SlideShare a Scribd company logo
Bipolar Junction
Transistor:
Hybrid Parameter
Arpan Deyasi
Dept of ECE, RCCIIT, Kolkata, India
12/27/2020 Arpan Deyasi, RCCIIT 1
12/27/2020 Arpan Deyasi, RCCIIT 2
Hybrid Parameter
1 11 1 12 2V h I h V= + 2 21 1 22 2I h I h V= +
12/27/2020 Arpan Deyasi, RCCIIT 3
Hybrid Parameter
2
1
11
1 0V
V
h
I =
=
1
1
12
2 0I
V
h
V =
=
2
2
21
1 0V
I
h
I =
=
1
2
22
2 0I
I
h
V =
=
12/27/2020 Arpan Deyasi, RCCIIT 4
Hybrid Parameter: Notations used in transistor circuits
11 ih h=
short-circuit
input impedance
21 fh h=
short-circuit
forward current gain
12 rh h=
open-circuit
reverse voltage transfer ratio
22 oh h=
open-circuit
output admittance
12/27/2020 Arpan Deyasi, RCCIIT 5
12/27/2020 Arpan Deyasi, RCCIIT 6
Transistor Hybrid Model
1 1 1 2( , )v f i v=
2 2 1 2( , )i f i v=
1 1 2i rv hi h v= +
2 1 2f oi h i h v= +
12/27/2020 Arpan Deyasi, RCCIIT 7
Complete Hybrid Parameter Circuit
12/27/2020 Arpan Deyasi, RCCIIT 8
CurrentGain
2 1 2f oI h I h V= +
2 1f o L LI h I h I Z= +
2 1 2f o LI h I h I Z= −
2 2 1o L fI h I Z h I+ =
12/27/2020 Arpan Deyasi, RCCIIT 9
CurrentGain
2
1 1 (1 )
fL
I
o L
hI I
A
I I h Z
= =− =−
+
2 1(1 )o L fI h Z h I+ =
2
1 (1 )
f
o L
hI
I h Z
=
+
(1 )
f
I
o L
h
A
h Z
= −
+
12/27/2020 Arpan Deyasi, RCCIIT 10
InputImpedance
1 1 2i rV h I h V= +
1 1i r L LV h I h I Z= +
1 1 1i r I LV h I h A I Z= +
1 1 2i r LV h I h I Z= −
12/27/2020 Arpan Deyasi, RCCIIT 11
InputImpedance
1
1
I i r I L
V
Z h h A Z
I
= = +
(1 )
f
I i r L
o L
h
Z h h Z
h Z
= −
+
f r
I i
L o
h h
Z h
Y h
= −
+
12/27/2020 Arpan Deyasi, RCCIIT 12
VoltageGain
2 2 LV I Z= −
2 1I LV A I Z=
2 1
1 1
I L
V
V A I Z
A
V V
= =
2
1
I L
V
I
V A Z
A
V Z
= =
12/27/2020 Arpan Deyasi, RCCIIT 13
VoltageGain
.
(1 )
f L
V
o L I
h Z
A
h Z Z
= −
+
.
(1 )
(1 )
f L
V
fo L
i r L
o L
h Z
A
hh Z
h h Z
h Z
= −
+  
− 
+ 
12/27/2020 Arpan Deyasi, RCCIIT 14
OutputAdmittance
2 1 2f oI h I h V= +
2 1
2 2
f o
I I
h h
V V
= +
With VS = 0 1 1 2 0S i rR I h I h V+ + =
1
2
r
S i
I h
V R h
= −
+
12/27/2020 Arpan Deyasi, RCCIIT 15
2
2
r
f o
S i
I h
h h
V R h
=− +
+
OutputAdmittance
0
r f
o
S i
h h
Y h
R h
= −
+
12/27/2020 Arpan Deyasi, RCCIIT 16
CurrentGainwithSourceResistance
1 1I S S SI Z I R I R+ =
1( )I S S SI Z R I R+ =
1
( )
S
S I S
RI
I Z R
=
+
12/27/2020 Arpan Deyasi, RCCIIT 17
CurrentGainwithSourceResistance 2 2 1
1
IS
S S
I I I
A
I I I
=− =−
S
IS I
R
A A
→∝
→
( )
S
IS I
I S
R
A A
Z R
=
+
.
(1 ) ( )
f S
IS
o L I S
h R
A
h Z Z R
= −
+ +
1
IS I
S
I
A A
I
=
12/27/2020 Arpan Deyasi, RCCIIT 18
VoltageGainwithSourceResistance
1 1I S S IV Z V R V Z+ =
1( )I S S IV Z R V Z+ =
1
( )
S I
I S
V Z
V
Z R
=
+
12/27/2020 Arpan Deyasi, RCCIIT 19
VoltageGainwithSourceResistance
2 2 1
1
VS
S S
V V V
A
V V V
= =
1
VS V
S
V
A A
V
=
( )
S I
VS V
I S
V Z
A A
Z R
=
+
12/27/2020 Arpan Deyasi, RCCIIT 20
VoltageGainwithSourceResistance
.
( ) (1 )
.
(1 )
fS I
VS
I S o L
L
f
i r L
o L
hV Z
A
Z R h Z
Z
h
h h Z
h Z
= −
+ +
×
 
− 
+ 
0S
VS V
R
A A
→
→
12/27/2020 Arpan Deyasi, RCCIIT 21
PowerGain
2
1
P
P
A
P
=
2 2
1 1
P
V I
A
V I
= −
P V IA A A=
12/27/2020 Arpan Deyasi, RCCIIT 22
PowerGain
2
(1 )
(1 )
f
P
o L
L
f
i r L
o L
h
A
h Z
Z
h
h h Z
h Z
 
= × 
+ 
 
− 
+ 
12/27/2020 Arpan Deyasi, RCCIIT 23
Calculation of Hybrid Parameters [NPN]
IB
VBE
VCE1
11
C
BE
i
B V const
V
h h
I =
∆
= =
∆
Input Resistance
2 1
2 1
BE BE
i
B B
V V
h
I I
−
=
−
VBE1 VBE2
IB2
IB1
12/27/2020 Arpan Deyasi, RCCIIT 24
Calculation of Hybrid Parameters [NPN]
IB
VBE
VCE2VCE1
Reverse Transfer Ratio
12
B
BE
r
CE I const
V
h h
V =
∆
= =
∆
2 1
2 1
BE BE
r
CE CE
V V
h
V V
−
=
−
VBE1 VBE2
12/27/2020 25Arpan Deyasi, RCCIIT
VCE
IC
IB1
IB2
Calculation of Hybrid Parameters [NPN]
Forward Current Transfer Ratio
21
C
C
f
B V const
I
h h
I =
∆
= =
∆
2 1
2 1 C
C C
f
B B V const
I I
h
I I =
−
=
−
IC2
IC1
12/27/2020 26Arpan Deyasi, RCCIIT
VCE
IC
IB2
Calculation of Hybrid Parameters [NPN]
Output Transconductance
22
B
C
o
C I const
I
h h
V =
∆
= =
∆
2 1
2 1 C
C C
o
CE CE V const
I I
h
V V =
−
=
−
IC2
IC1
VCE1 VCE2
12/27/2020 Arpan Deyasi, RCCIIT 27
h-parameters are Real Numbers up to radio frequency
They are easy to measure
They can be determined from transistor static characteristic
They are convenient to use in circuit analysis and design
Easily convertible from one configuration to other
Readily supplied by manufacturers
What are the salient features of hybrid parameters?
12/27/2020 Arpan Deyasi, RCCIIT 28
Dataset for Different Configurations
12/27/2020 Arpan Deyasi, RCCIIT 29
Conversation of h-parameters

More Related Content

PPTX
Multistage amplifier
PPTX
Chromatography
PPTX
Gitnang panahon (Medieval Period)
PPTX
Basics of MOSFET
PPTX
Regression ppt.pptx
PPT
PPTX
Sustainable living
PPT
Boolean Algebra
Multistage amplifier
Chromatography
Gitnang panahon (Medieval Period)
Basics of MOSFET
Regression ppt.pptx
Sustainable living
Boolean Algebra

What's hot (20)

PPTX
4 Current Mirrors 2022.pptx
PDF
Negative feedback Amplifiers
PPT
MOSFET Small signal model
PPTX
Lecture 2: Power Diodes
PPTX
PDF
Operational Amplifiers
PPT
PPTX
Hybrid model for Transistor, small signal Analysis
PPTX
Overview of Crystal Oscillator Circuit Working and Its Application
PPT
basic-analog-electronics
PPTX
Cascade and cascode amplifiers
PPTX
PPTX
Two port network
PPTX
melay and moore machine.pptx
PPT
Mosfet
PPTX
Tuned amplifire
DOCX
Double Side band Suppressed carrier (DSB-SC) Modulation and Demodulation.
PPTX
Controlled Rectifier
PPT
Bio-polar junction transistor (edc)
4 Current Mirrors 2022.pptx
Negative feedback Amplifiers
MOSFET Small signal model
Lecture 2: Power Diodes
Operational Amplifiers
Hybrid model for Transistor, small signal Analysis
Overview of Crystal Oscillator Circuit Working and Its Application
basic-analog-electronics
Cascade and cascode amplifiers
Two port network
melay and moore machine.pptx
Mosfet
Tuned amplifire
Double Side band Suppressed carrier (DSB-SC) Modulation and Demodulation.
Controlled Rectifier
Bio-polar junction transistor (edc)
Ad

Similar to Hybrid Parameter in BJT (20)

PDF
Q-V characteristics of MOS Capacitor
PDF
Electrical characteristics of MOSFET
PDF
Progress 1st sem
PPTX
ch 8 ppt.pptx
PDF
Electronic Devices and Circuit Theory 11th Edition Boylestad Robert Nashelsky...
PDF
Generation and Recombination related to Carrier Transport
PPT
Eca unit 2
PPT
ddc cinverter control design process.ppt
PDF
IC Design of Power Management Circuits (II)
PDF
Chapter 2 Uncontrolled Rectifiers.pdf
PDF
S_parameters.pdf
PDF
Instrucciones 8951
PPTX
FET Biasing
PDF
W ee network_theory_10-06-17_ls2-sol
PPTX
High power digital amplifier
PDF
TPD7210F of SPICE MODEL using PSpice
Q-V characteristics of MOS Capacitor
Electrical characteristics of MOSFET
Progress 1st sem
ch 8 ppt.pptx
Electronic Devices and Circuit Theory 11th Edition Boylestad Robert Nashelsky...
Generation and Recombination related to Carrier Transport
Eca unit 2
ddc cinverter control design process.ppt
IC Design of Power Management Circuits (II)
Chapter 2 Uncontrolled Rectifiers.pdf
S_parameters.pdf
Instrucciones 8951
FET Biasing
W ee network_theory_10-06-17_ls2-sol
High power digital amplifier
TPD7210F of SPICE MODEL using PSpice
Ad

More from RCC Institute of Information Technology (20)

PDF
classification of cubic lattice structure
PDF
Scaling in conventional MOSFET for constant electric field and constant voltage
PDF
Carrier scattering and ballistic transport
PDF
Electromagnetic Wave Propagations
PDF
PDF
Reflection and Transmission coefficients in transmission line
PDF
Impedance in transmission line
PDF
Distortionless Transmission Line
PDF
PDF
Electrical Properties of Dipole
PDF
Application of Gauss' Law
PDF
Fundamentals of Gauss' Law
PDF
Fundamentals of Coulomb's Law
PDF
Scalar and vector differentiation
classification of cubic lattice structure
Scaling in conventional MOSFET for constant electric field and constant voltage
Carrier scattering and ballistic transport
Electromagnetic Wave Propagations
Reflection and Transmission coefficients in transmission line
Impedance in transmission line
Distortionless Transmission Line
Electrical Properties of Dipole
Application of Gauss' Law
Fundamentals of Gauss' Law
Fundamentals of Coulomb's Law
Scalar and vector differentiation

Recently uploaded (20)

PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
Fundamentals of Mechanical Engineering.pptx
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
Artificial Intelligence
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PPT
introduction to datamining and warehousing
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
Construction Project Organization Group 2.pptx
PPT
Total quality management ppt for engineering students
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPTX
UNIT 4 Total Quality Management .pptx
PPT
Mechanical Engineering MATERIALS Selection
UNIT-1 - COAL BASED THERMAL POWER PLANTS
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Fundamentals of Mechanical Engineering.pptx
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Artificial Intelligence
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
introduction to datamining and warehousing
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Construction Project Organization Group 2.pptx
Total quality management ppt for engineering students
III.4.1.2_The_Space_Environment.p pdffdf
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
UNIT 4 Total Quality Management .pptx
Mechanical Engineering MATERIALS Selection

Hybrid Parameter in BJT

  • 1. Bipolar Junction Transistor: Hybrid Parameter Arpan Deyasi Dept of ECE, RCCIIT, Kolkata, India 12/27/2020 Arpan Deyasi, RCCIIT 1
  • 2. 12/27/2020 Arpan Deyasi, RCCIIT 2 Hybrid Parameter 1 11 1 12 2V h I h V= + 2 21 1 22 2I h I h V= +
  • 3. 12/27/2020 Arpan Deyasi, RCCIIT 3 Hybrid Parameter 2 1 11 1 0V V h I = = 1 1 12 2 0I V h V = = 2 2 21 1 0V I h I = = 1 2 22 2 0I I h V = =
  • 4. 12/27/2020 Arpan Deyasi, RCCIIT 4 Hybrid Parameter: Notations used in transistor circuits 11 ih h= short-circuit input impedance 21 fh h= short-circuit forward current gain 12 rh h= open-circuit reverse voltage transfer ratio 22 oh h= open-circuit output admittance
  • 6. 12/27/2020 Arpan Deyasi, RCCIIT 6 Transistor Hybrid Model 1 1 1 2( , )v f i v= 2 2 1 2( , )i f i v= 1 1 2i rv hi h v= + 2 1 2f oi h i h v= +
  • 7. 12/27/2020 Arpan Deyasi, RCCIIT 7 Complete Hybrid Parameter Circuit
  • 8. 12/27/2020 Arpan Deyasi, RCCIIT 8 CurrentGain 2 1 2f oI h I h V= + 2 1f o L LI h I h I Z= + 2 1 2f o LI h I h I Z= − 2 2 1o L fI h I Z h I+ =
  • 9. 12/27/2020 Arpan Deyasi, RCCIIT 9 CurrentGain 2 1 1 (1 ) fL I o L hI I A I I h Z = =− =− + 2 1(1 )o L fI h Z h I+ = 2 1 (1 ) f o L hI I h Z = + (1 ) f I o L h A h Z = − +
  • 10. 12/27/2020 Arpan Deyasi, RCCIIT 10 InputImpedance 1 1 2i rV h I h V= + 1 1i r L LV h I h I Z= + 1 1 1i r I LV h I h A I Z= + 1 1 2i r LV h I h I Z= −
  • 11. 12/27/2020 Arpan Deyasi, RCCIIT 11 InputImpedance 1 1 I i r I L V Z h h A Z I = = + (1 ) f I i r L o L h Z h h Z h Z = − + f r I i L o h h Z h Y h = − +
  • 12. 12/27/2020 Arpan Deyasi, RCCIIT 12 VoltageGain 2 2 LV I Z= − 2 1I LV A I Z= 2 1 1 1 I L V V A I Z A V V = = 2 1 I L V I V A Z A V Z = =
  • 13. 12/27/2020 Arpan Deyasi, RCCIIT 13 VoltageGain . (1 ) f L V o L I h Z A h Z Z = − + . (1 ) (1 ) f L V fo L i r L o L h Z A hh Z h h Z h Z = − +   −  + 
  • 14. 12/27/2020 Arpan Deyasi, RCCIIT 14 OutputAdmittance 2 1 2f oI h I h V= + 2 1 2 2 f o I I h h V V = + With VS = 0 1 1 2 0S i rR I h I h V+ + = 1 2 r S i I h V R h = − +
  • 15. 12/27/2020 Arpan Deyasi, RCCIIT 15 2 2 r f o S i I h h h V R h =− + + OutputAdmittance 0 r f o S i h h Y h R h = − +
  • 16. 12/27/2020 Arpan Deyasi, RCCIIT 16 CurrentGainwithSourceResistance 1 1I S S SI Z I R I R+ = 1( )I S S SI Z R I R+ = 1 ( ) S S I S RI I Z R = +
  • 17. 12/27/2020 Arpan Deyasi, RCCIIT 17 CurrentGainwithSourceResistance 2 2 1 1 IS S S I I I A I I I =− =− S IS I R A A →∝ → ( ) S IS I I S R A A Z R = + . (1 ) ( ) f S IS o L I S h R A h Z Z R = − + + 1 IS I S I A A I =
  • 18. 12/27/2020 Arpan Deyasi, RCCIIT 18 VoltageGainwithSourceResistance 1 1I S S IV Z V R V Z+ = 1( )I S S IV Z R V Z+ = 1 ( ) S I I S V Z V Z R = +
  • 19. 12/27/2020 Arpan Deyasi, RCCIIT 19 VoltageGainwithSourceResistance 2 2 1 1 VS S S V V V A V V V = = 1 VS V S V A A V = ( ) S I VS V I S V Z A A Z R = +
  • 20. 12/27/2020 Arpan Deyasi, RCCIIT 20 VoltageGainwithSourceResistance . ( ) (1 ) . (1 ) fS I VS I S o L L f i r L o L hV Z A Z R h Z Z h h h Z h Z = − + + ×   −  +  0S VS V R A A → →
  • 21. 12/27/2020 Arpan Deyasi, RCCIIT 21 PowerGain 2 1 P P A P = 2 2 1 1 P V I A V I = − P V IA A A=
  • 22. 12/27/2020 Arpan Deyasi, RCCIIT 22 PowerGain 2 (1 ) (1 ) f P o L L f i r L o L h A h Z Z h h h Z h Z   = ×  +    −  + 
  • 23. 12/27/2020 Arpan Deyasi, RCCIIT 23 Calculation of Hybrid Parameters [NPN] IB VBE VCE1 11 C BE i B V const V h h I = ∆ = = ∆ Input Resistance 2 1 2 1 BE BE i B B V V h I I − = − VBE1 VBE2 IB2 IB1
  • 24. 12/27/2020 Arpan Deyasi, RCCIIT 24 Calculation of Hybrid Parameters [NPN] IB VBE VCE2VCE1 Reverse Transfer Ratio 12 B BE r CE I const V h h V = ∆ = = ∆ 2 1 2 1 BE BE r CE CE V V h V V − = − VBE1 VBE2
  • 25. 12/27/2020 25Arpan Deyasi, RCCIIT VCE IC IB1 IB2 Calculation of Hybrid Parameters [NPN] Forward Current Transfer Ratio 21 C C f B V const I h h I = ∆ = = ∆ 2 1 2 1 C C C f B B V const I I h I I = − = − IC2 IC1
  • 26. 12/27/2020 26Arpan Deyasi, RCCIIT VCE IC IB2 Calculation of Hybrid Parameters [NPN] Output Transconductance 22 B C o C I const I h h V = ∆ = = ∆ 2 1 2 1 C C C o CE CE V const I I h V V = − = − IC2 IC1 VCE1 VCE2
  • 27. 12/27/2020 Arpan Deyasi, RCCIIT 27 h-parameters are Real Numbers up to radio frequency They are easy to measure They can be determined from transistor static characteristic They are convenient to use in circuit analysis and design Easily convertible from one configuration to other Readily supplied by manufacturers What are the salient features of hybrid parameters?
  • 28. 12/27/2020 Arpan Deyasi, RCCIIT 28 Dataset for Different Configurations
  • 29. 12/27/2020 Arpan Deyasi, RCCIIT 29 Conversation of h-parameters