SlideShare a Scribd company logo
Practical
full-text search
in PostgreSQL
Bill Karwin
PostgreSQL Conference West 09 • 2009/10/17
Me
• 20+ years experience
  •   Application/SDK developer
  •   Support, Training, Proj Mgmt
  •   C, Java, Perl, PHP

• SQL maven
  •   MySQL, PostgreSQL, InterBase
  •   Zend Framework
  •   Oracle, SQL Server, IBM DB2, SQLite

• Community contributor
Full Text Search
Text search



• Web applications demand speed
• Let’s compare 5 solutions for text search
Sample data


• StackOverflow.com Posts
  •   Data dump exported September 2009

  •   1.2 million tuples

  •   ~850 MB
StackOverflow ER diagram
Naive Searching
Some people, when confronted with a problem,
  think “I know, I’ll use regular expressions.”
        Now they have two problems.
                                     — Jamie Zawinsky
Performance issue

• LIKE with wildcards:             time: 91 sec
  SELECT * FROM Posts
  WHERE body LIKE ‘%postgresql%’
• POSIX regular expressions:
  SELECT * FROM Posts
  WHERE body ~ ‘postgresql’        time: 105 sec
Why so slow?

CREATE TABLE telephone_book (

 full_name
 
 VARCHAR(50)
);
CREATE INDEX name_idx ON telephone_book

 (full_name);
INSERT INTO telephone_book VALUES

 (‘Riddle, Thomas’),

 (‘Thomas, Dean’);
Why so slow?


• Search for all with last name “Thomas”
                                  uses
  SELECT * FROM telephone_book      index
  WHERE full_name LIKE ‘Thomas%’

• Search for all with first name “Thomas”
  SELECT * FROM telephone_book
  WHERE full_name LIKE ‘%Thomas’
                                    doesn’t
                                   use index
Indexes don’t help
searching for substrings
Accuracy issue

• Irrelevant or false matching words
  ‘one’, ‘money’, ‘prone’, etc.:
  body LIKE ‘%one%’
• Regular expressions in PostgreSQL
  support escapes for word boundaries:
  body ~ ‘yoney’
Solutions

• Full-Text Indexing in the RDBMS
• Sphinx Search
• Apache Lucene
• Inverted Index
• Search Engine Service
PostgreSQL
Text-Search
PostgreSQL Text-Search


• Since PostgreSQL 8.3
• TSVECTOR to represent text data
• TSQUERY to represent search predicates
• Special indexes
PostgreSQL Text-Search:

            Basic Querying



SELECT * FROM Posts
WHERE to_tsvector(title || ‘ ’ || body || ‘ ’ || tags)

 @@ to_tsquery(‘postgresql & performance’);

                   text-search
                    matching
                    operator
PostgreSQL Text-Search:

            Basic Querying



SELECT * FROM Posts
WHERE title || ‘ ’ || body || ‘ ’ || tags

 @@ ‘postgresql & performance’;

              time with no index:
                 8 min 2 sec
PostgreSQL Text-Search:

   Add TSVECTOR column


ALTER TABLE Posts ADD COLUMN

 PostText TSVECTOR;
UPDATE Posts SET PostText =

 to_tsvector(‘english’, title || ‘ ’ || body || ‘ ’ || tags);
Special index types



• GIN (generalized inverted index)
• GiST (generalized search tree)
PostgreSQL Text-Search:

             Indexing



CREATE INDEX PostText_GIN ON Posts

 USING GIN(PostText);


        time: 39 min 36 sec
PostgreSQL Text-Search:

               Querying



SELECT * FROM Posts
WHERE PostText @@ ‘postgresql & performance’;


           time with index:
           20 milliseconds
PostgreSQL Text-Search:

  Keep TSVECTOR in sync


CREATE TRIGGER TS_PostText

 BEFORE INSERT OR UPDATE ON Posts
FOR EACH ROW
EXECUTE PROCEDURE

 tsvector_update_trigger(
 ostText,
                               P

 
 ‘english’, title, body, tags);
Lucene
Lucene

• Full-text indexing and search engine
• Apache Project since 2001
• Apache License
• Java implementation
• Ports exist for C, Perl, Ruby, Python, PHP,
  etc.
Lucene:

            How to use


1. Add documents to index
2. Parse query
3. Execute query
Lucene:

         Creating an index



• Programmatic solution in Java...
            time: 8 minutes 55 seconds
Lucene:

                               Indexing
String url = "jdbc:postgresql:stackoverflow";
Properties props = new Properties();
props.setProperty("user", "postgres");
                                                              run any SQL query
Class.forName("org.postgresql.Driver");
Connection con = DriverManager.getConnection(url, props);

Statement stmt = con.createStatement();
String sql = "SELECT PostId, Title, Body, Tags FROM Posts";
ResultSet rs = stmt.executeQuery(sql);
                                                                open Lucene
Date start = new Date();                                        index writer
IndexWriter writer = new IndexWriter(FSDirectory.open(INDEX_DIR),

 new StandardAnalyzer(Version.LUCENE_CURRENT),

 true, IndexWriter.MaxFieldLength.LIMITED);
Lucene:

                                    Indexing
       loop over SQL result

while (rs.next()) {
 Document doc = new Document();

    doc.add(new Field("PostId", rs.getString("PostId"), Field.Store.YES, Field.Index.NO));
    doc.add(new Field("Title", rs.getString("Title"), Field.Store.YES, Field.Index.ANALYZED));
    doc.add(new Field("Body", rs.getString("Body"), Field.Store.YES, Field.Index.ANALYZED));
    doc.add(new Field("Tags", rs.getString("Tags"), Field.Store.YES, Field.Index.ANALYZED));

    writer.addDocument(doc);           each row is
}
                                      a Document
writer.optimize();
writer.close();
                                     with four Fields


                finish and
               close index
Lucene:

                            Querying

• Parse a Lucene query                                         define fields
  String[] fields = new String[3];
  fields[0] = “title”; fields[1] = “body”; fields[2] = “tags”;

  Query q = new MultiFieldQueryParser(fields,
  
  new StandardAnalyzer()).parse(‘performance’);


• Execute the query                                           parse search
                                                                 query
  Searcher s = new IndexSearcher(indexName);

  Hits h = s.search(q);
                                                    time: 80 milliseconds
Sphinx Search
Sphinx Search


• Embedded full-text search engine
• Started in 2001
• GPLv2 license
• Good database integration
Sphinx Search:

            How to use


1. Edit configuration file
2. Index the data
3. Query the index
4. Issues
Sphinx Search:

                sphinx.conf

source stackoverflowsrc
{

 type = pgsql

 sql_host = localhost

 sql_user = postgres

 sql_pass = xxxx

 sql_db = stackoverflow

 sql_query = SELECT PostId, Title, Body, Tags FROM Posts

 sql_query_info = SELECT * FROM Posts WHERE PostId=$id
}
Sphinx Search:

                 sphinx.conf


index stackoverflow
{

 source = stackoverflowsrc

 path = /opt/local/var/db/sphinx/stackoverflow
}
Sphinx Search:

               Building index


indexer -c sphinx.conf stackoverflow
collected 1242365 docs, 720.5 MB
sorted 88.3 Mhits, 100.0% done
total 1242365 docs, 720452944 bytes
total 357.647 sec, 2014423.75 bytes/sec, 3473.72 docs/sec



                   time: 5 min 57 sec
Sphinx Search:

         Querying index



search -c sphinx.conf -i stackoverflow

 -b “sql & performance”


           time: 8 milliseconds
Sphinx Search:

                        Issues

• Index updates are as expensive as
  rebuilding the index from scratch
  •   Maintain “main” index plus “delta” index for
      recent changes

  •   Merge indexes periodically

  •   Not all data fits into this model
Inverted Index
Inverted index

                             searchable words




Posts           Tags                 TagTypes



           intersection of
            words / Posts
Inverted index:

Updated ER Diagram
Inverted index:

               Data definition
CREATE TABLE TagTypes (

  TagId
 
     SERIAL PRIMARY KEY,

  Tag
 
  
    VARCHAR(50) NOT NULL
);

CREATE UNIQUE INDEX TagTypes_Tag_index ON TagTypes(Tag);

CREATE TABLE Tags (

  PostId
 
    INT NOT NULL,

  TagId
 
     INT NOT NULL,

  PRIMARY KEY (PostId, TagId),

  FOREIGN KEY (PostId) REFERENCES Posts (PostId),

  FOREIGN KEY (TagId) REFERENCES TagTypes (TagId)
);

CREATE INDEX Tags_PostId_index ON Tags(PostId);
CREATE INDEX Tags_TagId_index ON Tags(TagId);
Inverted index:

               Indexing


INSERT INTO Tags (PostId, TagId)

 SELECT p.PostId, t.TagId

 FROM Posts p JOIN TagTypes t

 ON (p.Tags LIKE ‘%<’ || t.Tag || ‘>%’);

                90 seconds
                 per tag!!
Inverted index:

             Querying


SELECT p.* FROM Posts p
JOIN Tags t USING (PostId)
JOIN TagTypes tt USING (TagId)
WHERE tt.Tag = ‘performance’;


               40 milliseconds
Search Engine Services
Search engine services:

Google Custom Search Engine

• http://www.google.com/cse/



• DEMO ➪    http://www.karwin.com/demo/gcse-demo.html


                                            even big web sites
                                             use this solution
Search engine services:

         Is it right for you?


• Your site is public and allows external index
• Search is a non-critical feature for you
• Search results are satisfactory
• You need to offload search processing
Comparison: Time to Build Index
LIKE predicate      none

PostgreSQL / GIN   40 min

Sphinx Search       6 min

Apache Lucene       9 min

Inverted index       high

Google / Yahoo!     offline
Comparison: Index Storage
LIKE predicate        none

PostgreSQL / GIN     532 MB

Sphinx Search        533 MB

Apache Lucene        1071 MB

Inverted index       101 MB

Google / Yahoo!       offline
Comparison: Query Speed
LIKE predicate      90+ sec

PostgreSQL / GIN    20 ms

Sphinx Search        8 ms

Apache Lucene       80 ms

Inverted index      40 ms

Google / Yahoo!        *
Comparison: Bottom-Line
                   indexing   storage    query     solution

LIKE predicate     none       none      11,250x     SQL

PostgreSQL / GIN     7x       5.3x       2.5x     RDBMS

Sphinx Search       1x *      5.3x        1x      3rd party

Apache Lucene       1.5x       10x       10x      3rd party

Inverted index      high       1x         5x        SQL

Google / Yahoo!    offline     offline       *       Service
Copyright 2009 Bill Karwin
        www.slideshare.net/billkarwin
              Released under a Creative Commons 3.0 License:
              http://creativecommons.org/licenses/by-nc-nd/3.0/

                You are free to share - to copy, distribute and
             transmit this work, under the following conditions:

   Attribution.                Noncommercial.          No Derivative Works.
You must attribute this    You may not use this work       You may not alter,
 work to Bill Karwin.       for commercial purposes.      transform, or build
                                                            upon this work.

More Related Content

PDF
MySQL: Indexing for Better Performance
PDF
Indexes in postgres
PDF
Query Optimization with MySQL 8.0 and MariaDB 10.3: The Basics
PDF
Will Oracle 23ai make you a better DBA or Developer?
PDF
Mysql Explain Explained
PPTX
Database Performance Tuning
PDF
Apache Solr Workshop
PDF
MySQL Database Monitoring: Must, Good and Nice to Have
MySQL: Indexing for Better Performance
Indexes in postgres
Query Optimization with MySQL 8.0 and MariaDB 10.3: The Basics
Will Oracle 23ai make you a better DBA or Developer?
Mysql Explain Explained
Database Performance Tuning
Apache Solr Workshop
MySQL Database Monitoring: Must, Good and Nice to Have

What's hot (20)

PDF
Advanced MySQL Query Tuning
PDF
Sql query patterns, optimized
PDF
How to Use JSON in MySQL Wrong
PDF
How to Design Indexes, Really
PDF
What is new in PostgreSQL 14?
PDF
Regular expression in javascript
PDF
ODP
The PostgreSQL Query Planner
PDF
Introduction to CSS Grid Layout
PDF
Flexbox and Grid Layout
PDF
Introduction to MongoDB
PPT
Advanced Javascript
PDF
Deep Dive on ClickHouse Sharding and Replication-2202-09-22.pdf
PDF
ClickHouse Deep Dive, by Aleksei Milovidov
PDF
PostgreSQL Performance Tuning
PDF
Cassandra Introduction & Features
PDF
ClickHouse Keeper
PDF
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
PDF
A Day in the Life of a ClickHouse Query Webinar Slides
PPTX
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Advanced MySQL Query Tuning
Sql query patterns, optimized
How to Use JSON in MySQL Wrong
How to Design Indexes, Really
What is new in PostgreSQL 14?
Regular expression in javascript
The PostgreSQL Query Planner
Introduction to CSS Grid Layout
Flexbox and Grid Layout
Introduction to MongoDB
Advanced Javascript
Deep Dive on ClickHouse Sharding and Replication-2202-09-22.pdf
ClickHouse Deep Dive, by Aleksei Milovidov
PostgreSQL Performance Tuning
Cassandra Introduction & Features
ClickHouse Keeper
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
A Day in the Life of a ClickHouse Query Webinar Slides
Migration to ClickHouse. Practical guide, by Alexander Zaitsev
Ad

Similar to Full Text Search In PostgreSQL (20)

PPTX
PostgreSQL - It's kind've a nifty database
PDF
Full Text Search with Lucene
PDF
PostgreSQL and Sphinx pgcon 2013
PPT
Advanced full text searching techniques using Lucene
PPTX
An Introduction to Elastic Search.
PPT
Lucene basics
PDF
Postgresql search demystified
PDF
Полнотекстовый поиск в PostgreSQL / Александр Алексеев (Postgres Professional)
PDF
Full Text Search in PostgreSQL
PPTX
Full Text search in Django with Postgres
PPTX
Getting Started with MySQL Full Text Search
PDF
MYSQL Query Anti-Patterns That Can Be Moved to Sphinx
PPT
Introduction to Search Engines
PPTX
Apache lucene
PPT
Lucene and MySQL
PDF
LuSql: (Quickly and easily) Getting your data from your DBMS into Lucene
 
PDF
Pgbr 2013 fts
PDF
Real time fulltext search with sphinx
PDF
Better Full Text Search in PostgreSQL
PDF
Полнотекстовый поиск в PostgreSQL за миллисекунды (Олег Бартунов, Александр К...
PostgreSQL - It's kind've a nifty database
Full Text Search with Lucene
PostgreSQL and Sphinx pgcon 2013
Advanced full text searching techniques using Lucene
An Introduction to Elastic Search.
Lucene basics
Postgresql search demystified
Полнотекстовый поиск в PostgreSQL / Александр Алексеев (Postgres Professional)
Full Text Search in PostgreSQL
Full Text search in Django with Postgres
Getting Started with MySQL Full Text Search
MYSQL Query Anti-Patterns That Can Be Moved to Sphinx
Introduction to Search Engines
Apache lucene
Lucene and MySQL
LuSql: (Quickly and easily) Getting your data from your DBMS into Lucene
 
Pgbr 2013 fts
Real time fulltext search with sphinx
Better Full Text Search in PostgreSQL
Полнотекстовый поиск в PostgreSQL за миллисекунды (Олег Бартунов, Александр К...
Ad

More from Karwin Software Solutions LLC (14)

PDF
Recursive Query Throwdown
PDF
InnoDB Locking Explained with Stick Figures
PDF
SQL Outer Joins for Fun and Profit
PDF
Extensible Data Modeling
PDF
Survey of Percona Toolkit
PDF
PDF
MySQL 5.5 Guide to InnoDB Status
PDF
Requirements the Last Bottleneck
PDF
Mentor Your Indexes
PDF
Models for hierarchical data
PDF
Sql Injection Myths and Fallacies
PDF
Practical Object Oriented Models In Sql
PDF
Sql Antipatterns Strike Back
Recursive Query Throwdown
InnoDB Locking Explained with Stick Figures
SQL Outer Joins for Fun and Profit
Extensible Data Modeling
Survey of Percona Toolkit
MySQL 5.5 Guide to InnoDB Status
Requirements the Last Bottleneck
Mentor Your Indexes
Models for hierarchical data
Sql Injection Myths and Fallacies
Practical Object Oriented Models In Sql
Sql Antipatterns Strike Back

Recently uploaded (20)

PPTX
Big Data Technologies - Introduction.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Transforming Manufacturing operations through Intelligent Integrations
PPTX
breach-and-attack-simulation-cybersecurity-india-chennai-defenderrabbit-2025....
PDF
Electronic commerce courselecture one. Pdf
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Empathic Computing: Creating Shared Understanding
PDF
Modernizing your data center with Dell and AMD
PDF
How Onsite IT Support Drives Business Efficiency, Security, and Growth.pdf
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
GamePlan Trading System Review: Professional Trader's Honest Take
PDF
Chapter 2 Digital Image Fundamentals.pdf
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
CIFDAQ's Market Wrap: Ethereum Leads, Bitcoin Lags, Institutions Shift
PPTX
Cloud computing and distributed systems.
Big Data Technologies - Introduction.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
NewMind AI Monthly Chronicles - July 2025
Diabetes mellitus diagnosis method based random forest with bat algorithm
Transforming Manufacturing operations through Intelligent Integrations
breach-and-attack-simulation-cybersecurity-india-chennai-defenderrabbit-2025....
Electronic commerce courselecture one. Pdf
“AI and Expert System Decision Support & Business Intelligence Systems”
Empathic Computing: Creating Shared Understanding
Modernizing your data center with Dell and AMD
How Onsite IT Support Drives Business Efficiency, Security, and Growth.pdf
Per capita expenditure prediction using model stacking based on satellite ima...
GamePlan Trading System Review: Professional Trader's Honest Take
Chapter 2 Digital Image Fundamentals.pdf
Reach Out and Touch Someone: Haptics and Empathic Computing
CIFDAQ's Market Insight: SEC Turns Pro Crypto
CIFDAQ's Market Wrap: Ethereum Leads, Bitcoin Lags, Institutions Shift
Cloud computing and distributed systems.

Full Text Search In PostgreSQL

  • 1. Practical full-text search in PostgreSQL Bill Karwin PostgreSQL Conference West 09 • 2009/10/17
  • 2. Me • 20+ years experience • Application/SDK developer • Support, Training, Proj Mgmt • C, Java, Perl, PHP • SQL maven • MySQL, PostgreSQL, InterBase • Zend Framework • Oracle, SQL Server, IBM DB2, SQLite • Community contributor
  • 4. Text search • Web applications demand speed • Let’s compare 5 solutions for text search
  • 5. Sample data • StackOverflow.com Posts • Data dump exported September 2009 • 1.2 million tuples • ~850 MB
  • 7. Naive Searching Some people, when confronted with a problem, think “I know, I’ll use regular expressions.” Now they have two problems. — Jamie Zawinsky
  • 8. Performance issue • LIKE with wildcards: time: 91 sec SELECT * FROM Posts WHERE body LIKE ‘%postgresql%’ • POSIX regular expressions: SELECT * FROM Posts WHERE body ~ ‘postgresql’ time: 105 sec
  • 9. Why so slow? CREATE TABLE telephone_book ( full_name VARCHAR(50) ); CREATE INDEX name_idx ON telephone_book (full_name); INSERT INTO telephone_book VALUES (‘Riddle, Thomas’), (‘Thomas, Dean’);
  • 10. Why so slow? • Search for all with last name “Thomas” uses SELECT * FROM telephone_book index WHERE full_name LIKE ‘Thomas%’ • Search for all with first name “Thomas” SELECT * FROM telephone_book WHERE full_name LIKE ‘%Thomas’ doesn’t use index
  • 12. Accuracy issue • Irrelevant or false matching words ‘one’, ‘money’, ‘prone’, etc.: body LIKE ‘%one%’ • Regular expressions in PostgreSQL support escapes for word boundaries: body ~ ‘yoney’
  • 13. Solutions • Full-Text Indexing in the RDBMS • Sphinx Search • Apache Lucene • Inverted Index • Search Engine Service
  • 15. PostgreSQL Text-Search • Since PostgreSQL 8.3 • TSVECTOR to represent text data • TSQUERY to represent search predicates • Special indexes
  • 16. PostgreSQL Text-Search: Basic Querying SELECT * FROM Posts WHERE to_tsvector(title || ‘ ’ || body || ‘ ’ || tags) @@ to_tsquery(‘postgresql & performance’); text-search matching operator
  • 17. PostgreSQL Text-Search: Basic Querying SELECT * FROM Posts WHERE title || ‘ ’ || body || ‘ ’ || tags @@ ‘postgresql & performance’; time with no index: 8 min 2 sec
  • 18. PostgreSQL Text-Search: Add TSVECTOR column ALTER TABLE Posts ADD COLUMN PostText TSVECTOR; UPDATE Posts SET PostText = to_tsvector(‘english’, title || ‘ ’ || body || ‘ ’ || tags);
  • 19. Special index types • GIN (generalized inverted index) • GiST (generalized search tree)
  • 20. PostgreSQL Text-Search: Indexing CREATE INDEX PostText_GIN ON Posts USING GIN(PostText); time: 39 min 36 sec
  • 21. PostgreSQL Text-Search: Querying SELECT * FROM Posts WHERE PostText @@ ‘postgresql & performance’; time with index: 20 milliseconds
  • 22. PostgreSQL Text-Search: Keep TSVECTOR in sync CREATE TRIGGER TS_PostText BEFORE INSERT OR UPDATE ON Posts FOR EACH ROW EXECUTE PROCEDURE tsvector_update_trigger( ostText, P ‘english’, title, body, tags);
  • 24. Lucene • Full-text indexing and search engine • Apache Project since 2001 • Apache License • Java implementation • Ports exist for C, Perl, Ruby, Python, PHP, etc.
  • 25. Lucene: How to use 1. Add documents to index 2. Parse query 3. Execute query
  • 26. Lucene: Creating an index • Programmatic solution in Java... time: 8 minutes 55 seconds
  • 27. Lucene: Indexing String url = "jdbc:postgresql:stackoverflow"; Properties props = new Properties(); props.setProperty("user", "postgres"); run any SQL query Class.forName("org.postgresql.Driver"); Connection con = DriverManager.getConnection(url, props); Statement stmt = con.createStatement(); String sql = "SELECT PostId, Title, Body, Tags FROM Posts"; ResultSet rs = stmt.executeQuery(sql); open Lucene Date start = new Date(); index writer IndexWriter writer = new IndexWriter(FSDirectory.open(INDEX_DIR), new StandardAnalyzer(Version.LUCENE_CURRENT), true, IndexWriter.MaxFieldLength.LIMITED);
  • 28. Lucene: Indexing loop over SQL result while (rs.next()) { Document doc = new Document(); doc.add(new Field("PostId", rs.getString("PostId"), Field.Store.YES, Field.Index.NO)); doc.add(new Field("Title", rs.getString("Title"), Field.Store.YES, Field.Index.ANALYZED)); doc.add(new Field("Body", rs.getString("Body"), Field.Store.YES, Field.Index.ANALYZED)); doc.add(new Field("Tags", rs.getString("Tags"), Field.Store.YES, Field.Index.ANALYZED)); writer.addDocument(doc); each row is } a Document writer.optimize(); writer.close(); with four Fields finish and close index
  • 29. Lucene: Querying • Parse a Lucene query define fields String[] fields = new String[3]; fields[0] = “title”; fields[1] = “body”; fields[2] = “tags”; Query q = new MultiFieldQueryParser(fields, new StandardAnalyzer()).parse(‘performance’); • Execute the query parse search query Searcher s = new IndexSearcher(indexName); Hits h = s.search(q); time: 80 milliseconds
  • 31. Sphinx Search • Embedded full-text search engine • Started in 2001 • GPLv2 license • Good database integration
  • 32. Sphinx Search: How to use 1. Edit configuration file 2. Index the data 3. Query the index 4. Issues
  • 33. Sphinx Search: sphinx.conf source stackoverflowsrc { type = pgsql sql_host = localhost sql_user = postgres sql_pass = xxxx sql_db = stackoverflow sql_query = SELECT PostId, Title, Body, Tags FROM Posts sql_query_info = SELECT * FROM Posts WHERE PostId=$id }
  • 34. Sphinx Search: sphinx.conf index stackoverflow { source = stackoverflowsrc path = /opt/local/var/db/sphinx/stackoverflow }
  • 35. Sphinx Search: Building index indexer -c sphinx.conf stackoverflow collected 1242365 docs, 720.5 MB sorted 88.3 Mhits, 100.0% done total 1242365 docs, 720452944 bytes total 357.647 sec, 2014423.75 bytes/sec, 3473.72 docs/sec time: 5 min 57 sec
  • 36. Sphinx Search: Querying index search -c sphinx.conf -i stackoverflow -b “sql & performance” time: 8 milliseconds
  • 37. Sphinx Search: Issues • Index updates are as expensive as rebuilding the index from scratch • Maintain “main” index plus “delta” index for recent changes • Merge indexes periodically • Not all data fits into this model
  • 39. Inverted index searchable words Posts Tags TagTypes intersection of words / Posts
  • 41. Inverted index: Data definition CREATE TABLE TagTypes ( TagId SERIAL PRIMARY KEY, Tag VARCHAR(50) NOT NULL ); CREATE UNIQUE INDEX TagTypes_Tag_index ON TagTypes(Tag); CREATE TABLE Tags ( PostId INT NOT NULL, TagId INT NOT NULL, PRIMARY KEY (PostId, TagId), FOREIGN KEY (PostId) REFERENCES Posts (PostId), FOREIGN KEY (TagId) REFERENCES TagTypes (TagId) ); CREATE INDEX Tags_PostId_index ON Tags(PostId); CREATE INDEX Tags_TagId_index ON Tags(TagId);
  • 42. Inverted index: Indexing INSERT INTO Tags (PostId, TagId) SELECT p.PostId, t.TagId FROM Posts p JOIN TagTypes t ON (p.Tags LIKE ‘%<’ || t.Tag || ‘>%’); 90 seconds per tag!!
  • 43. Inverted index: Querying SELECT p.* FROM Posts p JOIN Tags t USING (PostId) JOIN TagTypes tt USING (TagId) WHERE tt.Tag = ‘performance’; 40 milliseconds
  • 45. Search engine services: Google Custom Search Engine • http://www.google.com/cse/ • DEMO ➪ http://www.karwin.com/demo/gcse-demo.html even big web sites use this solution
  • 46. Search engine services: Is it right for you? • Your site is public and allows external index • Search is a non-critical feature for you • Search results are satisfactory • You need to offload search processing
  • 47. Comparison: Time to Build Index LIKE predicate none PostgreSQL / GIN 40 min Sphinx Search 6 min Apache Lucene 9 min Inverted index high Google / Yahoo! offline
  • 48. Comparison: Index Storage LIKE predicate none PostgreSQL / GIN 532 MB Sphinx Search 533 MB Apache Lucene 1071 MB Inverted index 101 MB Google / Yahoo! offline
  • 49. Comparison: Query Speed LIKE predicate 90+ sec PostgreSQL / GIN 20 ms Sphinx Search 8 ms Apache Lucene 80 ms Inverted index 40 ms Google / Yahoo! *
  • 50. Comparison: Bottom-Line indexing storage query solution LIKE predicate none none 11,250x SQL PostgreSQL / GIN 7x 5.3x 2.5x RDBMS Sphinx Search 1x * 5.3x 1x 3rd party Apache Lucene 1.5x 10x 10x 3rd party Inverted index high 1x 5x SQL Google / Yahoo! offline offline * Service
  • 51. Copyright 2009 Bill Karwin www.slideshare.net/billkarwin Released under a Creative Commons 3.0 License: http://creativecommons.org/licenses/by-nc-nd/3.0/ You are free to share - to copy, distribute and transmit this work, under the following conditions: Attribution. Noncommercial. No Derivative Works. You must attribute this You may not use this work You may not alter, work to Bill Karwin. for commercial purposes. transform, or build upon this work.