The document discusses evolutionary algorithms and genetic algorithms. It defines evolutionary algorithms as computational models of natural selection and genetics that simulate evolution through processes of selection, mutation and reproduction to find optimal solutions to problems. Genetic algorithms are described as a class of stochastic search algorithms inspired by biological evolution that use concepts of natural selection and genetic inheritance to search for solutions. The key steps of a genetic algorithm are outlined, including initializing a population, evaluating fitness, selecting parents, performing crossover and mutation to produce offspring, and iterating over generations until a termination condition is met.
Related topics: