SlideShare a Scribd company logo
International Journal of Technical Research and Applications e-ISSN: 2320-8163,
www.ijtra.com Volume 2, Issue 4 (July-Aug 2014), PP. 90-92
90 | P a g e
IMPLEMENTATION OF 128-BIT SPARSE
KOGGE-STONE ADDER USING VERILOG
Geeta Rani1, Sachin Kumar2
1
M.Tech Student, 2
Faculty
Department of Electronics & Communication M. Tech Student
MERI COLLEGE OF ENGINEERING & TECHNOLOGY
Sampla
Abstract— Parallel Prefix adders have been one of the most
notable among several designs proposed in the past. The
advantage of utilizing the flexibility in implementing these
structures based upon through put requirements. Due to
continuing integrating intensity and the growing needs of
portable devices, low power and high performance designs are of
prime importance. The classical parallel prefix adder structures
presented in the literature over the years optimize for logic depth,
area, and fan-out and interconnect count of logic circuits. In this
proposed system, Kogge-Stone adder which is one of types of
parallel prefix adder is used. Kogge stone is the fastest adder
because of its minimum fan-out. When parallel prefix adder is
compared with classical adders it is advantageous in every aspect.
The study reveals that Parallel Prefix adder has the least power
delay product when compared with its peer existing adder
structures (Ripple carry adder, Carry save adders etc).
Simulation results are verified using Xilinx 10.1 and
MODELSIM 6.4a softwares.
Key words— Carry Tree Adder, Kogge-Stone Adder, Sparse
Kogge-Stone Adder.
I.INTRODUCTION
Arithmatic operations i.e. addition, multiplication are
common in digital circuits. Binary adders are most basic and
widely used arithmetic operations and play a vital role in
determining the performance of a design. The basic need from
the circuit is that it has less computational time and is of small
size.
Adders when we talk about adders what we think most
probably person will think that it is a device that can add two or
more numbers. It is perfectly correct definition. However we
just discuss here about digital adders. Adder is a digital circuit
that uses in computers and in processors as in there arithmetic
and logic unit as well in other parts of processor that use to
calculate addresses table indices and other similar operations.
Most common adders operate on binary numbers. Basically
adders are of two types: Half adder and Full adder. Two half
adders can construct one full adder and full adder further
construct many complex adders such as ripple carry adder,
carry look-ahead adder and carry select adder etc. Basic adders
were the slow one. Generally Ripple carry adder (parallel
adder) was used to carry out binary addition. Many researches
done over several years to find a suitable technique for parallel
adders so that delay [1] can be minimized, performance can be
better. Hence to reduce the computation time, engineers
proposed faster ways by using Carry Look-Ahead (CLA)
adder. It uses the parallel prefix operation. In this paper, one of
parallel prefix adder is discussed.
II.CARRY-TREE ADDER
Carry tree adder is also known as the Parallel-Prefix
adder. In tree adders, carries are [2] generated in parallel and
fast computation is obtained at the expense of increased area
and power. The main advantage of the design is that the carry
tree [6] reduces the number of logic levels (N) by essentially
generating the carries in parallel.
III.EXISTING PARALLEL PREFIX ADDERS
The prominent parallel prefix tree adders, that are invented
so far are, Kogge-Stone, Brent-Kung, Han-Carlson, and
Sklansky. There exists various architectures fro carry
calculation part. Tradeoff in these architecture involves:
 Area of adder
 Its depth
 The fan-out of the nodes
 The overall wiring network.
Out of these, it was found from the literature that Kogge-
stone adder is the fastest adder when compared to other adders.
Kogge-Stone adder implementation [7] is most straightforward,
and also it has one of the shortest critical paths of all tree
adders. The drawback with the Kogge-Stone adder
implementation is the large area consumed and the more
complex routing (Fan-Out) of interconnects. The two signals
that are generated during various stages:
Propagate: controls whether a carry is propagated from
lower bits to higher bits.
Generate: controls whether a carry is generated.
Figure 1: Three stage structure for carry tree adder
Fig.1 is the three stage structure for carry tree adder. As
there are three stages in parallel [5] prefix adder, below is the
description of stages:
1. Pre-processing: Generate(Pi, Gi) from Ai, Bi)
Pi = Ai ⨁ Bi ………(1)
Gi = Ai . Bi ………(2)
2. Carry look-Ahead network: Generate (Pij, Gij) from
(Gi, Pi) and (Gj, Pj) [5]
Pi:j = Pi:k+1 . Pk:j …………(3)
Gi:j = Gi:k+1 | (pi:k+1 . Gk …………(4)
International Journal of Technical Research and Applications e-ISSN: 2320-8163,
www.ijtra.com Volume 2, Issue 4 (July-Aug 2014), PP. 90-92
91 | P a g e
3. Post processing:
Sumi = Pi ⨁ Carryi-1 ………(5)
Ci = Gi:0 or (Cin and pi:0) ………(6)
IV.KOGGE-STONE ADDER
The Kogge-Stone adder concept [3] was developed by Peter
M. Kogge and Harold S. Stone, which they published in 1973
in a seminal paper titled “A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations”. First the
focus is on the Kogge-Stone adder has minimal logic depth and
fan-out. The number of stages are log N, fan-out 2 at each stage
and have long wires. Fig. 2 & 3 are the Black cell and grey
cells description.
Figure 2(a): Schematic of Black cell
Figure 2(b): Symbol of Black cell
Figure 3(a): Schematic of Grey cell
Figure 3(b): Symbol of Grey cell
Kogge-stone adder design:
Step 1: First to generate propagation and generation signals
for each bit. [9]
Step 2: to generate black cell and grey cell equations.
Step 3: in each step grey cell generated.
Step 4: By using grey cell equation to generate the carry
bits directly.
Step 5: To combine Propagation and carry bits for each step
to generate sum.
Fig. 4 gives the 16-Bit Kogge-Stone adder.
Figure 4: 16-bit Kogge-Stone Adder
V.SPARSE KOGGE-STONE ADDER
Enhancements to the original implementation include
increasing the radix and sparsity of the adder. The radix of the
adder refers to how many results from previous level of
computation are used to generate the next one. Doing so
increases the power and delay of each stage, but reduces the
number of required stages. The sparsity of the adder refers to
how many carry bits are generated by the carry-tree.
Generating every carry bit is called sparsity-1, whereas
generating every other is sparsity-2 and every fourth is sparsity-
4. The resulting carries are then used as the carry-in inputs for
much shorter ripple carry adders or some other adder design,
which generates the final sum bits. Increasing sparsity reduces
the total needed computation and can reduce the amount of
routing congestion.
Figure 5: Sparsity-4 Kogge-Stone adder
Fig. 5 is an example of a Kogge–Stone adder with sparsity-
4. Elements eliminated by sparsity shown marked with
transparency. As shown, power and area of the carry generation
is improved significantly, and routing congestion is
substantially reduced. Each generated carry feeds a multiplexer
for a carry select adder or the carry-in of a ripple carry adder.
16-Bit Sparse Kogge-Stone adder
The Sparse Kogge-Stone adder consists [10] of several
smaller ripple carry adders (RCAs) on its lower half and a carry
tree on its upper half. Thus, the sparse Kogge-Stone adder
terminates with RCAs. The number of carries generated is less
in a Sparse Kogge- Stone adder compared to the regular
Kogge-Stone adder. The functionality of the GP block, black
cell and the gray cell remains exactly the same as in the regular
Figure 6: 16-Bit Sparse Kogge-Stone Adder [6]
International Journal of Technical Research and Applications e-ISSN: 2320-8163,
www.ijtra.com Volume 2, Issue 4 (July-Aug 2014), PP. 90-92
92 | P a g e
Kogge-Stone adder. The schematic for a 16-bit sparse
Kogge-Stone adder is shown in Fig. 6. Sparse and regular
Kogge-Stone adders have essentially the same delay when
implemented on an FPGA although the former utilizes much
less resources
VI.SIMULATION AND RESULT
I have synthesized 128-Bit Sparse Kogge-Stone adder using
Verilog on ISE Xilinx 10.1 and simulated using MODELSIM
6.4a. Results shows that 128-Bit Sparse Kogge –Stone adder
uses No. of slices-134, No. of 4 inputs LUTs-235, No. of IOBs-
264 and also the delay exerted by Sparse Kogge-Stone adder is
26.543 ns.
Delay exerted by above mentioned adder is less when
compared with the 16-bit RCA and CLA which is 26.686 ns
using Verilog HDL on ISE Xilinx 10.1. Hence while
comparing 128 Bit Kogge-Stone Adder even with the Lower
bit adder such as 16 bit Carry Look ahead adder and 16 bit
Ripple Carry adder in terms of delay, even then it is faster.
Hence its useful in industries.
Device Utilization Summary
TABLE I. DEVICE UTILISATION SUMMARY OF
SPARSE KOGGE-STONE ADDER
Figure 7: RTL Schematic of 128-bit Sparse Kogge-Stone
adder
Figure 8: Waveform of 128- bit S-KSA
REFERENCES
[1] CH. Chimpiraiah, E.V.Vijay, “An Efficient Architecture for
Parallel Adder”, International Journal of VLSI and Embedded
Systems Vol. 03, Issues 04; Sep-Oct 2012.
[2] D.H.K Hoe, C. Martinez, and J.Vundavalli, “Design and
Characterisation of Parallel Prefix Adders using FPGAs”, IEEE
43rd Southern Synopsium on System Theory, March 2011.
[3] Kogge P and Stone H, “A Parallel Algorithm for the Efficient
Solutions of a General Class of Recurrence Relations”, IEEE
Transactions on Computers, Vol. C-22, No.8, 1973.
[4] B Pullarao, J.Parveen Kumar, “ Design of High Speed Based On
Parallel Prefix Adders Using In FPGA”, International
Journal of Engineering Sciences & Research Technology
(IJESRT) Dec, 2013
[5] Pakkiraiah Chakali, Madhu Kumar Patnala,” Design of High
Speed Kogge-Stone Based Carry Select Adder”, International
Journal of Emerging Science and Engineering, Vol.1, Issue-4,
February 2013.
[6] T. Lynch and E. E. Swatzlander, ”A Spanning Tree Carry Look-
Ahead adder”, IEEE Transactions on computers, Vol. 41, no. 8
,pp. 931-939, Aug. 1992.
[7] P.Annapurna Bai, M.Vijaya Laxmi , ”Design of 128-bit Kogge-
Stone Low Power Parallel Prefix Adder for High Speed
Arithmatic Circuits”, International Journal of Engineering and
Technology, Vol.-2,Issue-6, Aug 2013
[8] Andrew Beaumont-Smith and Cheng-Chew Lim, “Parallel
Prefix Adder Design”, Department of Electrical and Electronic
Engineering, the University of Adelaide, 2001. Chris D.
Martinez, L. P. Deepthi Bollepalli, and David H.
[9] K. Hoe, “A Fault Tolerant Parallel-Prefix Adder for VLSI and
FPGA Design”, 44th IEEE Southeastern Symposium on System
Theory, 2012.
[10] K. Vitoroulis and A. J. Al-Khalili,“ Performance of Parallel
Prefix Adders Implemented with FPGA technology”, IEEE
Northeast Workshop on Circuits and Systems, pp. 498-501, Aug.
2007.

More Related Content

PDF
Design Of 64-Bit Parallel Prefix VLSI Adder For High Speed Arithmetic Circuits
PDF
Designing and Characterization of koggestone, Sparse Kogge stone, Spanning tr...
DOC
Survey on Prefix adders
PPTX
PPTX
Hybrid Adder
DOCX
Project report on design & implementation of high speed carry select adder
PPT
Cmos Arithmetic Circuits
DOCX
DESIGN AND PERFORMANCE ANALYSIS OF BINARY ADDERS_edited
Design Of 64-Bit Parallel Prefix VLSI Adder For High Speed Arithmetic Circuits
Designing and Characterization of koggestone, Sparse Kogge stone, Spanning tr...
Survey on Prefix adders
Hybrid Adder
Project report on design & implementation of high speed carry select adder
Cmos Arithmetic Circuits
DESIGN AND PERFORMANCE ANALYSIS OF BINARY ADDERS_edited

What's hot (20)

PPT
Low power & area efficient carry select adder
PPT
L5 Adders
PPTX
Design & implementation of high speed carry select adder
PPT
Design of Low-Power High-Speed Truncation-Error-Tolerant Adder
PPT
Design and development of carry select adder
PDF
High Speed Carryselect Adder
PDF
Implementation of Low Power and Area Efficient Carry Select Adder
PDF
carry select adder
PDF
Design and Verification of Area Efficient Carry Select Adder
PDF
DESIGN AND IMPLEMENTATION OF LOW POWER ALU USING CLOCK GATING AND CARRY SELEC...
PDF
Design and Implementation of Low-Power and Area-Efficient 64 bit CSLA using VHDL
DOCX
High speed and energy-efficient carry skip adder operating under a wide range...
PDF
A Novel Efficient VLSI Architecture Modified 16-B SQRT Carry Select Adder
PPTX
Csla 130319073823-phpapp01-140821210430-phpapp02
PDF
FPGA Implementation of High Speed Architecture of CSLA using D-Latches
DOCX
Area–delay–power efficient carry select adder
PDF
Efficient Design of Ripple Carry Adder and Carry Skip Adder with Low Quantum ...
PPT
High speed adder used in digital signal processing
PPTX
Array multiplier
PDF
My Report on adders
Low power & area efficient carry select adder
L5 Adders
Design & implementation of high speed carry select adder
Design of Low-Power High-Speed Truncation-Error-Tolerant Adder
Design and development of carry select adder
High Speed Carryselect Adder
Implementation of Low Power and Area Efficient Carry Select Adder
carry select adder
Design and Verification of Area Efficient Carry Select Adder
DESIGN AND IMPLEMENTATION OF LOW POWER ALU USING CLOCK GATING AND CARRY SELEC...
Design and Implementation of Low-Power and Area-Efficient 64 bit CSLA using VHDL
High speed and energy-efficient carry skip adder operating under a wide range...
A Novel Efficient VLSI Architecture Modified 16-B SQRT Carry Select Adder
Csla 130319073823-phpapp01-140821210430-phpapp02
FPGA Implementation of High Speed Architecture of CSLA using D-Latches
Area–delay–power efficient carry select adder
Efficient Design of Ripple Carry Adder and Carry Skip Adder with Low Quantum ...
High speed adder used in digital signal processing
Array multiplier
My Report on adders
Ad

Viewers also liked (20)

PPTX
Kogge Stone Adder
PPTX
1413315061 chapter7
PDF
Swedish Fashion Council.
PDF
A SURVEY ON IRIS RECOGNITION FOR AUTHENTICATION
PPTX
TECHNOLOGY IN KIOSK
PPTX
Jaringan Nirkabel
PDF
OPTIMIZATION OF SCALE FACTORS IN SHRINKAGE COMPENSATIONS IN SLS USING PATTERN...
PPTX
Final assignment
PPT
презентация 4
PDF
CORRELATIONS OF WEIGHT FOR HEIGHT % WITH SERUM TRIGLYCERIDE AND TOTAL CHOLEST...
PDF
ϵ-DIFFERENTIAL PRIVACY MODEL FOR VERTICALLY PARTITIONED DATA TO SECURE THE PR...
PPTX
Social media mediasharing-monicamcginnis
PDF
SPLIT BLOCK SUBDIVISION DOMINATION IN GRAPHS
PPTX
PDF
Swedish Fashion Council
PPTX
палац потоцьких
PPTX
APRENDIZAJE AUTONOMO NANCY
PDF
CARP: AN IMAGE BASED SECURITY USING I-PAS
PDF
Symbols of rev book
Kogge Stone Adder
1413315061 chapter7
Swedish Fashion Council.
A SURVEY ON IRIS RECOGNITION FOR AUTHENTICATION
TECHNOLOGY IN KIOSK
Jaringan Nirkabel
OPTIMIZATION OF SCALE FACTORS IN SHRINKAGE COMPENSATIONS IN SLS USING PATTERN...
Final assignment
презентация 4
CORRELATIONS OF WEIGHT FOR HEIGHT % WITH SERUM TRIGLYCERIDE AND TOTAL CHOLEST...
ϵ-DIFFERENTIAL PRIVACY MODEL FOR VERTICALLY PARTITIONED DATA TO SECURE THE PR...
Social media mediasharing-monicamcginnis
SPLIT BLOCK SUBDIVISION DOMINATION IN GRAPHS
Swedish Fashion Council
палац потоцьких
APRENDIZAJE AUTONOMO NANCY
CARP: AN IMAGE BASED SECURITY USING I-PAS
Symbols of rev book
Ad

Similar to IMPLEMENTATION OF 128-BIT SPARSE KOGGE-STONE ADDER USING VERILOG (20)

PDF
Implementation and Estimation of Delay, Power and Area for Parallel Prefix Ad...
PDF
Design of High Speed 128 bit Parallel Prefix Adders
PDF
Ad04606184188
PDF
Design and Estimation of delay, power and area for Parallel prefix adders
PDF
Design of 32 bit Parallel Prefix Adders
PDF
Design of 32 bit Parallel Prefix Adders
PDF
Design of high speed adders for efficient digital design blocks
PDF
High performance parallel prefix adders with fast carry chain logic
PDF
High performance parallel prefix adders with fast carry chain logic
PDF
High performance parallel prefix adders with fast carry chain logic
PDF
High performance parallel prefix adders with fast carry chain logic
PDF
High performance parallel prefix adders with fast carry chain logic
PDF
An Improved Optimization Techniques for Parallel Prefix Adder using FPGA
PDF
An Efficient High Speed Design of 16-Bit Sparse-Tree RSFQ Adder
PDF
Design and implementation of Parallel Prefix Adders using FPGAs
PDF
International Journal of Computational Engineering Research(IJCER)
PDF
NCRTS'14-IJERT-683-688
PDF
20120140506024
PPTX
ppt_group (6).pptxvvvvvvvvvvvvvvvvvsddvrtfrbtrbefwd3er3fefeds
PDF
Evaluation of High Speed and Low Memory Parallel Prefix Adders
Implementation and Estimation of Delay, Power and Area for Parallel Prefix Ad...
Design of High Speed 128 bit Parallel Prefix Adders
Ad04606184188
Design and Estimation of delay, power and area for Parallel prefix adders
Design of 32 bit Parallel Prefix Adders
Design of 32 bit Parallel Prefix Adders
Design of high speed adders for efficient digital design blocks
High performance parallel prefix adders with fast carry chain logic
High performance parallel prefix adders with fast carry chain logic
High performance parallel prefix adders with fast carry chain logic
High performance parallel prefix adders with fast carry chain logic
High performance parallel prefix adders with fast carry chain logic
An Improved Optimization Techniques for Parallel Prefix Adder using FPGA
An Efficient High Speed Design of 16-Bit Sparse-Tree RSFQ Adder
Design and implementation of Parallel Prefix Adders using FPGAs
International Journal of Computational Engineering Research(IJCER)
NCRTS'14-IJERT-683-688
20120140506024
ppt_group (6).pptxvvvvvvvvvvvvvvvvvsddvrtfrbtrbefwd3er3fefeds
Evaluation of High Speed and Low Memory Parallel Prefix Adders

More from International Journal of Technical Research & Application (20)

PDF
STUDY & PERFORMANCE OF METAL ON METAL HIP IMPLANTS: A REVIEW
PDF
EXPONENTIAL SMOOTHING OF POSTPONEMENT RATES IN OPERATION THEATRES OF ADVANCED...
PDF
POSTPONEMENT OF SCHEDULED GENERAL SURGERIES IN A TERTIARY CARE HOSPITAL - A T...
PDF
STUDY OF NANO-SYSTEMS FOR COMPUTER SIMULATIONS
PDF
ENERGY GAP INVESTIGATION AND CHARACTERIZATION OF KESTERITE CU2ZNSNS4 THIN FIL...
PDF
POD-PWM BASED CAPACITOR CLAMPED MULTILEVEL INVERTER
PDF
DIGITAL COMPRESSING OF A BPCM SIGNAL ACCORDING TO BARKER CODE USING FPGA
PDF
MODELLING THE IMPACT OF FLOODING USING GEOGRAPHIC INFORMATION SYSTEM AND REMO...
PDF
AN EXPERIMENTAL STUDY ON SEPARATION OF WATER FROM THE ATMOSPHERIC AIR
PDF
LI-ION BATTERY TESTING FROM MANUFACTURING TO OPERATION PROCESS
PDF
QUALITATIVE RISK ASSESSMENT AND MITIGATION MEASURES FOR REAL ESTATE PROJECTS ...
PDF
SCOPE OF REPLACING FINE AGGREGATE WITH COPPER SLAG IN CONCRETE- A REVIEW
PDF
IMPLEMENTATION OF METHODS FOR TRANSACTION IN SECURE ONLINE BANKING
PDF
EFFECT OF TRANS-SEPTAL SUTURE TECHNIQUE VERSUS NASAL PACKING AFTER SEPTOPLASTY
PDF
EVALUATION OF DRAINAGE WATER QUALITY FOR IRRIGATION BY INTEGRATION BETWEEN IR...
PDF
THE CONSTRUCTION PROCEDURE AND ADVANTAGE OF THE RAIL CABLE-LIFTING CONSTRUCTI...
PDF
TIME EFFICIENT BAYLIS-HILLMAN REACTION ON STEROIDAL NUCLEUS OF WITHAFERIN-A T...
PDF
A STUDY ON THE FRESH PROPERTIES OF SCC WITH FLY ASH
PDF
AN INSIDE LOOK IN THE ELECTRICAL STRUCTURE OF THE BATTERY MANAGEMENT SYSTEM T...
PDF
OPEN LOOP ANALYSIS OF CASCADED HBRIDGE MULTILEVEL INVERTER USING PDPWM FOR PH...
STUDY & PERFORMANCE OF METAL ON METAL HIP IMPLANTS: A REVIEW
EXPONENTIAL SMOOTHING OF POSTPONEMENT RATES IN OPERATION THEATRES OF ADVANCED...
POSTPONEMENT OF SCHEDULED GENERAL SURGERIES IN A TERTIARY CARE HOSPITAL - A T...
STUDY OF NANO-SYSTEMS FOR COMPUTER SIMULATIONS
ENERGY GAP INVESTIGATION AND CHARACTERIZATION OF KESTERITE CU2ZNSNS4 THIN FIL...
POD-PWM BASED CAPACITOR CLAMPED MULTILEVEL INVERTER
DIGITAL COMPRESSING OF A BPCM SIGNAL ACCORDING TO BARKER CODE USING FPGA
MODELLING THE IMPACT OF FLOODING USING GEOGRAPHIC INFORMATION SYSTEM AND REMO...
AN EXPERIMENTAL STUDY ON SEPARATION OF WATER FROM THE ATMOSPHERIC AIR
LI-ION BATTERY TESTING FROM MANUFACTURING TO OPERATION PROCESS
QUALITATIVE RISK ASSESSMENT AND MITIGATION MEASURES FOR REAL ESTATE PROJECTS ...
SCOPE OF REPLACING FINE AGGREGATE WITH COPPER SLAG IN CONCRETE- A REVIEW
IMPLEMENTATION OF METHODS FOR TRANSACTION IN SECURE ONLINE BANKING
EFFECT OF TRANS-SEPTAL SUTURE TECHNIQUE VERSUS NASAL PACKING AFTER SEPTOPLASTY
EVALUATION OF DRAINAGE WATER QUALITY FOR IRRIGATION BY INTEGRATION BETWEEN IR...
THE CONSTRUCTION PROCEDURE AND ADVANTAGE OF THE RAIL CABLE-LIFTING CONSTRUCTI...
TIME EFFICIENT BAYLIS-HILLMAN REACTION ON STEROIDAL NUCLEUS OF WITHAFERIN-A T...
A STUDY ON THE FRESH PROPERTIES OF SCC WITH FLY ASH
AN INSIDE LOOK IN THE ELECTRICAL STRUCTURE OF THE BATTERY MANAGEMENT SYSTEM T...
OPEN LOOP ANALYSIS OF CASCADED HBRIDGE MULTILEVEL INVERTER USING PDPWM FOR PH...

Recently uploaded (20)

PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
Cloud computing and distributed systems.
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
Electronic commerce courselecture one. Pdf
PDF
cuic standard and advanced reporting.pdf
PDF
Empathic Computing: Creating Shared Understanding
PDF
AI And Its Effect On The Evolving IT Sector In Australia - Elevate
PDF
HCSP-Presales-Campus Network Planning and Design V1.0 Training Material-Witho...
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
KodekX | Application Modernization Development
PDF
Chapter 2 Digital Image Fundamentals.pdf
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPTX
breach-and-attack-simulation-cybersecurity-india-chennai-defenderrabbit-2025....
PDF
Transforming Manufacturing operations through Intelligent Integrations
Chapter 3 Spatial Domain Image Processing.pdf
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Cloud computing and distributed systems.
CIFDAQ's Market Insight: SEC Turns Pro Crypto
Electronic commerce courselecture one. Pdf
cuic standard and advanced reporting.pdf
Empathic Computing: Creating Shared Understanding
AI And Its Effect On The Evolving IT Sector In Australia - Elevate
HCSP-Presales-Campus Network Planning and Design V1.0 Training Material-Witho...
Understanding_Digital_Forensics_Presentation.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
Review of recent advances in non-invasive hemoglobin estimation
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
“AI and Expert System Decision Support & Business Intelligence Systems”
KodekX | Application Modernization Development
Chapter 2 Digital Image Fundamentals.pdf
Reach Out and Touch Someone: Haptics and Empathic Computing
breach-and-attack-simulation-cybersecurity-india-chennai-defenderrabbit-2025....
Transforming Manufacturing operations through Intelligent Integrations

IMPLEMENTATION OF 128-BIT SPARSE KOGGE-STONE ADDER USING VERILOG

  • 1. International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 2, Issue 4 (July-Aug 2014), PP. 90-92 90 | P a g e IMPLEMENTATION OF 128-BIT SPARSE KOGGE-STONE ADDER USING VERILOG Geeta Rani1, Sachin Kumar2 1 M.Tech Student, 2 Faculty Department of Electronics & Communication M. Tech Student MERI COLLEGE OF ENGINEERING & TECHNOLOGY Sampla Abstract— Parallel Prefix adders have been one of the most notable among several designs proposed in the past. The advantage of utilizing the flexibility in implementing these structures based upon through put requirements. Due to continuing integrating intensity and the growing needs of portable devices, low power and high performance designs are of prime importance. The classical parallel prefix adder structures presented in the literature over the years optimize for logic depth, area, and fan-out and interconnect count of logic circuits. In this proposed system, Kogge-Stone adder which is one of types of parallel prefix adder is used. Kogge stone is the fastest adder because of its minimum fan-out. When parallel prefix adder is compared with classical adders it is advantageous in every aspect. The study reveals that Parallel Prefix adder has the least power delay product when compared with its peer existing adder structures (Ripple carry adder, Carry save adders etc). Simulation results are verified using Xilinx 10.1 and MODELSIM 6.4a softwares. Key words— Carry Tree Adder, Kogge-Stone Adder, Sparse Kogge-Stone Adder. I.INTRODUCTION Arithmatic operations i.e. addition, multiplication are common in digital circuits. Binary adders are most basic and widely used arithmetic operations and play a vital role in determining the performance of a design. The basic need from the circuit is that it has less computational time and is of small size. Adders when we talk about adders what we think most probably person will think that it is a device that can add two or more numbers. It is perfectly correct definition. However we just discuss here about digital adders. Adder is a digital circuit that uses in computers and in processors as in there arithmetic and logic unit as well in other parts of processor that use to calculate addresses table indices and other similar operations. Most common adders operate on binary numbers. Basically adders are of two types: Half adder and Full adder. Two half adders can construct one full adder and full adder further construct many complex adders such as ripple carry adder, carry look-ahead adder and carry select adder etc. Basic adders were the slow one. Generally Ripple carry adder (parallel adder) was used to carry out binary addition. Many researches done over several years to find a suitable technique for parallel adders so that delay [1] can be minimized, performance can be better. Hence to reduce the computation time, engineers proposed faster ways by using Carry Look-Ahead (CLA) adder. It uses the parallel prefix operation. In this paper, one of parallel prefix adder is discussed. II.CARRY-TREE ADDER Carry tree adder is also known as the Parallel-Prefix adder. In tree adders, carries are [2] generated in parallel and fast computation is obtained at the expense of increased area and power. The main advantage of the design is that the carry tree [6] reduces the number of logic levels (N) by essentially generating the carries in parallel. III.EXISTING PARALLEL PREFIX ADDERS The prominent parallel prefix tree adders, that are invented so far are, Kogge-Stone, Brent-Kung, Han-Carlson, and Sklansky. There exists various architectures fro carry calculation part. Tradeoff in these architecture involves:  Area of adder  Its depth  The fan-out of the nodes  The overall wiring network. Out of these, it was found from the literature that Kogge- stone adder is the fastest adder when compared to other adders. Kogge-Stone adder implementation [7] is most straightforward, and also it has one of the shortest critical paths of all tree adders. The drawback with the Kogge-Stone adder implementation is the large area consumed and the more complex routing (Fan-Out) of interconnects. The two signals that are generated during various stages: Propagate: controls whether a carry is propagated from lower bits to higher bits. Generate: controls whether a carry is generated. Figure 1: Three stage structure for carry tree adder Fig.1 is the three stage structure for carry tree adder. As there are three stages in parallel [5] prefix adder, below is the description of stages: 1. Pre-processing: Generate(Pi, Gi) from Ai, Bi) Pi = Ai ⨁ Bi ………(1) Gi = Ai . Bi ………(2) 2. Carry look-Ahead network: Generate (Pij, Gij) from (Gi, Pi) and (Gj, Pj) [5] Pi:j = Pi:k+1 . Pk:j …………(3) Gi:j = Gi:k+1 | (pi:k+1 . Gk …………(4)
  • 2. International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 2, Issue 4 (July-Aug 2014), PP. 90-92 91 | P a g e 3. Post processing: Sumi = Pi ⨁ Carryi-1 ………(5) Ci = Gi:0 or (Cin and pi:0) ………(6) IV.KOGGE-STONE ADDER The Kogge-Stone adder concept [3] was developed by Peter M. Kogge and Harold S. Stone, which they published in 1973 in a seminal paper titled “A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations”. First the focus is on the Kogge-Stone adder has minimal logic depth and fan-out. The number of stages are log N, fan-out 2 at each stage and have long wires. Fig. 2 & 3 are the Black cell and grey cells description. Figure 2(a): Schematic of Black cell Figure 2(b): Symbol of Black cell Figure 3(a): Schematic of Grey cell Figure 3(b): Symbol of Grey cell Kogge-stone adder design: Step 1: First to generate propagation and generation signals for each bit. [9] Step 2: to generate black cell and grey cell equations. Step 3: in each step grey cell generated. Step 4: By using grey cell equation to generate the carry bits directly. Step 5: To combine Propagation and carry bits for each step to generate sum. Fig. 4 gives the 16-Bit Kogge-Stone adder. Figure 4: 16-bit Kogge-Stone Adder V.SPARSE KOGGE-STONE ADDER Enhancements to the original implementation include increasing the radix and sparsity of the adder. The radix of the adder refers to how many results from previous level of computation are used to generate the next one. Doing so increases the power and delay of each stage, but reduces the number of required stages. The sparsity of the adder refers to how many carry bits are generated by the carry-tree. Generating every carry bit is called sparsity-1, whereas generating every other is sparsity-2 and every fourth is sparsity- 4. The resulting carries are then used as the carry-in inputs for much shorter ripple carry adders or some other adder design, which generates the final sum bits. Increasing sparsity reduces the total needed computation and can reduce the amount of routing congestion. Figure 5: Sparsity-4 Kogge-Stone adder Fig. 5 is an example of a Kogge–Stone adder with sparsity- 4. Elements eliminated by sparsity shown marked with transparency. As shown, power and area of the carry generation is improved significantly, and routing congestion is substantially reduced. Each generated carry feeds a multiplexer for a carry select adder or the carry-in of a ripple carry adder. 16-Bit Sparse Kogge-Stone adder The Sparse Kogge-Stone adder consists [10] of several smaller ripple carry adders (RCAs) on its lower half and a carry tree on its upper half. Thus, the sparse Kogge-Stone adder terminates with RCAs. The number of carries generated is less in a Sparse Kogge- Stone adder compared to the regular Kogge-Stone adder. The functionality of the GP block, black cell and the gray cell remains exactly the same as in the regular Figure 6: 16-Bit Sparse Kogge-Stone Adder [6]
  • 3. International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 2, Issue 4 (July-Aug 2014), PP. 90-92 92 | P a g e Kogge-Stone adder. The schematic for a 16-bit sparse Kogge-Stone adder is shown in Fig. 6. Sparse and regular Kogge-Stone adders have essentially the same delay when implemented on an FPGA although the former utilizes much less resources VI.SIMULATION AND RESULT I have synthesized 128-Bit Sparse Kogge-Stone adder using Verilog on ISE Xilinx 10.1 and simulated using MODELSIM 6.4a. Results shows that 128-Bit Sparse Kogge –Stone adder uses No. of slices-134, No. of 4 inputs LUTs-235, No. of IOBs- 264 and also the delay exerted by Sparse Kogge-Stone adder is 26.543 ns. Delay exerted by above mentioned adder is less when compared with the 16-bit RCA and CLA which is 26.686 ns using Verilog HDL on ISE Xilinx 10.1. Hence while comparing 128 Bit Kogge-Stone Adder even with the Lower bit adder such as 16 bit Carry Look ahead adder and 16 bit Ripple Carry adder in terms of delay, even then it is faster. Hence its useful in industries. Device Utilization Summary TABLE I. DEVICE UTILISATION SUMMARY OF SPARSE KOGGE-STONE ADDER Figure 7: RTL Schematic of 128-bit Sparse Kogge-Stone adder Figure 8: Waveform of 128- bit S-KSA REFERENCES [1] CH. Chimpiraiah, E.V.Vijay, “An Efficient Architecture for Parallel Adder”, International Journal of VLSI and Embedded Systems Vol. 03, Issues 04; Sep-Oct 2012. [2] D.H.K Hoe, C. Martinez, and J.Vundavalli, “Design and Characterisation of Parallel Prefix Adders using FPGAs”, IEEE 43rd Southern Synopsium on System Theory, March 2011. [3] Kogge P and Stone H, “A Parallel Algorithm for the Efficient Solutions of a General Class of Recurrence Relations”, IEEE Transactions on Computers, Vol. C-22, No.8, 1973. [4] B Pullarao, J.Parveen Kumar, “ Design of High Speed Based On Parallel Prefix Adders Using In FPGA”, International Journal of Engineering Sciences & Research Technology (IJESRT) Dec, 2013 [5] Pakkiraiah Chakali, Madhu Kumar Patnala,” Design of High Speed Kogge-Stone Based Carry Select Adder”, International Journal of Emerging Science and Engineering, Vol.1, Issue-4, February 2013. [6] T. Lynch and E. E. Swatzlander, ”A Spanning Tree Carry Look- Ahead adder”, IEEE Transactions on computers, Vol. 41, no. 8 ,pp. 931-939, Aug. 1992. [7] P.Annapurna Bai, M.Vijaya Laxmi , ”Design of 128-bit Kogge- Stone Low Power Parallel Prefix Adder for High Speed Arithmatic Circuits”, International Journal of Engineering and Technology, Vol.-2,Issue-6, Aug 2013 [8] Andrew Beaumont-Smith and Cheng-Chew Lim, “Parallel Prefix Adder Design”, Department of Electrical and Electronic Engineering, the University of Adelaide, 2001. Chris D. Martinez, L. P. Deepthi Bollepalli, and David H. [9] K. Hoe, “A Fault Tolerant Parallel-Prefix Adder for VLSI and FPGA Design”, 44th IEEE Southeastern Symposium on System Theory, 2012. [10] K. Vitoroulis and A. J. Al-Khalili,“ Performance of Parallel Prefix Adders Implemented with FPGA technology”, IEEE Northeast Workshop on Circuits and Systems, pp. 498-501, Aug. 2007.