GraphFrames provides a unified API for graph queries and algorithms in Apache Spark SQL. It translates graph patterns and algorithms to relational operations optimized by the Spark SQL query optimizer. Materialized views can greatly improve performance of graph queries by enabling efficient join elimination and reordering. An evaluation found GraphFrames outperforms Neo4j for unanchored queries and approaches performance of GraphX for graph algorithms using whole-stage code generation in Spark SQL. Future work includes automatically suggesting optimal views and exploiting data partitioning.