SlideShare a Scribd company logo
Explaining the Postgres Query Optimizer
BRUCE MOMJIAN
January, 2015
The optimizer is the "brain" of the database, interpreting SQL
queries and determining the fastest method of execution. This
talk uses the EXPLAIN command to show how the optimizer
interprets queries and determines optimal execution.
Creative Commons Attribution License http://momjian.us/presentations
1 / 61
PostgreSQL the database…
◮ Open Source Object Relational DBMS since 1996
◮ Distributed under the PostgreSQL License
◮ Similar technical heritage as Oracle, SQL Server & DB2
◮ However, a strong adherence to standards (ANSI-SQL 2008)
◮ Highly extensible and adaptable design
◮ Languages, indexing, data types, etc.
◮ E.g. PostGIS, JSONB, SQL/MED
◮ Extensive use throughout the world for applications and
organizations of all types
◮ Bundled into Red Hat Enterprise Linux, Ubuntu, CentOS
and Amazon Linux
Explaining the Postgres Query Optimizer 2 / 61
PostgreSQL the community…
◮ Independent community led by a Core Team of six
◮ Large, active and vibrant community
◮ www.postgresql.org
◮ Downloads, Mailing lists, Documentation
◮ Sponsors sampler:
◮ Google, Red Hat, VMWare, Skype, Salesforce, HP and
EnterpriseDB
◮ http://www.postgresql.org/community/
Explaining the Postgres Query Optimizer 3 / 61
EnterpriseDB the company…
◮ The worldwide leader of Postgres based products and
services founded in 2004
◮ Customers include 50 of the Fortune 500 and 98 of the
Forbes Global 2000
◮ Enterprise offerings:
◮ PostgreSQL Support, Services and Training
◮ Postgres Plus Advanced Server with Oracle Compatibility
◮ Tools for Monitoring, Replication, HA, Backup & Recovery
Community
◮ Citizenship
◮ Contributor of key features: Materialized Views, JSON, &
more
◮ Nine community members on staff
Explaining the Postgres Query Optimizer 4 / 61
EnterpriseDB the company…
Explaining the Postgres Query Optimizer 5 / 61
Postgres Query Execution
User
Terminal
Code
Database
Server
Application
Queries
Results
PostgreSQL
Libpq
Explaining the Postgres Query Optimizer 6 / 61
Postgres Query Execution
utility
Plan
Optimal Path
Query
Postmaster
Postgres Postgres
Libpq
Main
Generate Plan
Traffic Cop
Generate Paths
Execute Plan
e.g. CREATE TABLE, COPY
SELECT, INSERT, UPDATE, DELETE
Rewrite Query
Parse Statement
Utility
Command
Storage ManagersCatalogUtilities
Access Methods Nodes / Lists
Explaining the Postgres Query Optimizer 7 / 61
Postgres Query Execution
utility
Plan
Optimal Path
Query
Generate Plan
Traffic Cop
Generate Paths
Execute Plan
e.g. CREATE TABLE, COPY
SELECT, INSERT, UPDATE, DELETE
Rewrite Query
Parse Statement
Utility
Command
Explaining the Postgres Query Optimizer 8 / 61
The Optimizer Is the Brain
http://www.wsmanaging.com/
Explaining the Postgres Query Optimizer 9 / 61
What Decisions Does the Optimizer Have to Make?
◮ Scan Method
◮ Join Method
◮ Join Order
Explaining the Postgres Query Optimizer 10 / 61
Which Scan Method?
◮ Sequential Scan
◮ Bitmap Index Scan
◮ Index Scan
Explaining the Postgres Query Optimizer 11 / 61
A Simple Example Using pg_class.relname
SELECT relname
FROM pg_class
ORDER BY 1
LIMIT 8;
relname
-----------------------------------
_pg_foreign_data_wrappers
_pg_foreign_servers
_pg_user_mappings
administrable_role_authorizations
applicable_roles
attributes
check_constraint_routine_usage
check_constraints
(8 rows)
Explaining the Postgres Query Optimizer 12 / 61
Let’s Use Just the First Letter of pg_class.relname
SELECT substring(relname, 1, 1)
FROM pg_class
ORDER BY 1
LIMIT 8;
substring
-----------
_
_
_
a
a
a
c
c
(8 rows)
Explaining the Postgres Query Optimizer 13 / 61
Create a Temporary Table with an Index
CREATE TEMPORARY TABLE sample (letter, junk) AS
SELECT substring(relname, 1, 1), repeat(’x’, 250)
FROM pg_class
ORDER BY random(); -- add rows in random order
SELECT 253
CREATE INDEX i_sample on sample (letter);
CREATE INDEX
All the queries used in this presentation are available at
http://momjian.us/main/writings/pgsql/optimizer.sql.
Explaining the Postgres Query Optimizer 14 / 61
Create an EXPLAIN Function
CREATE OR REPLACE FUNCTION lookup_letter(text) RETURNS SETOF text AS $$
BEGIN
RETURN QUERY EXECUTE ’
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’’’ || $1 || ’’’’;
END
$$ LANGUAGE plpgsql;
CREATE FUNCTION
Explaining the Postgres Query Optimizer 15 / 61
What is the Distribution of the sample Table?
WITH letters (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter, count, (count * 100.0 / (SUM(count) OVER ()))::numeric(4,1) AS "%"
FROM letters
ORDER BY 2 DESC;
Explaining the Postgres Query Optimizer 16 / 61
What is the Distribution of the sample Table?
letter | count | %
--------+-------+------
p | 199 | 78.7
s | 9 | 3.6
c | 8 | 3.2
r | 7 | 2.8
t | 5 | 2.0
v | 4 | 1.6
f | 4 | 1.6
d | 4 | 1.6
u | 3 | 1.2
a | 3 | 1.2
_ | 3 | 1.2
e | 2 | 0.8
i | 1 | 0.4
k | 1 | 0.4
(14 rows)
Explaining the Postgres Query Optimizer 17 / 61
Is the Distribution Important?
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’p’;
QUERY PLAN
------------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32)
Index Cond: (letter = ’p’::text)
(2 rows)
Explaining the Postgres Query Optimizer 18 / 61
Is the Distribution Important?
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’d’;
QUERY PLAN
------------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32)
Index Cond: (letter = ’d’::text)
(2 rows)
Explaining the Postgres Query Optimizer 19 / 61
Is the Distribution Important?
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’k’;
QUERY PLAN
------------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32)
Index Cond: (letter = ’k’::text)
(2 rows)
Explaining the Postgres Query Optimizer 20 / 61
Running ANALYZE Causes
a Sequential Scan for a Common Value
ANALYZE sample;
ANALYZE
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’p’;
QUERY PLAN
---------------------------------------------------------
Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)
Filter: (letter = ’p’::text)
(2 rows)
Autovacuum cannot ANALYZE (or VACUUM) temporary tables because
these tables are only visible to the creating session.
Explaining the Postgres Query Optimizer 21 / 61
Sequential Scan
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
8K
Heap
A
A
D
T
A
T
A
D
A
T
A
D
A
Explaining the Postgres Query Optimizer 22 / 61
A Less Common Value Causes a Bitmap Index Scan
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’d’;
QUERY PLAN
-----------------------------------------------------------------------
Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
Recheck Cond: (letter = ’d’::text)
-> Bitmap Index Scan on i_sample (cost=0.00..4.28 rows=4 width=0)
Index Cond: (letter = ’d’::text)
(4 rows)
Explaining the Postgres Query Optimizer 23 / 61
Bitmap Index Scan
=&
Combined
’A’ AND ’NS’
1
0
1
0
TableIndex 1
col1 = ’A’
Index 2
1
0
0
col2 = ’NS’
1 0
1
0
0
Index
Explaining the Postgres Query Optimizer 24 / 61
An Even Rarer Value Causes an Index Scan
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’k’;
QUERY PLAN
-----------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
Index Cond: (letter = ’k’::text)
(2 rows)
Explaining the Postgres Query Optimizer 25 / 61
Index Scan
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
< >=Key
< >=Key
Index
Heap
< >=Key
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
Explaining the Postgres Query Optimizer 26 / 61
Let’s Look at All Values and their Effects
WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter AS l, count, lookup_letter(letter)
FROM letter
ORDER BY 2 DESC;
l | count | lookup_letter
---+-------+-----------------------------------------------------------------------
p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)
p | 199 | Filter: (letter = ’p’::text)
s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2)
s | 9 | Filter: (letter = ’s’::text)
c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2)
c | 8 | Filter: (letter = ’c’::text)
r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2)
r | 7 | Filter: (letter = ’r’::text)
…
Explaining the Postgres Query Optimizer 27 / 61
OK, Just the First Lines
WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter AS l, count,
(SELECT *
FROM lookup_letter(letter) AS l2
LIMIT 1) AS lookup_letter
FROM letter
ORDER BY 2 DESC;
Explaining the Postgres Query Optimizer 28 / 61
Just the First EXPLAIN Lines
l | count | lookup_letter
---+-------+-----------------------------------------------------------------------
p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)
s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2)
c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2)
r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2)
t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2)
f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
_ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
(14 rows)
Explaining the Postgres Query Optimizer 29 / 61
We Can Force an Index Scan
SET enable_seqscan = false;
SET enable_bitmapscan = false;
WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter AS l, count,
(SELECT *
FROM lookup_letter(letter) AS l2
LIMIT 1) AS lookup_letter
FROM letter
ORDER BY 2 DESC;
Explaining the Postgres Query Optimizer 30 / 61
Notice the High Cost for Common Values
l | count | lookup_letter
---+-------+-----------------------------------------------------------------------
p | 199 | Index Scan using i_sample on sample (cost=0.00..39.33 rows=199 width=
s | 9 | Index Scan using i_sample on sample (cost=0.00..22.14 rows=9 width=2)
c | 8 | Index Scan using i_sample on sample (cost=0.00..19.84 rows=8 width=2)
r | 7 | Index Scan using i_sample on sample (cost=0.00..19.82 rows=7 width=2)
t | 5 | Index Scan using i_sample on sample (cost=0.00..15.21 rows=5 width=2)
d | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2)
v | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2)
f | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2)
_ | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2)
a | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2)
u | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2)
e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
(14 rows)
RESET ALL;
RESET
Explaining the Postgres Query Optimizer 31 / 61
This Was the Optimizer’s Preference
l | count | lookup_letter
---+-------+-----------------------------------------------------------------------
p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)
s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2)
c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2)
r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2)
t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2)
f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
_ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
(14 rows)
Explaining the Postgres Query Optimizer 32 / 61
Which Join Method?
◮ Nested Loop
◮ With Inner Sequential Scan
◮ With Inner Index Scan
◮ Hash Join
◮ Merge Join
Explaining the Postgres Query Optimizer 33 / 61
What Is in pg_proc.oid?
SELECT oid
FROM pg_proc
ORDER BY 1
LIMIT 8;
oid
-----
31
33
34
35
38
39
40
41
(8 rows)
Explaining the Postgres Query Optimizer 34 / 61
Create Temporary Tables
from pg_proc and pg_class
CREATE TEMPORARY TABLE sample1 (id, junk) AS
SELECT oid, repeat(’x’, 250)
FROM pg_proc
ORDER BY random(); -- add rows in random order
SELECT 2256
CREATE TEMPORARY TABLE sample2 (id, junk) AS
SELECT oid, repeat(’x’, 250)
FROM pg_class
ORDER BY random(); -- add rows in random order
SELECT 260
These tables have no indexes and no optimizer statistics.
Explaining the Postgres Query Optimizer 35 / 61
Join the Two Tables
with a Tight Restriction
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample1.id = 33;
QUERY PLAN
---------------------------------------------------------------------
Nested Loop (cost=0.00..234.68 rows=300 width=32)
-> Seq Scan on sample1 (cost=0.00..205.54 rows=50 width=4)
Filter: (id = 33::oid)
-> Materialize (cost=0.00..25.41 rows=6 width=36)
-> Seq Scan on sample2 (cost=0.00..25.38 rows=6 width=36)
Filter: (id = 33::oid)
(6 rows)
Explaining the Postgres Query Optimizer 36 / 61
Nested Loop Join
with Inner Sequential Scan
aag
aar
aay aag
aas
aar
aaa
aay
aai
aag
No Setup Required
aai
Used For Small Tables
Outer Inner
Explaining the Postgres Query Optimizer 37 / 61
Pseudocode for Nested Loop Join
with Inner Sequential Scan
for (i = 0; i < length(outer); i++)
for (j = 0; j < length(inner); j++)
if (outer[i] == inner[j])
output(outer[i], inner[j]);
Explaining the Postgres Query Optimizer 38 / 61
Join the Two Tables with a Looser Restriction
EXPLAIN SELECT sample1.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.id > 33;
QUERY PLAN
----------------------------------------------------------------------
Hash Join (cost=30.50..950.88 rows=20424 width=32)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36)
-> Hash (cost=25.38..25.38 rows=410 width=4)
-> Seq Scan on sample2 (cost=0.00..25.38 rows=410 width=4)
Filter: (id > 33::oid)
(6 rows)
Explaining the Postgres Query Optimizer 39 / 61
Hash Join
Hashed
Must fit in Main Memory
aak
aar
aak
aay aaraam
aao aaw
aay
aag
aas
Outer Inner
Explaining the Postgres Query Optimizer 40 / 61
Pseudocode for Hash Join
for (j = 0; j < length(inner); j++)
hash_key = hash(inner[j]);
append(hash_store[hash_key], inner[j]);
for (i = 0; i < length(outer); i++)
hash_key = hash(outer[i]);
for (j = 0; j < length(hash_store[hash_key]); j++)
if (outer[i] == hash_store[hash_key][j])
output(outer[i], inner[j]);
Explaining the Postgres Query Optimizer 41 / 61
Join the Two Tables with No Restriction
EXPLAIN SELECT sample1.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN
-------------------------------------------------------------------------
Merge Join (cost=927.72..1852.95 rows=61272 width=32)
Merge Cond: (sample2.id = sample1.id)
-> Sort (cost=85.43..88.50 rows=1230 width=4)
Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=4)
-> Sort (cost=842.29..867.20 rows=9963 width=36)
Sort Key: sample1.id
-> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36)
(8 rows)
Explaining the Postgres Query Optimizer 42 / 61
Merge Join
Sorted
Sorted
Ideal for Large Tables
An Index Can Be Used to Eliminate the Sort
aaa
aab
aac
aad
aaa
aab
aab
aaf
aaf
aac
aae
Outer Inner
Explaining the Postgres Query Optimizer 43 / 61
Pseudocode for Merge Join
sort(outer);
sort(inner);
i = 0;
j = 0;
save_j = 0;
while (i < length(outer))
if (outer[i] == inner[j])
output(outer[i], inner[j]);
if (outer[i] <= inner[j] && j < length(inner))
j++;
if (outer[i] < inner[j])
save_j = j;
else
i++;
j = save_j;
Explaining the Postgres Query Optimizer 44 / 61
Order of Joined Relations Is Insignificant
EXPLAIN SELECT sample2.junk
FROM sample2 JOIN sample1 ON (sample2.id = sample1.id);
QUERY PLAN
------------------------------------------------------------------------
Merge Join (cost=927.72..1852.95 rows=61272 width=32)
Merge Cond: (sample2.id = sample1.id)
-> Sort (cost=85.43..88.50 rows=1230 width=36)
Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=36)
-> Sort (cost=842.29..867.20 rows=9963 width=4)
Sort Key: sample1.id
-> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=4)
(8 rows)
The most restrictive relation, e.g. sample2, is always on the outer side of
merge joins. All previous merge joins also had sample2 in outer position.
Explaining the Postgres Query Optimizer 45 / 61
Add Optimizer Statistics
ANALYZE sample1;
ANALYZE sample2;
Explaining the Postgres Query Optimizer 46 / 61
This Was a Merge Join without Optimizer Statistics
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN
------------------------------------------------------------------------
Hash Join (cost=15.85..130.47 rows=260 width=254)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
-> Hash (cost=12.60..12.60 rows=260 width=258)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258)
(5 rows)
Explaining the Postgres Query Optimizer 47 / 61
Outer Joins Can Affect Optimizer Join Usage
EXPLAIN SELECT sample1.junk
FROM sample1 RIGHT OUTER JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN
--------------------------------------------------------------------------
Hash Left Join (cost=131.76..148.26 rows=260 width=254)
Hash Cond: (sample2.id = sample1.id)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=4)
-> Hash (cost=103.56..103.56 rows=2256 width=258)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=258)
(5 rows)
Use of hashes for outer joins was added in Postgres 9.1.
Explaining the Postgres Query Optimizer 48 / 61
Cross Joins Are Nested Loop Joins
without Join Restriction
EXPLAIN SELECT sample1.junk
FROM sample1 CROSS JOIN sample2;
QUERY PLAN
----------------------------------------------------------------------
Nested Loop (cost=0.00..7448.81 rows=586560 width=254)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=254)
-> Materialize (cost=0.00..13.90 rows=260 width=0)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=0)
(4 rows)
Explaining the Postgres Query Optimizer 49 / 61
Create Indexes
CREATE INDEX i_sample1 on sample1 (id);
CREATE INDEX i_sample2 on sample2 (id);
Explaining the Postgres Query Optimizer 50 / 61
Nested Loop with Inner Index Scan Now Possible
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample1.id = 33;
QUERY PLAN
---------------------------------------------------------------------------------
Nested Loop (cost=0.00..16.55 rows=1 width=254)
-> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4)
Index Cond: (id = 33::oid)
-> Index Scan using i_sample2 on sample2 (cost=0.00..8.27 rows=1 width=258)
Index Cond: (sample2.id = 33::oid)
(5 rows)
Explaining the Postgres Query Optimizer 51 / 61
Nested Loop Join with Inner Index Scan
aag
aar
aai
aay aag
aas
aar
aaa
aay
aai
aag
No Setup Required
Index Lookup
Index Must Already Exist
Outer Inner
Explaining the Postgres Query Optimizer 52 / 61
Pseudocode for Nested Loop Join
with Inner Index Scan
for (i = 0; i < length(outer); i++)
index_entry = get_first_match(outer[j])
while (index_entry)
output(outer[i], inner[index_entry]);
index_entry = get_next_match(index_entry);
Explaining the Postgres Query Optimizer 53 / 61
Query Restrictions Affect Join Usage
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.junk ˜ ’^aaa’;
QUERY PLAN
-------------------------------------------------------------------------------
Nested Loop (cost=0.00..21.53 rows=1 width=254)
-> Seq Scan on sample2 (cost=0.00..13.25 rows=1 width=258)
Filter: (junk ˜ ’^aaa’::text)
-> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4)
Index Cond: (sample1.id = sample2.id)
(5 rows)
No junk rows begin with ’aaa’.
Explaining the Postgres Query Optimizer 54 / 61
All ’junk’ Columns Begin with ’xxx’
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.junk ˜ ’^xxx’;
QUERY PLAN
------------------------------------------------------------------------
Hash Join (cost=16.50..131.12 rows=260 width=254)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
-> Hash (cost=13.25..13.25 rows=260 width=258)
-> Seq Scan on sample2 (cost=0.00..13.25 rows=260 width=258)
Filter: (junk ˜ ’^xxx’::text)
(6 rows)
Hash join was chosen because many more rows are expected. The
smaller table, e.g. sample2, is always hashed.
Explaining the Postgres Query Optimizer 55 / 61
Without LIMIT, Hash Is Used
for this Unrestricted Join
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN
------------------------------------------------------------------------
Hash Join (cost=15.85..130.47 rows=260 width=254)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
-> Hash (cost=12.60..12.60 rows=260 width=258)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258)
(5 rows)
Explaining the Postgres Query Optimizer 56 / 61
LIMIT Can Affect Join Usage
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 1;
QUERY PLAN
------------------------------------------------------------------------------------------
Limit (cost=0.00..1.83 rows=1 width=258)
-> Nested Loop (cost=0.00..477.02 rows=260 width=258)
-> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258)
-> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4)
Index Cond: (sample1.id = sample2.id)
(5 rows)
Explaining the Postgres Query Optimizer 57 / 61
LIMIT 10
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 10;
QUERY PLAN
------------------------------------------------------------------------------------------
Limit (cost=0.00..18.35 rows=10 width=258)
-> Nested Loop (cost=0.00..477.02 rows=260 width=258)
-> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258)
-> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4)
Index Cond: (sample1.id = sample2.id)
(5 rows)
Explaining the Postgres Query Optimizer 58 / 61
LIMIT 100 Switches to Hash Join
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 100;
QUERY PLAN
------------------------------------------------------------------------------------
Limit (cost=140.41..140.66 rows=100 width=258)
-> Sort (cost=140.41..141.06 rows=260 width=258)
Sort Key: sample2.id
-> Hash Join (cost=15.85..130.47 rows=260 width=258)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
-> Hash (cost=12.60..12.60 rows=260 width=258)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258)
(8 rows)
Explaining the Postgres Query Optimizer 59 / 61
Additional Resources…
◮ Postgres Downloads:
◮ www.enterprisedb.com/downloads
◮ Product and Services information:
◮ info@enterprisedb.com
Explaining the Postgres Query Optimizer 60 / 61
Conclusion
http://momjian.us/presentations http://www.vivapixel.com/photo/14252
Explaining the Postgres Query Optimizer 61 / 61
Ad

Recommended

Btree. Explore the heart of PostgreSQL.
Btree. Explore the heart of PostgreSQL.
Anastasia Lubennikova
 
[pgday.Seoul 2022] POSTGRES 테스트코드로 기여하기 - 이동욱
[pgday.Seoul 2022] POSTGRES 테스트코드로 기여하기 - 이동욱
PgDay.Seoul
 
PostgreSql query planning and tuning
PostgreSql query planning and tuning
Federico Campoli
 
PostgreSQL and RAM usage
PostgreSQL and RAM usage
Alexey Bashtanov
 
When is MyRocks good?
When is MyRocks good?
Alkin Tezuysal
 
بين المصطلح والتعبيرات الاصطلاحية
بين المصطلح والتعبيرات الاصطلاحية
jcdnawal
 
PostgreSQL query planner's internals
PostgreSQL query planner's internals
Alexey Ermakov
 
Lightweight Transactions in Scylla versus Apache Cassandra
Lightweight Transactions in Scylla versus Apache Cassandra
ScyllaDB
 
MyRocks introduction and production deployment
MyRocks introduction and production deployment
Yoshinori Matsunobu
 
Performance Profiling in Rust
Performance Profiling in Rust
InfluxData
 
PostgreSQL - Object Relational Database
PostgreSQL - Object Relational Database
Mubashar Iqbal
 
MySQL Query Optimization
MySQL Query Optimization
Morgan Tocker
 
Introduction VAUUM, Freezing, XID wraparound
Introduction VAUUM, Freezing, XID wraparound
Masahiko Sawada
 
MySQL 8.0 Optimizer Guide
MySQL 8.0 Optimizer Guide
Morgan Tocker
 
Stored procedures
Stored procedures
Prof.Nilesh Magar
 
SQLアンチパターン(インデックスショットガン)
SQLアンチパターン(インデックスショットガン)
Tomoaki Uchida
 
それだ!感のあるネーミングのつくりかた(ver 2.0)
それだ!感のあるネーミングのつくりかた(ver 2.0)
Koki Kaku
 
MySQL查询优化浅析
MySQL查询优化浅析
frogd
 
Observability of InfluxDB IOx: Tracing, Metrics and System Tables
Observability of InfluxDB IOx: Tracing, Metrics and System Tables
InfluxData
 
Cost-Based Optimizer in Apache Spark 2.2
Cost-Based Optimizer in Apache Spark 2.2
Databricks
 
Scylla Summit 2022: IO Scheduling & NVMe Disk Modelling
Scylla Summit 2022: IO Scheduling & NVMe Disk Modelling
ScyllaDB
 
[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진
[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진
PgDay.Seoul
 
Memoizeの仕組み(第41回PostgreSQLアンカンファレンス@オンライン 発表資料)
Memoizeの仕組み(第41回PostgreSQLアンカンファレンス@オンライン 発表資料)
NTT DATA Technology & Innovation
 
Jpug study-pq 20170121
Jpug study-pq 20170121
Kosuke Kida
 
pg_proctab: Accessing System Stats in PostgreSQL
pg_proctab: Accessing System Stats in PostgreSQL
Mark Wong
 
Mvcc in postgreSQL 권건우
Mvcc in postgreSQL 권건우
PgDay.Seoul
 
Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017
Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017
Amazon Web Services Korea
 
CLUB DB2 第122回 DB2管理本の著者が教える 簡単運用管理入門
CLUB DB2 第122回 DB2管理本の著者が教える 簡単運用管理入門
Akira Shimosako
 
The PostgreSQL Query Planner
The PostgreSQL Query Planner
Command Prompt., Inc
 
Flexible Indexing with Postgres
Flexible Indexing with Postgres
EDB
 

More Related Content

What's hot (20)

MyRocks introduction and production deployment
MyRocks introduction and production deployment
Yoshinori Matsunobu
 
Performance Profiling in Rust
Performance Profiling in Rust
InfluxData
 
PostgreSQL - Object Relational Database
PostgreSQL - Object Relational Database
Mubashar Iqbal
 
MySQL Query Optimization
MySQL Query Optimization
Morgan Tocker
 
Introduction VAUUM, Freezing, XID wraparound
Introduction VAUUM, Freezing, XID wraparound
Masahiko Sawada
 
MySQL 8.0 Optimizer Guide
MySQL 8.0 Optimizer Guide
Morgan Tocker
 
Stored procedures
Stored procedures
Prof.Nilesh Magar
 
SQLアンチパターン(インデックスショットガン)
SQLアンチパターン(インデックスショットガン)
Tomoaki Uchida
 
それだ!感のあるネーミングのつくりかた(ver 2.0)
それだ!感のあるネーミングのつくりかた(ver 2.0)
Koki Kaku
 
MySQL查询优化浅析
MySQL查询优化浅析
frogd
 
Observability of InfluxDB IOx: Tracing, Metrics and System Tables
Observability of InfluxDB IOx: Tracing, Metrics and System Tables
InfluxData
 
Cost-Based Optimizer in Apache Spark 2.2
Cost-Based Optimizer in Apache Spark 2.2
Databricks
 
Scylla Summit 2022: IO Scheduling & NVMe Disk Modelling
Scylla Summit 2022: IO Scheduling & NVMe Disk Modelling
ScyllaDB
 
[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진
[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진
PgDay.Seoul
 
Memoizeの仕組み(第41回PostgreSQLアンカンファレンス@オンライン 発表資料)
Memoizeの仕組み(第41回PostgreSQLアンカンファレンス@オンライン 発表資料)
NTT DATA Technology & Innovation
 
Jpug study-pq 20170121
Jpug study-pq 20170121
Kosuke Kida
 
pg_proctab: Accessing System Stats in PostgreSQL
pg_proctab: Accessing System Stats in PostgreSQL
Mark Wong
 
Mvcc in postgreSQL 권건우
Mvcc in postgreSQL 권건우
PgDay.Seoul
 
Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017
Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017
Amazon Web Services Korea
 
CLUB DB2 第122回 DB2管理本の著者が教える 簡単運用管理入門
CLUB DB2 第122回 DB2管理本の著者が教える 簡単運用管理入門
Akira Shimosako
 
MyRocks introduction and production deployment
MyRocks introduction and production deployment
Yoshinori Matsunobu
 
Performance Profiling in Rust
Performance Profiling in Rust
InfluxData
 
PostgreSQL - Object Relational Database
PostgreSQL - Object Relational Database
Mubashar Iqbal
 
MySQL Query Optimization
MySQL Query Optimization
Morgan Tocker
 
Introduction VAUUM, Freezing, XID wraparound
Introduction VAUUM, Freezing, XID wraparound
Masahiko Sawada
 
MySQL 8.0 Optimizer Guide
MySQL 8.0 Optimizer Guide
Morgan Tocker
 
SQLアンチパターン(インデックスショットガン)
SQLアンチパターン(インデックスショットガン)
Tomoaki Uchida
 
それだ!感のあるネーミングのつくりかた(ver 2.0)
それだ!感のあるネーミングのつくりかた(ver 2.0)
Koki Kaku
 
MySQL查询优化浅析
MySQL查询优化浅析
frogd
 
Observability of InfluxDB IOx: Tracing, Metrics and System Tables
Observability of InfluxDB IOx: Tracing, Metrics and System Tables
InfluxData
 
Cost-Based Optimizer in Apache Spark 2.2
Cost-Based Optimizer in Apache Spark 2.2
Databricks
 
Scylla Summit 2022: IO Scheduling & NVMe Disk Modelling
Scylla Summit 2022: IO Scheduling & NVMe Disk Modelling
ScyllaDB
 
[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진
[Pgday.Seoul 2017] 1. PostGIS의 사례로 본 PostgreSQL 확장 - 장병진
PgDay.Seoul
 
Memoizeの仕組み(第41回PostgreSQLアンカンファレンス@オンライン 発表資料)
Memoizeの仕組み(第41回PostgreSQLアンカンファレンス@オンライン 発表資料)
NTT DATA Technology & Innovation
 
Jpug study-pq 20170121
Jpug study-pq 20170121
Kosuke Kida
 
pg_proctab: Accessing System Stats in PostgreSQL
pg_proctab: Accessing System Stats in PostgreSQL
Mark Wong
 
Mvcc in postgreSQL 권건우
Mvcc in postgreSQL 권건우
PgDay.Seoul
 
Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017
Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017
Amazon Web Services Korea
 
CLUB DB2 第122回 DB2管理本の著者が教える 簡単運用管理入門
CLUB DB2 第122回 DB2管理本の著者が教える 簡単運用管理入門
Akira Shimosako
 

Viewers also liked (15)

The PostgreSQL Query Planner
The PostgreSQL Query Planner
Command Prompt., Inc
 
Flexible Indexing with Postgres
Flexible Indexing with Postgres
EDB
 
Postgres clusters
Postgres clusters
Stas Kelvich
 
Postgres-XC as a Key Value Store Compared To MongoDB
Postgres-XC as a Key Value Store Compared To MongoDB
Mason Sharp
 
variedades linguisticas por Paola Espinoza
variedades linguisticas por Paola Espinoza
paopeke26
 
1
1
Yahia Mahmoud
 
Indexes: The neglected performance all rounder
Indexes: The neglected performance all rounder
Markus Winand
 
Postgres-XC: Symmetric PostgreSQL Cluster
Postgres-XC: Symmetric PostgreSQL Cluster
Pavan Deolasee
 
Distributed Postgres
Distributed Postgres
Stas Kelvich
 
Multimaster
Multimaster
Stas Kelvich
 
GPGPU Accelerates PostgreSQL (English)
GPGPU Accelerates PostgreSQL (English)
Kohei KaiGai
 
Postgres-XC Write Scalable PostgreSQL Cluster
Postgres-XC Write Scalable PostgreSQL Cluster
Mason Sharp
 
SQL: Query optimization in practice
SQL: Query optimization in practice
Jano Suchal
 
Deep dive into PostgreSQL statistics.
Deep dive into PostgreSQL statistics.
Alexey Lesovsky
 
Modern SQL in Open Source and Commercial Databases
Modern SQL in Open Source and Commercial Databases
Markus Winand
 
Flexible Indexing with Postgres
Flexible Indexing with Postgres
EDB
 
Postgres-XC as a Key Value Store Compared To MongoDB
Postgres-XC as a Key Value Store Compared To MongoDB
Mason Sharp
 
variedades linguisticas por Paola Espinoza
variedades linguisticas por Paola Espinoza
paopeke26
 
Indexes: The neglected performance all rounder
Indexes: The neglected performance all rounder
Markus Winand
 
Postgres-XC: Symmetric PostgreSQL Cluster
Postgres-XC: Symmetric PostgreSQL Cluster
Pavan Deolasee
 
Distributed Postgres
Distributed Postgres
Stas Kelvich
 
GPGPU Accelerates PostgreSQL (English)
GPGPU Accelerates PostgreSQL (English)
Kohei KaiGai
 
Postgres-XC Write Scalable PostgreSQL Cluster
Postgres-XC Write Scalable PostgreSQL Cluster
Mason Sharp
 
SQL: Query optimization in practice
SQL: Query optimization in practice
Jano Suchal
 
Deep dive into PostgreSQL statistics.
Deep dive into PostgreSQL statistics.
Alexey Lesovsky
 
Modern SQL in Open Source and Commercial Databases
Modern SQL in Open Source and Commercial Databases
Markus Winand
 
Ad

Similar to How the Postgres Query Optimizer Works (20)

Explaining the Postgres Query Optimizer
Explaining the Postgres Query Optimizer
EDB
 
Explaining the Postgres Query Optimizer - PGCon 2014
Explaining the Postgres Query Optimizer - PGCon 2014
EDB
 
Explaining the Postgres Query Optimizer (Bruce Momjian)
Explaining the Postgres Query Optimizer (Bruce Momjian)
Ontico
 
query-optimization-techniques_talk.pdf
query-optimization-techniques_talk.pdf
garos1
 
PGDay India 2016
PGDay India 2016
Himanchali -
 
PostGreSQL Performance Tuning
PostGreSQL Performance Tuning
Maven Logix
 
query_tuning.pdf
query_tuning.pdf
ssuserf99076
 
Teaching PostgreSQL to new people
Teaching PostgreSQL to new people
Tomek Borek
 
Beyond EXPLAIN: Query Optimization From Theory To Code
Beyond EXPLAIN: Query Optimization From Theory To Code
Yuto Hayamizu
 
PostgreSQL High_Performance_Cheatsheet
PostgreSQL High_Performance_Cheatsheet
Lucian Oprea
 
Quick guide to PostgreSQL Performance Tuning
Quick guide to PostgreSQL Performance Tuning
Ron Morgan
 
MySQL Query Optimisation 101
MySQL Query Optimisation 101
Federico Razzoli
 
Query Optimizer – MySQL vs. PostgreSQL
Query Optimizer – MySQL vs. PostgreSQL
Christian Antognini
 
Advanced pg_stat_statements: Filtering, Regression Testing & more
Advanced pg_stat_statements: Filtering, Regression Testing & more
Lukas Fittl
 
Indexes don't mean slow inserts.
Indexes don't mean slow inserts.
Anastasia Lubennikova
 
Oracle performance tuning for java developers
Oracle performance tuning for java developers
Saeed Shahsavan
 
PostgreSQL Performance Problems: Monitoring and Alerting
PostgreSQL Performance Problems: Monitoring and Alerting
Grant Fritchey
 
PostgreSQL: Advanced indexing
PostgreSQL: Advanced indexing
Hans-Jürgen Schönig
 
Flexible Indexing with Postgres
Flexible Indexing with Postgres
EDB
 
Postgres can do THAT?
Postgres can do THAT?
alexbrasetvik
 
Explaining the Postgres Query Optimizer
Explaining the Postgres Query Optimizer
EDB
 
Explaining the Postgres Query Optimizer - PGCon 2014
Explaining the Postgres Query Optimizer - PGCon 2014
EDB
 
Explaining the Postgres Query Optimizer (Bruce Momjian)
Explaining the Postgres Query Optimizer (Bruce Momjian)
Ontico
 
query-optimization-techniques_talk.pdf
query-optimization-techniques_talk.pdf
garos1
 
PostGreSQL Performance Tuning
PostGreSQL Performance Tuning
Maven Logix
 
Teaching PostgreSQL to new people
Teaching PostgreSQL to new people
Tomek Borek
 
Beyond EXPLAIN: Query Optimization From Theory To Code
Beyond EXPLAIN: Query Optimization From Theory To Code
Yuto Hayamizu
 
PostgreSQL High_Performance_Cheatsheet
PostgreSQL High_Performance_Cheatsheet
Lucian Oprea
 
Quick guide to PostgreSQL Performance Tuning
Quick guide to PostgreSQL Performance Tuning
Ron Morgan
 
MySQL Query Optimisation 101
MySQL Query Optimisation 101
Federico Razzoli
 
Query Optimizer – MySQL vs. PostgreSQL
Query Optimizer – MySQL vs. PostgreSQL
Christian Antognini
 
Advanced pg_stat_statements: Filtering, Regression Testing & more
Advanced pg_stat_statements: Filtering, Regression Testing & more
Lukas Fittl
 
Oracle performance tuning for java developers
Oracle performance tuning for java developers
Saeed Shahsavan
 
PostgreSQL Performance Problems: Monitoring and Alerting
PostgreSQL Performance Problems: Monitoring and Alerting
Grant Fritchey
 
Flexible Indexing with Postgres
Flexible Indexing with Postgres
EDB
 
Postgres can do THAT?
Postgres can do THAT?
alexbrasetvik
 
Ad

More from EDB (20)

Cloud Migration Paths: Kubernetes, IaaS, or DBaaS
Cloud Migration Paths: Kubernetes, IaaS, or DBaaS
EDB
 
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
EDB
 
Migre sus bases de datos Oracle a la nube
Migre sus bases de datos Oracle a la nube
EDB
 
EFM Office Hours - APJ - July 29, 2021
EFM Office Hours - APJ - July 29, 2021
EDB
 
Benchmarking Cloud Native PostgreSQL
Benchmarking Cloud Native PostgreSQL
EDB
 
Las Variaciones de la Replicación de PostgreSQL
Las Variaciones de la Replicación de PostgreSQL
EDB
 
NoSQL and Spatial Database Capabilities using PostgreSQL
NoSQL and Spatial Database Capabilities using PostgreSQL
EDB
 
Is There Anything PgBouncer Can’t Do?
Is There Anything PgBouncer Can’t Do?
EDB
 
Data Analysis with TensorFlow in PostgreSQL
Data Analysis with TensorFlow in PostgreSQL
EDB
 
Practical Partitioning in Production with Postgres
Practical Partitioning in Production with Postgres
EDB
 
A Deeper Dive into EXPLAIN
A Deeper Dive into EXPLAIN
EDB
 
IOT with PostgreSQL
IOT with PostgreSQL
EDB
 
A Journey from Oracle to PostgreSQL
A Journey from Oracle to PostgreSQL
EDB
 
Psql is awesome!
Psql is awesome!
EDB
 
EDB 13 - New Enhancements for Security and Usability - APJ
EDB 13 - New Enhancements for Security and Usability - APJ
EDB
 
Comment sauvegarder correctement vos données
Comment sauvegarder correctement vos données
EDB
 
Cloud Native PostgreSQL - Italiano
Cloud Native PostgreSQL - Italiano
EDB
 
New enhancements for security and usability in EDB 13
New enhancements for security and usability in EDB 13
EDB
 
Best Practices in Security with PostgreSQL
Best Practices in Security with PostgreSQL
EDB
 
Cloud Native PostgreSQL - APJ
Cloud Native PostgreSQL - APJ
EDB
 
Cloud Migration Paths: Kubernetes, IaaS, or DBaaS
Cloud Migration Paths: Kubernetes, IaaS, or DBaaS
EDB
 
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
EDB
 
Migre sus bases de datos Oracle a la nube
Migre sus bases de datos Oracle a la nube
EDB
 
EFM Office Hours - APJ - July 29, 2021
EFM Office Hours - APJ - July 29, 2021
EDB
 
Benchmarking Cloud Native PostgreSQL
Benchmarking Cloud Native PostgreSQL
EDB
 
Las Variaciones de la Replicación de PostgreSQL
Las Variaciones de la Replicación de PostgreSQL
EDB
 
NoSQL and Spatial Database Capabilities using PostgreSQL
NoSQL and Spatial Database Capabilities using PostgreSQL
EDB
 
Is There Anything PgBouncer Can’t Do?
Is There Anything PgBouncer Can’t Do?
EDB
 
Data Analysis with TensorFlow in PostgreSQL
Data Analysis with TensorFlow in PostgreSQL
EDB
 
Practical Partitioning in Production with Postgres
Practical Partitioning in Production with Postgres
EDB
 
A Deeper Dive into EXPLAIN
A Deeper Dive into EXPLAIN
EDB
 
IOT with PostgreSQL
IOT with PostgreSQL
EDB
 
A Journey from Oracle to PostgreSQL
A Journey from Oracle to PostgreSQL
EDB
 
Psql is awesome!
Psql is awesome!
EDB
 
EDB 13 - New Enhancements for Security and Usability - APJ
EDB 13 - New Enhancements for Security and Usability - APJ
EDB
 
Comment sauvegarder correctement vos données
Comment sauvegarder correctement vos données
EDB
 
Cloud Native PostgreSQL - Italiano
Cloud Native PostgreSQL - Italiano
EDB
 
New enhancements for security and usability in EDB 13
New enhancements for security and usability in EDB 13
EDB
 
Best Practices in Security with PostgreSQL
Best Practices in Security with PostgreSQL
EDB
 
Cloud Native PostgreSQL - APJ
Cloud Native PostgreSQL - APJ
EDB
 

Recently uploaded (20)

“Addressing Evolving AI Model Challenges Through Memory and Storage,” a Prese...
“Addressing Evolving AI Model Challenges Through Memory and Storage,” a Prese...
Edge AI and Vision Alliance
 
“Key Requirements to Successfully Implement Generative AI in Edge Devices—Opt...
“Key Requirements to Successfully Implement Generative AI in Edge Devices—Opt...
Edge AI and Vision Alliance
 
FME for Distribution & Transmission Integrity Management Program (DIMP & TIMP)
FME for Distribution & Transmission Integrity Management Program (DIMP & TIMP)
Safe Software
 
AudGram Review: Build Visually Appealing, AI-Enhanced Audiograms to Engage Yo...
AudGram Review: Build Visually Appealing, AI-Enhanced Audiograms to Engage Yo...
SOFTTECHHUB
 
Integration of Utility Data into 3D BIM Models Using a 3D Solids Modeling Wor...
Integration of Utility Data into 3D BIM Models Using a 3D Solids Modeling Wor...
Safe Software
 
“From Enterprise to Makers: Driving Vision AI Innovation at the Extreme Edge,...
“From Enterprise to Makers: Driving Vision AI Innovation at the Extreme Edge,...
Edge AI and Vision Alliance
 
Floods in Valencia: Two FME-Powered Stories of Data Resilience
Floods in Valencia: Two FME-Powered Stories of Data Resilience
Safe Software
 
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
NTT DATA Technology & Innovation
 
Data Validation and System Interoperability
Data Validation and System Interoperability
Safe Software
 
Down the Rabbit Hole – Solving 5 Training Roadblocks
Down the Rabbit Hole – Solving 5 Training Roadblocks
Rustici Software
 
FIDO Seminar: Targeting Trust: The Future of Identity in the Workforce.pptx
FIDO Seminar: Targeting Trust: The Future of Identity in the Workforce.pptx
FIDO Alliance
 
The State of Web3 Industry- Industry Report
The State of Web3 Industry- Industry Report
Liveplex
 
Security Tips for Enterprise Azure Solutions
Security Tips for Enterprise Azure Solutions
Michele Leroux Bustamante
 
FIDO Seminar: New Data: Passkey Adoption in the Workforce.pptx
FIDO Seminar: New Data: Passkey Adoption in the Workforce.pptx
FIDO Alliance
 
Mastering AI Workflows with FME - Peak of Data & AI 2025
Mastering AI Workflows with FME - Peak of Data & AI 2025
Safe Software
 
Murdledescargadarkweb.pdfvolumen1 100 elementary
Murdledescargadarkweb.pdfvolumen1 100 elementary
JorgeSemperteguiMont
 
vertical-cnc-processing-centers-drillteq-v-200-en.pdf
vertical-cnc-processing-centers-drillteq-v-200-en.pdf
AmirStern2
 
Crypto Super 500 - 14th Report - June2025.pdf
Crypto Super 500 - 14th Report - June2025.pdf
Stephen Perrenod
 
Kubernetes Security Act Now Before It’s Too Late
Kubernetes Security Act Now Before It’s Too Late
Michael Furman
 
FME for Good: Integrating Multiple Data Sources with APIs to Support Local Ch...
FME for Good: Integrating Multiple Data Sources with APIs to Support Local Ch...
Safe Software
 
“Addressing Evolving AI Model Challenges Through Memory and Storage,” a Prese...
“Addressing Evolving AI Model Challenges Through Memory and Storage,” a Prese...
Edge AI and Vision Alliance
 
“Key Requirements to Successfully Implement Generative AI in Edge Devices—Opt...
“Key Requirements to Successfully Implement Generative AI in Edge Devices—Opt...
Edge AI and Vision Alliance
 
FME for Distribution & Transmission Integrity Management Program (DIMP & TIMP)
FME for Distribution & Transmission Integrity Management Program (DIMP & TIMP)
Safe Software
 
AudGram Review: Build Visually Appealing, AI-Enhanced Audiograms to Engage Yo...
AudGram Review: Build Visually Appealing, AI-Enhanced Audiograms to Engage Yo...
SOFTTECHHUB
 
Integration of Utility Data into 3D BIM Models Using a 3D Solids Modeling Wor...
Integration of Utility Data into 3D BIM Models Using a 3D Solids Modeling Wor...
Safe Software
 
“From Enterprise to Makers: Driving Vision AI Innovation at the Extreme Edge,...
“From Enterprise to Makers: Driving Vision AI Innovation at the Extreme Edge,...
Edge AI and Vision Alliance
 
Floods in Valencia: Two FME-Powered Stories of Data Resilience
Floods in Valencia: Two FME-Powered Stories of Data Resilience
Safe Software
 
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
NTT DATA Technology & Innovation
 
Data Validation and System Interoperability
Data Validation and System Interoperability
Safe Software
 
Down the Rabbit Hole – Solving 5 Training Roadblocks
Down the Rabbit Hole – Solving 5 Training Roadblocks
Rustici Software
 
FIDO Seminar: Targeting Trust: The Future of Identity in the Workforce.pptx
FIDO Seminar: Targeting Trust: The Future of Identity in the Workforce.pptx
FIDO Alliance
 
The State of Web3 Industry- Industry Report
The State of Web3 Industry- Industry Report
Liveplex
 
Security Tips for Enterprise Azure Solutions
Security Tips for Enterprise Azure Solutions
Michele Leroux Bustamante
 
FIDO Seminar: New Data: Passkey Adoption in the Workforce.pptx
FIDO Seminar: New Data: Passkey Adoption in the Workforce.pptx
FIDO Alliance
 
Mastering AI Workflows with FME - Peak of Data & AI 2025
Mastering AI Workflows with FME - Peak of Data & AI 2025
Safe Software
 
Murdledescargadarkweb.pdfvolumen1 100 elementary
Murdledescargadarkweb.pdfvolumen1 100 elementary
JorgeSemperteguiMont
 
vertical-cnc-processing-centers-drillteq-v-200-en.pdf
vertical-cnc-processing-centers-drillteq-v-200-en.pdf
AmirStern2
 
Crypto Super 500 - 14th Report - June2025.pdf
Crypto Super 500 - 14th Report - June2025.pdf
Stephen Perrenod
 
Kubernetes Security Act Now Before It’s Too Late
Kubernetes Security Act Now Before It’s Too Late
Michael Furman
 
FME for Good: Integrating Multiple Data Sources with APIs to Support Local Ch...
FME for Good: Integrating Multiple Data Sources with APIs to Support Local Ch...
Safe Software
 

How the Postgres Query Optimizer Works

  • 1. Explaining the Postgres Query Optimizer BRUCE MOMJIAN January, 2015 The optimizer is the "brain" of the database, interpreting SQL queries and determining the fastest method of execution. This talk uses the EXPLAIN command to show how the optimizer interprets queries and determines optimal execution. Creative Commons Attribution License http://momjian.us/presentations 1 / 61
  • 2. PostgreSQL the database… ◮ Open Source Object Relational DBMS since 1996 ◮ Distributed under the PostgreSQL License ◮ Similar technical heritage as Oracle, SQL Server & DB2 ◮ However, a strong adherence to standards (ANSI-SQL 2008) ◮ Highly extensible and adaptable design ◮ Languages, indexing, data types, etc. ◮ E.g. PostGIS, JSONB, SQL/MED ◮ Extensive use throughout the world for applications and organizations of all types ◮ Bundled into Red Hat Enterprise Linux, Ubuntu, CentOS and Amazon Linux Explaining the Postgres Query Optimizer 2 / 61
  • 3. PostgreSQL the community… ◮ Independent community led by a Core Team of six ◮ Large, active and vibrant community ◮ www.postgresql.org ◮ Downloads, Mailing lists, Documentation ◮ Sponsors sampler: ◮ Google, Red Hat, VMWare, Skype, Salesforce, HP and EnterpriseDB ◮ http://www.postgresql.org/community/ Explaining the Postgres Query Optimizer 3 / 61
  • 4. EnterpriseDB the company… ◮ The worldwide leader of Postgres based products and services founded in 2004 ◮ Customers include 50 of the Fortune 500 and 98 of the Forbes Global 2000 ◮ Enterprise offerings: ◮ PostgreSQL Support, Services and Training ◮ Postgres Plus Advanced Server with Oracle Compatibility ◮ Tools for Monitoring, Replication, HA, Backup & Recovery Community ◮ Citizenship ◮ Contributor of key features: Materialized Views, JSON, & more ◮ Nine community members on staff Explaining the Postgres Query Optimizer 4 / 61
  • 5. EnterpriseDB the company… Explaining the Postgres Query Optimizer 5 / 61
  • 7. Postgres Query Execution utility Plan Optimal Path Query Postmaster Postgres Postgres Libpq Main Generate Plan Traffic Cop Generate Paths Execute Plan e.g. CREATE TABLE, COPY SELECT, INSERT, UPDATE, DELETE Rewrite Query Parse Statement Utility Command Storage ManagersCatalogUtilities Access Methods Nodes / Lists Explaining the Postgres Query Optimizer 7 / 61
  • 8. Postgres Query Execution utility Plan Optimal Path Query Generate Plan Traffic Cop Generate Paths Execute Plan e.g. CREATE TABLE, COPY SELECT, INSERT, UPDATE, DELETE Rewrite Query Parse Statement Utility Command Explaining the Postgres Query Optimizer 8 / 61
  • 9. The Optimizer Is the Brain http://www.wsmanaging.com/ Explaining the Postgres Query Optimizer 9 / 61
  • 10. What Decisions Does the Optimizer Have to Make? ◮ Scan Method ◮ Join Method ◮ Join Order Explaining the Postgres Query Optimizer 10 / 61
  • 11. Which Scan Method? ◮ Sequential Scan ◮ Bitmap Index Scan ◮ Index Scan Explaining the Postgres Query Optimizer 11 / 61
  • 12. A Simple Example Using pg_class.relname SELECT relname FROM pg_class ORDER BY 1 LIMIT 8; relname ----------------------------------- _pg_foreign_data_wrappers _pg_foreign_servers _pg_user_mappings administrable_role_authorizations applicable_roles attributes check_constraint_routine_usage check_constraints (8 rows) Explaining the Postgres Query Optimizer 12 / 61
  • 13. Let’s Use Just the First Letter of pg_class.relname SELECT substring(relname, 1, 1) FROM pg_class ORDER BY 1 LIMIT 8; substring ----------- _ _ _ a a a c c (8 rows) Explaining the Postgres Query Optimizer 13 / 61
  • 14. Create a Temporary Table with an Index CREATE TEMPORARY TABLE sample (letter, junk) AS SELECT substring(relname, 1, 1), repeat(’x’, 250) FROM pg_class ORDER BY random(); -- add rows in random order SELECT 253 CREATE INDEX i_sample on sample (letter); CREATE INDEX All the queries used in this presentation are available at http://momjian.us/main/writings/pgsql/optimizer.sql. Explaining the Postgres Query Optimizer 14 / 61
  • 15. Create an EXPLAIN Function CREATE OR REPLACE FUNCTION lookup_letter(text) RETURNS SETOF text AS $$ BEGIN RETURN QUERY EXECUTE ’ EXPLAIN SELECT letter FROM sample WHERE letter = ’’’ || $1 || ’’’’; END $$ LANGUAGE plpgsql; CREATE FUNCTION Explaining the Postgres Query Optimizer 15 / 61
  • 16. What is the Distribution of the sample Table? WITH letters (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter, count, (count * 100.0 / (SUM(count) OVER ()))::numeric(4,1) AS "%" FROM letters ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 16 / 61
  • 17. What is the Distribution of the sample Table? letter | count | % --------+-------+------ p | 199 | 78.7 s | 9 | 3.6 c | 8 | 3.2 r | 7 | 2.8 t | 5 | 2.0 v | 4 | 1.6 f | 4 | 1.6 d | 4 | 1.6 u | 3 | 1.2 a | 3 | 1.2 _ | 3 | 1.2 e | 2 | 0.8 i | 1 | 0.4 k | 1 | 0.4 (14 rows) Explaining the Postgres Query Optimizer 17 / 61
  • 18. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’p’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’p’::text) (2 rows) Explaining the Postgres Query Optimizer 18 / 61
  • 19. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’d’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’d’::text) (2 rows) Explaining the Postgres Query Optimizer 19 / 61
  • 20. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’k’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’k’::text) (2 rows) Explaining the Postgres Query Optimizer 20 / 61
  • 21. Running ANALYZE Causes a Sequential Scan for a Common Value ANALYZE sample; ANALYZE EXPLAIN SELECT letter FROM sample WHERE letter = ’p’; QUERY PLAN --------------------------------------------------------- Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) Filter: (letter = ’p’::text) (2 rows) Autovacuum cannot ANALYZE (or VACUUM) temporary tables because these tables are only visible to the creating session. Explaining the Postgres Query Optimizer 21 / 61
  • 23. A Less Common Value Causes a Bitmap Index Scan EXPLAIN SELECT letter FROM sample WHERE letter = ’d’; QUERY PLAN ----------------------------------------------------------------------- Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) Recheck Cond: (letter = ’d’::text) -> Bitmap Index Scan on i_sample (cost=0.00..4.28 rows=4 width=0) Index Cond: (letter = ’d’::text) (4 rows) Explaining the Postgres Query Optimizer 23 / 61
  • 24. Bitmap Index Scan =& Combined ’A’ AND ’NS’ 1 0 1 0 TableIndex 1 col1 = ’A’ Index 2 1 0 0 col2 = ’NS’ 1 0 1 0 0 Index Explaining the Postgres Query Optimizer 24 / 61
  • 25. An Even Rarer Value Causes an Index Scan EXPLAIN SELECT letter FROM sample WHERE letter = ’k’; QUERY PLAN ----------------------------------------------------------------------- Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) Index Cond: (letter = ’k’::text) (2 rows) Explaining the Postgres Query Optimizer 25 / 61
  • 26. Index Scan A D A T A D A T A D A T A D A T A D A T A D A T A D < >=Key < >=Key Index Heap < >=Key A T A D A T A D A T A D A T A D A T A D A T Explaining the Postgres Query Optimizer 26 / 61
  • 27. Let’s Look at All Values and their Effects WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, lookup_letter(letter) FROM letter ORDER BY 2 DESC; l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) p | 199 | Filter: (letter = ’p’::text) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) s | 9 | Filter: (letter = ’s’::text) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) c | 8 | Filter: (letter = ’c’::text) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) r | 7 | Filter: (letter = ’r’::text) … Explaining the Postgres Query Optimizer 27 / 61
  • 28. OK, Just the First Lines WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, (SELECT * FROM lookup_letter(letter) AS l2 LIMIT 1) AS lookup_letter FROM letter ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 28 / 61
  • 29. Just the First EXPLAIN Lines l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) _ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) Explaining the Postgres Query Optimizer 29 / 61
  • 30. We Can Force an Index Scan SET enable_seqscan = false; SET enable_bitmapscan = false; WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, (SELECT * FROM lookup_letter(letter) AS l2 LIMIT 1) AS lookup_letter FROM letter ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 30 / 61
  • 31. Notice the High Cost for Common Values l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Index Scan using i_sample on sample (cost=0.00..39.33 rows=199 width= s | 9 | Index Scan using i_sample on sample (cost=0.00..22.14 rows=9 width=2) c | 8 | Index Scan using i_sample on sample (cost=0.00..19.84 rows=8 width=2) r | 7 | Index Scan using i_sample on sample (cost=0.00..19.82 rows=7 width=2) t | 5 | Index Scan using i_sample on sample (cost=0.00..15.21 rows=5 width=2) d | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) v | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) f | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) _ | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) a | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) u | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) RESET ALL; RESET Explaining the Postgres Query Optimizer 31 / 61
  • 32. This Was the Optimizer’s Preference l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) _ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) Explaining the Postgres Query Optimizer 32 / 61
  • 33. Which Join Method? ◮ Nested Loop ◮ With Inner Sequential Scan ◮ With Inner Index Scan ◮ Hash Join ◮ Merge Join Explaining the Postgres Query Optimizer 33 / 61
  • 34. What Is in pg_proc.oid? SELECT oid FROM pg_proc ORDER BY 1 LIMIT 8; oid ----- 31 33 34 35 38 39 40 41 (8 rows) Explaining the Postgres Query Optimizer 34 / 61
  • 35. Create Temporary Tables from pg_proc and pg_class CREATE TEMPORARY TABLE sample1 (id, junk) AS SELECT oid, repeat(’x’, 250) FROM pg_proc ORDER BY random(); -- add rows in random order SELECT 2256 CREATE TEMPORARY TABLE sample2 (id, junk) AS SELECT oid, repeat(’x’, 250) FROM pg_class ORDER BY random(); -- add rows in random order SELECT 260 These tables have no indexes and no optimizer statistics. Explaining the Postgres Query Optimizer 35 / 61
  • 36. Join the Two Tables with a Tight Restriction EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample1.id = 33; QUERY PLAN --------------------------------------------------------------------- Nested Loop (cost=0.00..234.68 rows=300 width=32) -> Seq Scan on sample1 (cost=0.00..205.54 rows=50 width=4) Filter: (id = 33::oid) -> Materialize (cost=0.00..25.41 rows=6 width=36) -> Seq Scan on sample2 (cost=0.00..25.38 rows=6 width=36) Filter: (id = 33::oid) (6 rows) Explaining the Postgres Query Optimizer 36 / 61
  • 37. Nested Loop Join with Inner Sequential Scan aag aar aay aag aas aar aaa aay aai aag No Setup Required aai Used For Small Tables Outer Inner Explaining the Postgres Query Optimizer 37 / 61
  • 38. Pseudocode for Nested Loop Join with Inner Sequential Scan for (i = 0; i < length(outer); i++) for (j = 0; j < length(inner); j++) if (outer[i] == inner[j]) output(outer[i], inner[j]); Explaining the Postgres Query Optimizer 38 / 61
  • 39. Join the Two Tables with a Looser Restriction EXPLAIN SELECT sample1.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.id > 33; QUERY PLAN ---------------------------------------------------------------------- Hash Join (cost=30.50..950.88 rows=20424 width=32) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) -> Hash (cost=25.38..25.38 rows=410 width=4) -> Seq Scan on sample2 (cost=0.00..25.38 rows=410 width=4) Filter: (id > 33::oid) (6 rows) Explaining the Postgres Query Optimizer 39 / 61
  • 40. Hash Join Hashed Must fit in Main Memory aak aar aak aay aaraam aao aaw aay aag aas Outer Inner Explaining the Postgres Query Optimizer 40 / 61
  • 41. Pseudocode for Hash Join for (j = 0; j < length(inner); j++) hash_key = hash(inner[j]); append(hash_store[hash_key], inner[j]); for (i = 0; i < length(outer); i++) hash_key = hash(outer[i]); for (j = 0; j < length(hash_store[hash_key]); j++) if (outer[i] == hash_store[hash_key][j]) output(outer[i], inner[j]); Explaining the Postgres Query Optimizer 41 / 61
  • 42. Join the Two Tables with No Restriction EXPLAIN SELECT sample1.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------- Merge Join (cost=927.72..1852.95 rows=61272 width=32) Merge Cond: (sample2.id = sample1.id) -> Sort (cost=85.43..88.50 rows=1230 width=4) Sort Key: sample2.id -> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=4) -> Sort (cost=842.29..867.20 rows=9963 width=36) Sort Key: sample1.id -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) (8 rows) Explaining the Postgres Query Optimizer 42 / 61
  • 43. Merge Join Sorted Sorted Ideal for Large Tables An Index Can Be Used to Eliminate the Sort aaa aab aac aad aaa aab aab aaf aaf aac aae Outer Inner Explaining the Postgres Query Optimizer 43 / 61
  • 44. Pseudocode for Merge Join sort(outer); sort(inner); i = 0; j = 0; save_j = 0; while (i < length(outer)) if (outer[i] == inner[j]) output(outer[i], inner[j]); if (outer[i] <= inner[j] && j < length(inner)) j++; if (outer[i] < inner[j]) save_j = j; else i++; j = save_j; Explaining the Postgres Query Optimizer 44 / 61
  • 45. Order of Joined Relations Is Insignificant EXPLAIN SELECT sample2.junk FROM sample2 JOIN sample1 ON (sample2.id = sample1.id); QUERY PLAN ------------------------------------------------------------------------ Merge Join (cost=927.72..1852.95 rows=61272 width=32) Merge Cond: (sample2.id = sample1.id) -> Sort (cost=85.43..88.50 rows=1230 width=36) Sort Key: sample2.id -> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=36) -> Sort (cost=842.29..867.20 rows=9963 width=4) Sort Key: sample1.id -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=4) (8 rows) The most restrictive relation, e.g. sample2, is always on the outer side of merge joins. All previous merge joins also had sample2 in outer position. Explaining the Postgres Query Optimizer 45 / 61
  • 46. Add Optimizer Statistics ANALYZE sample1; ANALYZE sample2; Explaining the Postgres Query Optimizer 46 / 61
  • 47. This Was a Merge Join without Optimizer Statistics EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=15.85..130.47 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (5 rows) Explaining the Postgres Query Optimizer 47 / 61
  • 48. Outer Joins Can Affect Optimizer Join Usage EXPLAIN SELECT sample1.junk FROM sample1 RIGHT OUTER JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN -------------------------------------------------------------------------- Hash Left Join (cost=131.76..148.26 rows=260 width=254) Hash Cond: (sample2.id = sample1.id) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=4) -> Hash (cost=103.56..103.56 rows=2256 width=258) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=258) (5 rows) Use of hashes for outer joins was added in Postgres 9.1. Explaining the Postgres Query Optimizer 48 / 61
  • 49. Cross Joins Are Nested Loop Joins without Join Restriction EXPLAIN SELECT sample1.junk FROM sample1 CROSS JOIN sample2; QUERY PLAN ---------------------------------------------------------------------- Nested Loop (cost=0.00..7448.81 rows=586560 width=254) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=254) -> Materialize (cost=0.00..13.90 rows=260 width=0) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=0) (4 rows) Explaining the Postgres Query Optimizer 49 / 61
  • 50. Create Indexes CREATE INDEX i_sample1 on sample1 (id); CREATE INDEX i_sample2 on sample2 (id); Explaining the Postgres Query Optimizer 50 / 61
  • 51. Nested Loop with Inner Index Scan Now Possible EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample1.id = 33; QUERY PLAN --------------------------------------------------------------------------------- Nested Loop (cost=0.00..16.55 rows=1 width=254) -> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4) Index Cond: (id = 33::oid) -> Index Scan using i_sample2 on sample2 (cost=0.00..8.27 rows=1 width=258) Index Cond: (sample2.id = 33::oid) (5 rows) Explaining the Postgres Query Optimizer 51 / 61
  • 52. Nested Loop Join with Inner Index Scan aag aar aai aay aag aas aar aaa aay aai aag No Setup Required Index Lookup Index Must Already Exist Outer Inner Explaining the Postgres Query Optimizer 52 / 61
  • 53. Pseudocode for Nested Loop Join with Inner Index Scan for (i = 0; i < length(outer); i++) index_entry = get_first_match(outer[j]) while (index_entry) output(outer[i], inner[index_entry]); index_entry = get_next_match(index_entry); Explaining the Postgres Query Optimizer 53 / 61
  • 54. Query Restrictions Affect Join Usage EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.junk ˜ ’^aaa’; QUERY PLAN ------------------------------------------------------------------------------- Nested Loop (cost=0.00..21.53 rows=1 width=254) -> Seq Scan on sample2 (cost=0.00..13.25 rows=1 width=258) Filter: (junk ˜ ’^aaa’::text) -> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) No junk rows begin with ’aaa’. Explaining the Postgres Query Optimizer 54 / 61
  • 55. All ’junk’ Columns Begin with ’xxx’ EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.junk ˜ ’^xxx’; QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=16.50..131.12 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=13.25..13.25 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..13.25 rows=260 width=258) Filter: (junk ˜ ’^xxx’::text) (6 rows) Hash join was chosen because many more rows are expected. The smaller table, e.g. sample2, is always hashed. Explaining the Postgres Query Optimizer 55 / 61
  • 56. Without LIMIT, Hash Is Used for this Unrestricted Join EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=15.85..130.47 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (5 rows) Explaining the Postgres Query Optimizer 56 / 61
  • 57. LIMIT Can Affect Join Usage EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 1; QUERY PLAN ------------------------------------------------------------------------------------------ Limit (cost=0.00..1.83 rows=1 width=258) -> Nested Loop (cost=0.00..477.02 rows=260 width=258) -> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258) -> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) Explaining the Postgres Query Optimizer 57 / 61
  • 58. LIMIT 10 EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 10; QUERY PLAN ------------------------------------------------------------------------------------------ Limit (cost=0.00..18.35 rows=10 width=258) -> Nested Loop (cost=0.00..477.02 rows=260 width=258) -> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258) -> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) Explaining the Postgres Query Optimizer 58 / 61
  • 59. LIMIT 100 Switches to Hash Join EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 100; QUERY PLAN ------------------------------------------------------------------------------------ Limit (cost=140.41..140.66 rows=100 width=258) -> Sort (cost=140.41..141.06 rows=260 width=258) Sort Key: sample2.id -> Hash Join (cost=15.85..130.47 rows=260 width=258) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (8 rows) Explaining the Postgres Query Optimizer 59 / 61
  • 60. Additional Resources… ◮ Postgres Downloads: ◮ www.enterprisedb.com/downloads ◮ Product and Services information: ◮ [email protected] Explaining the Postgres Query Optimizer 60 / 61