];
g1 = imfilter (f1, w5, 'replicate');
imshow (g1), figure;
w9 = [-1 -1 -1; -1 9 -1; -1 -1 -1];
g2 = imfilter (f1, w9, 'replicate');
imshow (g2);
0 -1 0
-1 5 -1
0 -1 0
-1 -1 -1
-1 9 -1
-1 -1 -1
a b c
d e
Fig. 3.37 (a) Composite Laplacian mask. (b) A second composite
mask. (c) Scanning electron microscope image. (d) and (e)
Result of filtering with the masks in (a) and (b) respectively.
19
3.7.3 The Gradient
The commands,
>> f1 = imread('Fig3.45(a).jpg');
w = fspecial('sobel');
g1 = imfilter(f1, w, 'replicate');
imshow(g1);
a b Fig. 3.45 (a) Optical image of contact lens (note defects on the
boundary at 4 and 5 o’clock). (b) Sobel gradient
Ad

Recommended

3. INTRODUCTION TO PROTECTIVE RELAYING.pptx
3. INTRODUCTION TO PROTECTIVE RELAYING.pptx
Muhd Hafizi Idris
 
Enhancement in spatial domain
Enhancement in spatial domain
Ashish Kumar
 
Chapter 3 image enhancement (spatial domain)
Chapter 3 image enhancement (spatial domain)
asodariyabhavesh
 
Image Restoration (Frequency Domain Filters):Basics
Image Restoration (Frequency Domain Filters):Basics
Kalyan Acharjya
 
Digital Image Processing - Image Restoration
Digital Image Processing - Image Restoration
Mathankumar S
 
Image processing second unit Notes
Image processing second unit Notes
AAKANKSHA JAIN
 
LAPLACE TRANSFORM SUITABILITY FOR IMAGE PROCESSING
LAPLACE TRANSFORM SUITABILITY FOR IMAGE PROCESSING
Priyanka Rathore
 
Diabetes Mellitus
Diabetes Mellitus
MD Abdul Haleem
 
Image segmentation
Image segmentation
Tubur Borgoary
 
6.frequency domain image_processing
6.frequency domain image_processing
Nashid Alam
 
Spatial filtering using image processing
Spatial filtering using image processing
Anuj Arora
 
Image processing
Image processing
Mohammed Abraruddin
 
Image Processing
Image Processing
tijeel
 
image enhancement
image enhancement
Rajendra Prasad
 
Image processing SaltPepper Noise
Image processing SaltPepper Noise
Ankush Srivastava
 
Image enhancement
Image enhancement
Kuppusamy P
 
Digital Image Processing
Digital Image Processing
lalithambiga kamaraj
 
Region filling
Region filling
hetvi naik
 
Fundamentals of Image Processing & Computer Vision with MATLAB
Fundamentals of Image Processing & Computer Vision with MATLAB
Ali Ghanbarzadeh
 
IRJET- Color Balance and Fusion for Underwater Image Enhancement: Survey
IRJET- Color Balance and Fusion for Underwater Image Enhancement: Survey
IRJET Journal
 
Module 31
Module 31
UllasSS1
 
Spatial operation.ppt
Spatial operation.ppt
Bhanubhakta Poudel
 
COM2304: Intensity Transformation and Spatial Filtering – II Spatial Filterin...
COM2304: Intensity Transformation and Spatial Filtering – II Spatial Filterin...
Hemantha Kulathilake
 
Sharpening using frequency Domain Filter
Sharpening using frequency Domain Filter
arulraj121
 
Comparison of image segmentation
Comparison of image segmentation
Haitham Ahmed
 
Unit vi
Unit vi
swapnasalil
 
Psuedo color
Psuedo color
Mariashoukat1206
 
Image processing Presentation
Image processing Presentation
Valia koonambaikulathamma college of engineering and technology
 
annotated-chap-3-gw.ppt
annotated-chap-3-gw.ppt
TharshninipriyaRajas
 
Aistats RTD
Aistats RTD
Yuma Murakami
 

More Related Content

What's hot (20)

Image segmentation
Image segmentation
Tubur Borgoary
 
6.frequency domain image_processing
6.frequency domain image_processing
Nashid Alam
 
Spatial filtering using image processing
Spatial filtering using image processing
Anuj Arora
 
Image processing
Image processing
Mohammed Abraruddin
 
Image Processing
Image Processing
tijeel
 
image enhancement
image enhancement
Rajendra Prasad
 
Image processing SaltPepper Noise
Image processing SaltPepper Noise
Ankush Srivastava
 
Image enhancement
Image enhancement
Kuppusamy P
 
Digital Image Processing
Digital Image Processing
lalithambiga kamaraj
 
Region filling
Region filling
hetvi naik
 
Fundamentals of Image Processing & Computer Vision with MATLAB
Fundamentals of Image Processing & Computer Vision with MATLAB
Ali Ghanbarzadeh
 
IRJET- Color Balance and Fusion for Underwater Image Enhancement: Survey
IRJET- Color Balance and Fusion for Underwater Image Enhancement: Survey
IRJET Journal
 
Module 31
Module 31
UllasSS1
 
Spatial operation.ppt
Spatial operation.ppt
Bhanubhakta Poudel
 
COM2304: Intensity Transformation and Spatial Filtering – II Spatial Filterin...
COM2304: Intensity Transformation and Spatial Filtering – II Spatial Filterin...
Hemantha Kulathilake
 
Sharpening using frequency Domain Filter
Sharpening using frequency Domain Filter
arulraj121
 
Comparison of image segmentation
Comparison of image segmentation
Haitham Ahmed
 
Unit vi
Unit vi
swapnasalil
 
Psuedo color
Psuedo color
Mariashoukat1206
 
Image processing Presentation
Image processing Presentation
Valia koonambaikulathamma college of engineering and technology
 
6.frequency domain image_processing
6.frequency domain image_processing
Nashid Alam
 
Spatial filtering using image processing
Spatial filtering using image processing
Anuj Arora
 
Image Processing
Image Processing
tijeel
 
Image processing SaltPepper Noise
Image processing SaltPepper Noise
Ankush Srivastava
 
Image enhancement
Image enhancement
Kuppusamy P
 
Region filling
Region filling
hetvi naik
 
Fundamentals of Image Processing & Computer Vision with MATLAB
Fundamentals of Image Processing & Computer Vision with MATLAB
Ali Ghanbarzadeh
 
IRJET- Color Balance and Fusion for Underwater Image Enhancement: Survey
IRJET- Color Balance and Fusion for Underwater Image Enhancement: Survey
IRJET Journal
 
COM2304: Intensity Transformation and Spatial Filtering – II Spatial Filterin...
COM2304: Intensity Transformation and Spatial Filtering – II Spatial Filterin...
Hemantha Kulathilake
 
Sharpening using frequency Domain Filter
Sharpening using frequency Domain Filter
arulraj121
 
Comparison of image segmentation
Comparison of image segmentation
Haitham Ahmed
 

Similar to Digital image processing using matlab: basic transformations, filters and operators (20)

annotated-chap-3-gw.ppt
annotated-chap-3-gw.ppt
TharshninipriyaRajas
 
Aistats RTD
Aistats RTD
Yuma Murakami
 
Existing method used for analysis of images
Existing method used for analysis of images
ssuser1ecccc
 
Existing method used for analysis of images
Existing method used for analysis of images
ssuser1ecccc
 
matlab.docx
matlab.docx
AraniNavaratnarajah2
 
G Intensity transformation and spatial filtering(1).ppt
G Intensity transformation and spatial filtering(1).ppt
deekshithadasari26
 
Lect 03 - first portion
Lect 03 - first portion
Moe Moe Myint
 
Histogram processing
Histogram processing
Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
 
Ch 3. Image Enhancement in the Spatial Domain_okay.ppt
Ch 3. Image Enhancement in the Spatial Domain_okay.ppt
nurulrahat02
 
Notes on image processing
Notes on image processing
Mohammed Kamel
 
DIP_Manual.pdf
DIP_Manual.pdf
NetraBahadurKatuwal
 
1.funtions (1)
1.funtions (1)
josnihmurni2907
 
Digital Image processing is the class of methods that deal with manipulating ...
Digital Image processing is the class of methods that deal with manipulating ...
kusumrao5
 
Lect02.ppt
Lect02.ppt
RaniaAzad
 
ch-2.2 histogram image processing .pptx
ch-2.2 histogram image processing .pptx
satyanarayana242612
 
Funções 1
Funções 1
KalculosOnline
 
Introduction to image contrast and enhancement method
Introduction to image contrast and enhancement method
Abhishekvb
 
Hand book of Howard Anton calculus exercises 8th edition
Hand book of Howard Anton calculus exercises 8th edition
PriSim
 
Computer vision 3 4
Computer vision 3 4
sachinmore76
 
Image Processing Homework 1
Image Processing Homework 1
Joshua Smith
 
Existing method used for analysis of images
Existing method used for analysis of images
ssuser1ecccc
 
Existing method used for analysis of images
Existing method used for analysis of images
ssuser1ecccc
 
G Intensity transformation and spatial filtering(1).ppt
G Intensity transformation and spatial filtering(1).ppt
deekshithadasari26
 
Lect 03 - first portion
Lect 03 - first portion
Moe Moe Myint
 
Ch 3. Image Enhancement in the Spatial Domain_okay.ppt
Ch 3. Image Enhancement in the Spatial Domain_okay.ppt
nurulrahat02
 
Notes on image processing
Notes on image processing
Mohammed Kamel
 
Digital Image processing is the class of methods that deal with manipulating ...
Digital Image processing is the class of methods that deal with manipulating ...
kusumrao5
 
ch-2.2 histogram image processing .pptx
ch-2.2 histogram image processing .pptx
satyanarayana242612
 
Introduction to image contrast and enhancement method
Introduction to image contrast and enhancement method
Abhishekvb
 
Hand book of Howard Anton calculus exercises 8th edition
Hand book of Howard Anton calculus exercises 8th edition
PriSim
 
Computer vision 3 4
Computer vision 3 4
sachinmore76
 
Image Processing Homework 1
Image Processing Homework 1
Joshua Smith
 
Ad

Recently uploaded (20)

Great Governors' Send-Off Quiz 2025 Prelims IIT KGP
Great Governors' Send-Off Quiz 2025 Prelims IIT KGP
IIT Kharagpur Quiz Club
 
List View Components in Odoo 18 - Odoo Slides
List View Components in Odoo 18 - Odoo Slides
Celine George
 
OBSESSIVE COMPULSIVE DISORDER.pptx IN 5TH SEMESTER B.SC NURSING, 2ND YEAR GNM...
OBSESSIVE COMPULSIVE DISORDER.pptx IN 5TH SEMESTER B.SC NURSING, 2ND YEAR GNM...
parmarjuli1412
 
M&A5 Q1 1 differentiate evolving early Philippine conventional and contempora...
M&A5 Q1 1 differentiate evolving early Philippine conventional and contempora...
ErlizaRosete
 
GREAT QUIZ EXCHANGE 2025 - GENERAL QUIZ.pptx
GREAT QUIZ EXCHANGE 2025 - GENERAL QUIZ.pptx
Ronisha Das
 
SCHIZOPHRENIA OTHER PSYCHOTIC DISORDER LIKE Persistent delusion/Capgras syndr...
SCHIZOPHRENIA OTHER PSYCHOTIC DISORDER LIKE Persistent delusion/Capgras syndr...
parmarjuli1412
 
LAZY SUNDAY QUIZ "A GENERAL QUIZ" JUNE 2025 SMC QUIZ CLUB, SILCHAR MEDICAL CO...
LAZY SUNDAY QUIZ "A GENERAL QUIZ" JUNE 2025 SMC QUIZ CLUB, SILCHAR MEDICAL CO...
Ultimatewinner0342
 
Gladiolous Cultivation practices by AKL.pdf
Gladiolous Cultivation practices by AKL.pdf
kushallamichhame
 
How to Manage Different Customer Addresses in Odoo 18 Accounting
How to Manage Different Customer Addresses in Odoo 18 Accounting
Celine George
 
NSUMD_M1 Library Orientation_June 11, 2025.pptx
NSUMD_M1 Library Orientation_June 11, 2025.pptx
Julie Sarpy
 
Pests of Maize: An comprehensive overview.pptx
Pests of Maize: An comprehensive overview.pptx
Arshad Shaikh
 
ECONOMICS, DISASTER MANAGEMENT, ROAD SAFETY - STUDY MATERIAL [10TH]
ECONOMICS, DISASTER MANAGEMENT, ROAD SAFETY - STUDY MATERIAL [10TH]
SHERAZ AHMAD LONE
 
2025 June Year 9 Presentation: Subject selection.pptx
2025 June Year 9 Presentation: Subject selection.pptx
mansk2
 
VCE Literature Section A Exam Response Guide
VCE Literature Section A Exam Response Guide
jpinnuck
 
Tanja Vujicic - PISA for Schools contact Info
Tanja Vujicic - PISA for Schools contact Info
EduSkills OECD
 
Q1_ENGLISH_PPT_WEEK 1 power point grade 3 Quarter 1 week 1
Q1_ENGLISH_PPT_WEEK 1 power point grade 3 Quarter 1 week 1
jutaydeonne
 
Paper 107 | From Watchdog to Lapdog: Ishiguro’s Fiction and the Rise of “Godi...
Paper 107 | From Watchdog to Lapdog: Ishiguro’s Fiction and the Rise of “Godi...
Rajdeep Bavaliya
 
Photo chemistry Power Point Presentation
Photo chemistry Power Point Presentation
mprpgcwa2024
 
Code Profiling in Odoo 18 - Odoo 18 Slides
Code Profiling in Odoo 18 - Odoo 18 Slides
Celine George
 
Vitamin and Nutritional Deficiencies.pptx
Vitamin and Nutritional Deficiencies.pptx
Vishal Chanalia
 
Great Governors' Send-Off Quiz 2025 Prelims IIT KGP
Great Governors' Send-Off Quiz 2025 Prelims IIT KGP
IIT Kharagpur Quiz Club
 
List View Components in Odoo 18 - Odoo Slides
List View Components in Odoo 18 - Odoo Slides
Celine George
 
OBSESSIVE COMPULSIVE DISORDER.pptx IN 5TH SEMESTER B.SC NURSING, 2ND YEAR GNM...
OBSESSIVE COMPULSIVE DISORDER.pptx IN 5TH SEMESTER B.SC NURSING, 2ND YEAR GNM...
parmarjuli1412
 
M&A5 Q1 1 differentiate evolving early Philippine conventional and contempora...
M&A5 Q1 1 differentiate evolving early Philippine conventional and contempora...
ErlizaRosete
 
GREAT QUIZ EXCHANGE 2025 - GENERAL QUIZ.pptx
GREAT QUIZ EXCHANGE 2025 - GENERAL QUIZ.pptx
Ronisha Das
 
SCHIZOPHRENIA OTHER PSYCHOTIC DISORDER LIKE Persistent delusion/Capgras syndr...
SCHIZOPHRENIA OTHER PSYCHOTIC DISORDER LIKE Persistent delusion/Capgras syndr...
parmarjuli1412
 
LAZY SUNDAY QUIZ "A GENERAL QUIZ" JUNE 2025 SMC QUIZ CLUB, SILCHAR MEDICAL CO...
LAZY SUNDAY QUIZ "A GENERAL QUIZ" JUNE 2025 SMC QUIZ CLUB, SILCHAR MEDICAL CO...
Ultimatewinner0342
 
Gladiolous Cultivation practices by AKL.pdf
Gladiolous Cultivation practices by AKL.pdf
kushallamichhame
 
How to Manage Different Customer Addresses in Odoo 18 Accounting
How to Manage Different Customer Addresses in Odoo 18 Accounting
Celine George
 
NSUMD_M1 Library Orientation_June 11, 2025.pptx
NSUMD_M1 Library Orientation_June 11, 2025.pptx
Julie Sarpy
 
Pests of Maize: An comprehensive overview.pptx
Pests of Maize: An comprehensive overview.pptx
Arshad Shaikh
 
ECONOMICS, DISASTER MANAGEMENT, ROAD SAFETY - STUDY MATERIAL [10TH]
ECONOMICS, DISASTER MANAGEMENT, ROAD SAFETY - STUDY MATERIAL [10TH]
SHERAZ AHMAD LONE
 
2025 June Year 9 Presentation: Subject selection.pptx
2025 June Year 9 Presentation: Subject selection.pptx
mansk2
 
VCE Literature Section A Exam Response Guide
VCE Literature Section A Exam Response Guide
jpinnuck
 
Tanja Vujicic - PISA for Schools contact Info
Tanja Vujicic - PISA for Schools contact Info
EduSkills OECD
 
Q1_ENGLISH_PPT_WEEK 1 power point grade 3 Quarter 1 week 1
Q1_ENGLISH_PPT_WEEK 1 power point grade 3 Quarter 1 week 1
jutaydeonne
 
Paper 107 | From Watchdog to Lapdog: Ishiguro’s Fiction and the Rise of “Godi...
Paper 107 | From Watchdog to Lapdog: Ishiguro’s Fiction and the Rise of “Godi...
Rajdeep Bavaliya
 
Photo chemistry Power Point Presentation
Photo chemistry Power Point Presentation
mprpgcwa2024
 
Code Profiling in Odoo 18 - Odoo 18 Slides
Code Profiling in Odoo 18 - Odoo 18 Slides
Celine George
 
Vitamin and Nutritional Deficiencies.pptx
Vitamin and Nutritional Deficiencies.pptx
Vishal Chanalia
 
Ad

Digital image processing using matlab: basic transformations, filters and operators

  • 1. NATIONAL CHENG KUNG UNIVERSITY Inst. of Manufacturing Information & Systems DIGITAL IMAGE PROCESSING AND SOFTWARE IMPLEMENTATION HOMEWORK 1 Professor name: Chen, Shang-Liang Student name: Nguyen Van Thanh Student ID: P96007019 Class: P9-009 Image Processing and Software Implementation Time: [4] 2  4
  • 2. 1 Table of Contents PROBLEM................................................................................................................................................................. 2 SOLUTION................................................................................................................................................................ 3 3.2.1 Negative transformation ............................................................................................................................ 3 3.2.2 Log transformation..................................................................................................................................... 3 3.2.3 Power-law transformation ......................................................................................................................... 4 3.2.4 Piecewise-linear transformation ................................................................................................................ 7 3.3.1 Histogram equalization.............................................................................................................................10 3.4.2 Subtraction ...............................................................................................................................................12 3.6.1 Smoothing Linear Filters...........................................................................................................................14 3.6.2 Order-Statistics Filters..............................................................................................................................16 3.7.2 The Laplacian............................................................................................................................................17 3.7.3 The Gradient.............................................................................................................................................19
  • 3. 2 PROBLEM 影像處理與軟體實現[HW1] 課程碼:P953300 授課教授:陳響亮 教授 助教:陳怡瑄 日期:2011/03/10 題目:請以C# 撰寫一程式,可讀入一影像檔,並可執行以下之影像 空間強化功能。 a. 每一程式需設計一適當之人機操作介面。 b. 每一功能請以不同方法分開撰寫,各項參數需讓使用者自行輸入。 c. 以C# 撰寫時,可直接呼叫Matlab 現有函式,但呼叫多寡,將列為評分考量。 (呼叫越少,分數越高) 一、 基本灰階轉換 1. 影像負片轉換 2. Log轉換 3. 乘冪律轉換 4. 逐段線性函數轉換 二、 直方圖處理 1. 直方圖等化處理 2. 直方圖匹配處理 三、 使用算術/邏輯運算做增強 1. 影像相減增強 2. 影像平均增強 四、 平滑空間濾波器 1. 平滑線性濾波器 2. 排序統計濾波器 五、 銳化空間濾波器 1. 拉普拉斯銳化空間濾波器 2. 梯度銳化空間濾波器
  • 4. 3 SOLUTION Using Matlab for solving the problem 3.2.1 Negative transformation Given an image (input image) with gray level in the interval [0, L-1], the negative of that image is obtained by using the expression: s = (L – 1) – r, Where r is the gray level of the input image, and s is the gray level of the output. In Matlab, we use the commands, >> f=imread('Fig3.04(a).jpg'); g = imcomplement(f); imshow(f), figure, imshow(g) In/output image Out/in image 3.2.2 Log transformation The Logarithm transformations are implemented using the expression: s = c*log (1+r). In this case, c = 1. The commands, >> f=imread('Fig3.05(a).jpg'); g=im2uint8 (mat2gray (log (1+double (f)))); imshow(f), figure, imshow(g)
  • 5. 4 In/output image Out/in image 3.2.3 Power-law transformation Power-law transformations have the basic form, s = c*r. ^, where c and  are positive constants. The commands, >> f = imread ('Fig3.08(a).jpg'); f = im2double (f); [m n]=size (f); c = 1; gama = input('gama value = '); for i=1:m for j=1:n g(i,j)=c*(f(i,j)^gama); end end; imshow(f),figure, imshow(g); With  = 0.6, 0.4 and 0.3 respectively, we can get three images respectively, as shown in the following figure,
  • 6. 5 a b c d (a) The original image. (b) – (d) result of applying the power - law transformation with  = 0.6, 0.4 and 0.3 respectively
  • 7. 6 a b c d (a) The original image. (b) – (d) result of applying the power - law transformation with  = 3, 4 and 5 respectively
  • 8. 7 3.2.4 Piecewise-linear transformation Contrast stretching The commands, % function contrast stretching; >> r1 = 100; s1 = 40; r2 = 141; s2 = 216; a = (s1/r1); b = ((s2-s1)/ (r2-r1)); c = ((255-s2)/ (255-r2)); k = 0:r1; y1 = a*k; plot (k,y1); hold on; k = r1: r2; y2 = b*(k - r1) + a*r1; plot (k,y2); k = r2+1:255; y3 = c*(k-r2) + b*(r2-r1)+a*r1; plot (k,y3); xlim([0 255]); ylim([0 255]); xlabel('input gray level, r'); ylabel('outphut gray level, s'); title('Form of transformation'); hold on; figure; f = imread('Fig3.10(b).jpg'); [m, n] = size (f); for i = 1:m for j = 1:n if((f(i,j)>=0) & (f(i,j)<=r1)) g(i,j) = a*f(i,j); else if((f(i,j)>r1) & (f(i,j)<=r2)) g(i,j) = ((b*(f(i,j)-r1)+(a*r1))); else if((f(i,j)>r2) & (f(i,j)<=255)) g(i,j) = ((c*(f(i,j)-r2)+(b*(r2-r1)+(a*r1)))); end end end end end imshow(f), figure, imshow(g); % function thresholding >> f = imread('Fig3.10(b).jpg'); [m, n] = size(f); for i = 1:m for j = 1:n if((f(i,j)>=0) & (f(i,j)<128))
  • 9. 8 g(i,j) = 0; else g(i,j) = 255; end end end imshow(f), figure, imshow(g); (a) Form of contrast stretching transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding a b c d
  • 10. 9 (a) An 8-bit image. (b) – (f) The 8 bit plane a b c d e f
  • 11. 10 3.3.1 Histogram equalization The transformation function of histogram equalization is ( ) ∑ ( ) ∑ k = 0, 1, …, L – 1. % Histogram; f1 = imread('Fig3.15(a)1top.jpg'); f2 = imread('Fig3.15(a)2.jpg'); f3 = imread('Fig3.15(a)3.jpg'); f4 = imread('Fig3.15(a)4.jpg'); f = input('image: '); imhist(f), figure; g = histeq(f, 256); imshow(g), figure, imhist(g); a b c Fig. 3.17 Transformation functions (1) through (4) were obtained from the images in Fig. 3.17 (a), using histogram equalization
  • 12. 11 a b Fig. 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms
  • 13. 12 a b c Fig. 3.17 (a) Image from Fig. 3.15. (b) Results of histogram equalization. (c) Corresponding histograms.
  • 14. 13 3.4.2 Subtraction The difference between tow images f (x, y) and h (x, y), expressed as g (x, y) = f (x, y) – h (x, y), The commands, f1 = imread('Fig3.28.a.jpg'); f2 = imread('Fig3.28.b.jpg'); f3 = imsubtract(f1,f2); f4 = histeq(f3,256); imshow(f3), figure, imshow(f4); a b c d Fig. 3.17 (a) The first image. (b) The second image. (c) Difference between (a) and (b). (d) Histogram – equalized difference image.
  • 15. 14 3.6.1 Smoothing Linear Filters The commands, f = imread('Fig3.35(a).jpg'); w3 = 1/ (3. ^2)*ones (3); g3 = imfilter (f, w3, 'conv', 'replicate', 'same'); w5 = 1/ (5. ^2)*ones (5); g5 = imfilter (f, w5, 'conv', 'replicate', 'same'); w9 = 1/ (9. ^2)*ones (9); g9 = imfilter (f, w9, 'conv', 'replicate', 'same'); w15 = 1/ (15. ^2)*ones (15); g15 = imfilter (f, w15, 'conv', 'replicate', 'same'); w35 = 1/ (35. ^2)*ones (35); g35 = imfilter(f, w35, 'conv', 'replicate', 'same'); imshow (g3), figure, imshow (g5), figure, imshow (g9), figure, imshow (g15), figure, imshow (g35), figure; h = imread ('Fig3.36(a).jpg'); h15 = imfilter (h, w15, 'conv', 'replicate', 'same'); [m, n] = size (h15); for i = 1:m for j = 1:n if ((h15 (i,j)>=0) & (h15 (i,j)<128)) g (i,j) = 0; else g(i,j) = 255; end end end imshow(h15), figure, imshow(g);
  • 16. 15 Fig. 3.35 (a) Original image, of size 500 x 500 pixels. (b) – (f) Result of smoothing with square averaging filter masks of size n = 3, 5, 9, 15, and 35 respectively. a b c d e f
  • 17. 16 3.6.2 Order-Statistics Filters The commands, >> f = imread('Fig3.37(a).jpg'); w3 = 1/(3.^2)*ones(3); g3 = imfilter(f, w3, 'conv', 'replicate', 'same'); g = medfilt2(g3); imshow(g3), figure, imshow(g); a b c Fig. 3.36 (a) Original image. (b) Image processed by a 15 x 15 averaging mask. (c) Result of thresholding (b) Fig. 3.37 (a) X – ray image of circuit board corrupted by salt – and – pepper noise. (b) Noise reduction with a 3 x 3 averaging mask. (c) Noise reduction with a 3 x 3 median filter a b c
  • 18. 17 3.7.2 The Laplacian The Laplacian for image enhancement is as follows: ( ) { ( ) ( ) ( ) ( ) ( ) The commands, % Laplacian function f1 = imread('Fig3.40(a).jpg'); w4 = fspecial('laplacian', 0); g1 = imfilter(f1, w4, 'replicate'); imshow(g1, [ ]), figure; f2 = im2double(f1); g2 = imfilter(f2, w4, 'replicate'); imshow(g2, [ ]), figure; g3 = imsubtract(f2,g2); imshow(g3) Fig. 3.40 (a) Image of the North Pole of the moon. (b) Laplacian image scaled for display purposes. (d) Image enhanced by Eq. (3.7 – 5) a b c d
  • 19. 18 % Laplacian simplication f1 = imread ('Fig3.41(c).jpg'); w5 = [0 -1 0; -1 5 -1; 0 -1 0]; g1 = imfilter (f1, w5, 'replicate'); imshow (g1), figure; w9 = [-1 -1 -1; -1 9 -1; -1 -1 -1]; g2 = imfilter (f1, w9, 'replicate'); imshow (g2); 0 -1 0 -1 5 -1 0 -1 0 -1 -1 -1 -1 9 -1 -1 -1 -1 a b c d e Fig. 3.37 (a) Composite Laplacian mask. (b) A second composite mask. (c) Scanning electron microscope image. (d) and (e) Result of filtering with the masks in (a) and (b) respectively.
  • 20. 19 3.7.3 The Gradient The commands, >> f1 = imread('Fig3.45(a).jpg'); w = fspecial('sobel'); g1 = imfilter(f1, w, 'replicate'); imshow(g1); a b Fig. 3.45 (a) Optical image of contact lens (note defects on the boundary at 4 and 5 o’clock). (b) Sobel gradient