The document presents a new model for extractive text summarization that uses BERT (Bidirectional Encoder Representations from Transformers), a pretrained deep bidirectional transformer model, as the text encoder. The model consists of a BERT encoder and a sentence classifier. Sentences are encoded using BERT and classified as to whether they should be included in the summary. Evaluation on the CNN/Daily Mail corpus shows the model achieves state-of-the-art results comparable to other top models according to automatic metrics and human evaluation, making it the first work to apply BERT to text summarization.
Related topics: