This document proposes a new method called efficient group variable selection (EGVS) for feature selection when features have a group structure. EGVS has two stages: 1) within-group variable selection evaluates each feature individually to select discriminative features within each group. 2) Between-group variable selection re-evaluates all features to remove redundancy and obtain an optimal subset by considering relationships between groups. The method is demonstrated on benchmark datasets, showing it increases classification accuracy by leveraging the group structure during feature selection.