This document provides an introduction to image segmentation. It discusses how image segmentation partitions an image into meaningful regions based on measurements like greyscale, color, texture, depth, or motion. Segmentation is often an initial step in image understanding and has applications in identifying objects, guiding robots, and video compression. The document describes thresholding and clustering as two common segmentation techniques and provides examples of segmentation based on greyscale, texture, motion, depth, and optical flow. It also discusses region-growing, edge-based, and active contour model approaches to segmentation.