SlideShare a Scribd company logo
2
Most read
3
Most read
Eigenvalues and Eigenvectors
Consider multiplying nonzero vectors by a given square matrix, such as
We want to see what influence the multiplication of the given matrix has on the vectors.
In the first case, we get a totally new vector with a different direction and different length
when compared to the original vector. This is what usually happens and is of no interest
here. In the second case something interesting happens. The multiplication produces a
vector which means the new vector has the same direction as
the original vector. The scale constant, which we denote by is 10. The problem of
systematically finding such ’s and nonzero vectors for a given square matrix will be the
theme of this chapter. It is called the matrix eigenvalue problem or, more commonly, the
eigenvalue problem.
We formalize our observation. Let be a given nonzero square matrix of
dimension Consider the following vector equation:
......(1).Ax ϭ lx
n ϫ n.
A ϭ [ajk]
l
l
[30 40]T
ϭ 10 [3 4]T
,
c
6 3
4 7
d c
5
1
d ϭ c
33
27
d, c
6 3
4 7
d c
3
4
d ϭ c
30
40
d.
c08.qxd 11/9/10 3:07 PM Page 323
(2))X  0(
0


A I
AX X
To have a non-zero solution of this set of homogeneous linear equation (2) | A-λI | must
.be equal to zero i.e
  (3 )A   I  0
.The following procedure can find the eigen values & eigen vector of n order matrix A
1. to find the characteristic polynomial P(λ) = det [A−λI
2. to find the roots of the characteristic equations the roots are eigen
values that we required
P()  0
3. To solve the homogenous system
]
.To find n- eigen vectors
[Α−λΙ]Χ=0
1
wallaa alebady
wallaa.alebady@yahoo.com
Example: Determine the eigen value and corresponding eigen vector at
the matrix







23
14
A
Solution:












 X  

1


 

a




  x 
4 


x 


 

x 







 







 

 


 X 
 

 



 
 
  x  x  x  x  x 

 


 

 









 
   
  (4 









 





 0 


1/ 2
1/ 2
3/ 10
1/ 10
theeigenvectors 
1/ 2
1/ 2
2
1
5theeigen vector corresponding to
,0523
05
5
23
14
5
3/ 10
1/ 10
3
1
10
31for X

X is defindby
eigenvector maybe normalized to unit length the normalized eigenvector
3
Theeigen vector corresponding to 1
3 where a is arbitrary constant
0323
0341
23
14
To find theeigen vector for  1
51 ,&
05)(05
)(2  ) 3  00
23
14
0
0
0
23
14
22
2
2121121
21121
2
1
2
1
2
1
1
21
21221
21121
2
1
2
1
2
length  aa
a
X
is
a x  ax x  x  x  x
x  x  x  x  x
xx
AX  Xfor
a
a
length  a
length
X
X
a
a
X
is
alet x  a , x
x  xx  x  x
x
x
x
x
AX  X
A I



 1)(  6



2
wallaa alebady
wallaa.alebady@yahoo.com
Example: Determine the eigen values and corresponding eigen vectors of
the matrix
A
P
P




X
3c








2 / 3 


 X 
 9 
 6 


















 X 
  



















 c  




















 




 A 








 




2 / 31 / 3
2 / 3 1 / 32 / 3
2 / 31 / 32 / 3
0(:
0(:
1 / 3
2 / 3
2 / 3
1
2
2
3144,
1
2
2
2
2
2
042
022
0223
0
402
022
223
0)(3
)(96 ,3 ,
9  18 )  09)((01629918( )
0
702
052
226
0( )
702
052
226
333
222
1
1
213
31
21
321
3
2
1
11
321
223
I ) XAcase
I ) XAcase
c
clength  c
length
X
c
c
c
c
the eigenvecto rs is X
cx  xlet x
xx
xx
xxx
x
x
x
I XAcase
distinct
Simplifyin g we have
I




 



3
wallaa alebady
wallaa.alebady@yahoo.com
.Find the eigenvalues. Find the corresponding eigenvectors
1. 2. 3. 4. D
13 5 2
2 7 Ϫ8
5 4 7
TD
3 5 3
0 4 6
0 0 1
Tc
5 Ϫ2
9 Ϫ6
dc
3.0 0
0 Ϫ0.6
d
5. E
Ϫ3 0 4 2
0 1 Ϫ2 4
2 4 Ϫ1 Ϫ2
0 2 Ϫ2 3
U
c08.qxd 10/30/10 10:56 AM Page 329
H.W
4
wallaa alebady
wallaa.alebady@yahoo.com

More Related Content

PPTX
Laboratory Animals - Taxonomic Classification
DOC
Laser, Pumping schemes, types of lasers and applications
PPT
Engineering Materials
PPT
Eigen values and eigen vectors
PPTX
Eigenvalue problems .ppt
PPTX
Basic thermodynamics
PPTX
Artificial intelligence
PPT
Null space, Rank and nullity theorem
Laboratory Animals - Taxonomic Classification
Laser, Pumping schemes, types of lasers and applications
Engineering Materials
Eigen values and eigen vectors
Eigenvalue problems .ppt
Basic thermodynamics
Artificial intelligence
Null space, Rank and nullity theorem

What's hot (20)

PPT
Vector calculus
PPTX
Diagonalization of matrix
PPT
Eigen values and eigenvectors
PDF
3.2.interpolation lagrange
PPTX
Gaussian Elimination Method
PDF
Chebyshev's inequality
PPTX
Inner product spaces
PPTX
newton raphson method
PPTX
Ode powerpoint presentation1
PPTX
Maths-->>Eigenvalues and eigenvectors
PDF
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
PPTX
Methods of variation of parameters- advance engineering mathe mathematics
PPTX
Runge Kutta Method
PDF
Integration in the complex plane
PPTX
Discreate time system and z transform
PPTX
EC8352-Signals and Systems - Laplace transform
PPT
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
PDF
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
PDF
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
PPTX
Applications of numerical methods
Vector calculus
Diagonalization of matrix
Eigen values and eigenvectors
3.2.interpolation lagrange
Gaussian Elimination Method
Chebyshev's inequality
Inner product spaces
newton raphson method
Ode powerpoint presentation1
Maths-->>Eigenvalues and eigenvectors
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
Methods of variation of parameters- advance engineering mathe mathematics
Runge Kutta Method
Integration in the complex plane
Discreate time system and z transform
EC8352-Signals and Systems - Laplace transform
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
Applications of numerical methods
Ad

Viewers also liked (20)

PPT
Eigen values and eigen vectors engineering
PDF
Eigen vector
PDF
Unit i-engineering-mechanics
PDF
First semester diploma Engineering physics i
PDF
Mech viva questions and_answers
PDF
Eigenvalues in a Nutshell
PDF
eigen valuesandeigenvectors
PPTX
PPTX
B.tech semester i-unit-v_eigen values and eigen vectors
PPT
FORCE SYSTEM
PPTX
Eigenvectors & Eigenvalues: The Road to Diagonalisation
PPTX
Lami's theorem
PDF
Lesson14: Eigenvalues And Eigenvectors
PDF
A preparation for interview engineering mechanics
PPTX
Eigen value and eigen vector
PDF
Numerical Methods - Oridnary Differential Equations - 3
PDF
Applied mechanics
PDF
Mechanical Engineering : Engineering mechanics, THE GATE ACADEMY
PPTX
Applications of Linear Algebra in Computer Sciences
PPTX
Eigenvalues and eigenvectors of symmetric matrices
Eigen values and eigen vectors engineering
Eigen vector
Unit i-engineering-mechanics
First semester diploma Engineering physics i
Mech viva questions and_answers
Eigenvalues in a Nutshell
eigen valuesandeigenvectors
B.tech semester i-unit-v_eigen values and eigen vectors
FORCE SYSTEM
Eigenvectors & Eigenvalues: The Road to Diagonalisation
Lami's theorem
Lesson14: Eigenvalues And Eigenvectors
A preparation for interview engineering mechanics
Eigen value and eigen vector
Numerical Methods - Oridnary Differential Equations - 3
Applied mechanics
Mechanical Engineering : Engineering mechanics, THE GATE ACADEMY
Applications of Linear Algebra in Computer Sciences
Eigenvalues and eigenvectors of symmetric matrices
Ad

Similar to Eigenvalues and eigenvectors (20)

PPTX
Matrices ppt
PPTX
mws_gen_sle_ppt_eigenvalues.pptx
PPTX
MODULE_05-Matrix Decomposition.pptx
PPTX
Eigen value and vector of linear transformation.pptx
PDF
Lecture_note2.pdf
PDF
Eigen-Decomposition: Eigenvalues and Eigenvectors.pdf
PDF
1- Matrices and their Applications.pdf
PPT
Mat 223_Ch5-Eigenvalues.ppt
PDF
project report(1)
PPTX
Linear Algebra Assignment Help
PDF
Applied numerical methods lec13
PPTX
Determinants, crammers law, Inverse by adjoint and the applications
PDF
Iq3514961502
PPTX
Linear Algebra Presentation including basic of linear Algebra
PDF
Kakuro: Solving the Constraint Satisfaction Problem
PDF
directed-research-report
PDF
Lecture2 (vectors and tensors).pdf
DOCX
University of duhok
PDF
Mtc ssample05
PDF
Mtc ssample05
Matrices ppt
mws_gen_sle_ppt_eigenvalues.pptx
MODULE_05-Matrix Decomposition.pptx
Eigen value and vector of linear transformation.pptx
Lecture_note2.pdf
Eigen-Decomposition: Eigenvalues and Eigenvectors.pdf
1- Matrices and their Applications.pdf
Mat 223_Ch5-Eigenvalues.ppt
project report(1)
Linear Algebra Assignment Help
Applied numerical methods lec13
Determinants, crammers law, Inverse by adjoint and the applications
Iq3514961502
Linear Algebra Presentation including basic of linear Algebra
Kakuro: Solving the Constraint Satisfaction Problem
directed-research-report
Lecture2 (vectors and tensors).pdf
University of duhok
Mtc ssample05
Mtc ssample05

Recently uploaded (20)

PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
Sustainable Sites - Green Building Construction
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
DOCX
573137875-Attendance-Management-System-original
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
Geodesy 1.pptx...............................................
PDF
737-MAX_SRG.pdf student reference guides
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Safety Seminar civil to be ensured for safe working.
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Sustainable Sites - Green Building Construction
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
Embodied AI: Ushering in the Next Era of Intelligent Systems
573137875-Attendance-Management-System-original
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Geodesy 1.pptx...............................................
737-MAX_SRG.pdf student reference guides
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
CYBER-CRIMES AND SECURITY A guide to understanding
Safety Seminar civil to be ensured for safe working.
Fundamentals of safety and accident prevention -final (1).pptx
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
III.4.1.2_The_Space_Environment.p pdffdf
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
UNIT 4 Total Quality Management .pptx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT

Eigenvalues and eigenvectors

  • 1. Eigenvalues and Eigenvectors Consider multiplying nonzero vectors by a given square matrix, such as We want to see what influence the multiplication of the given matrix has on the vectors. In the first case, we get a totally new vector with a different direction and different length when compared to the original vector. This is what usually happens and is of no interest here. In the second case something interesting happens. The multiplication produces a vector which means the new vector has the same direction as the original vector. The scale constant, which we denote by is 10. The problem of systematically finding such ’s and nonzero vectors for a given square matrix will be the theme of this chapter. It is called the matrix eigenvalue problem or, more commonly, the eigenvalue problem. We formalize our observation. Let be a given nonzero square matrix of dimension Consider the following vector equation: ......(1).Ax ϭ lx n ϫ n. A ϭ [ajk] l l [30 40]T ϭ 10 [3 4]T , c 6 3 4 7 d c 5 1 d ϭ c 33 27 d, c 6 3 4 7 d c 3 4 d ϭ c 30 40 d. c08.qxd 11/9/10 3:07 PM Page 323 (2))X  0( 0   A I AX X To have a non-zero solution of this set of homogeneous linear equation (2) | A-λI | must .be equal to zero i.e   (3 )A   I  0 .The following procedure can find the eigen values & eigen vector of n order matrix A 1. to find the characteristic polynomial P(λ) = det [A−λI 2. to find the roots of the characteristic equations the roots are eigen values that we required P()  0 3. To solve the homogenous system ] .To find n- eigen vectors [Α−λΙ]Χ=0 1 wallaa alebady [email protected]
  • 2. Example: Determine the eigen value and corresponding eigen vector at the matrix        23 14 A Solution:              X    1      a       x  4    x       x                          X                x  x  x  x  x                             (4                   0    1/ 2 1/ 2 3/ 10 1/ 10 theeigenvectors  1/ 2 1/ 2 2 1 5theeigen vector corresponding to ,0523 05 5 23 14 5 3/ 10 1/ 10 3 1 10 31for X  X is defindby eigenvector maybe normalized to unit length the normalized eigenvector 3 Theeigen vector corresponding to 1 3 where a is arbitrary constant 0323 0341 23 14 To find theeigen vector for  1 51 ,& 05)(05 )(2  ) 3  00 23 14 0 0 0 23 14 22 2 2121121 21121 2 1 2 1 2 1 1 21 21221 21121 2 1 2 1 2 length  aa a X is a x  ax x  x  x  x x  x  x  x  x xx AX  Xfor a a length  a length X X a a X is alet x  a , x x  xx  x  x x x x x AX  X A I     1)(  6    2 wallaa alebady [email protected]
  • 3. Example: Determine the eigen values and corresponding eigen vectors of the matrix A P P     X 3c         2 / 3     X   9   6                     X                         c                              A                2 / 31 / 3 2 / 3 1 / 32 / 3 2 / 31 / 32 / 3 0(: 0(: 1 / 3 2 / 3 2 / 3 1 2 2 3144, 1 2 2 2 2 2 042 022 0223 0 402 022 223 0)(3 )(96 ,3 , 9  18 )  09)((01629918( ) 0 702 052 226 0( ) 702 052 226 333 222 1 1 213 31 21 321 3 2 1 11 321 223 I ) XAcase I ) XAcase c clength  c length X c c c c the eigenvecto rs is X cx  xlet x xx xx xxx x x x I XAcase distinct Simplifyin g we have I          3 wallaa alebady [email protected]
  • 4. .Find the eigenvalues. Find the corresponding eigenvectors 1. 2. 3. 4. D 13 5 2 2 7 Ϫ8 5 4 7 TD 3 5 3 0 4 6 0 0 1 Tc 5 Ϫ2 9 Ϫ6 dc 3.0 0 0 Ϫ0.6 d 5. E Ϫ3 0 4 2 0 1 Ϫ2 4 2 4 Ϫ1 Ϫ2 0 2 Ϫ2 3 U c08.qxd 10/30/10 10:56 AM Page 329 H.W 4 wallaa alebady [email protected]