SlideShare a Scribd company logo
C. Ventura X. Giró-i-Nieto V. Vilaplana F. Marqués K. McGuinness N. O’Connor
Improving Spatial Codification in
Semantic Segmentation
Outline
● Introduction
● Related Work and Contributions
● Architecture
● Experiments
● Conclusions
Introduction
● Object segmentation vs Class segmentation
Image Object
segmentation
Class
segmentation
3
Outline
● Introduction
● Related Work and Contributions
● Architecture
● Experiments
● Conclusions
Related Work
● The Visual Extent of
an Object [1]
5
[1] Uijlings et al, The VIsual Extent of an Object. IJCV’12
1st Contribution
● Using a Figure-Border-Ground spatial pooling with object
candidates
6
Figure-Ground
spatial pooling
Figure-Border-Ground
spatial pooling
Related Work
● Beyond bags of features:
Spatial pyramid matching
for recognizing natural
scene categories [1]
7
[1] Lazebnik et al, Beyond bags of features: Spatial pyramid matching for recognizing natural scenes. CVPR’06
Related Work
● Variations of SPM
○ Non-arbitrary division
■ Object-centric pooling [1]
■ Object confidence map
partition [2]
○ SPM over bounding boxes [3]
[4]
[1] Russakovky et al, Object-centric spatial pooling for image classification. ECCV’12
[2] Chen et al, Hierarchical Matching with Side Information for Image Classification. CVPR’12
[3] Arbeláez et at, Semantic segmentation using regions and parts. CVPR’12
[4] Gu et al, Multi-component models for object detection. ECCV’12
8
2nd Contribution
● Applying a contour-based spatial pyramid (SP)
○ Crown-based SP
○ Cartesian-based SP
9
Crown-based
spatial pyramid
Cartesian-based
spatial pyramid
Outline
● Introduction
● Related Work and Contributions
● Architecture
● Experiments
● Conclusions
Architecture
● Architecture proposed and released in [1]
[1] Carreira et al, Semantic segmentation with second-order pooling. ECCV’12
Train Test
DataBase
Object
Candidates
Feature
Extraction
Test
Model
Prediction
Evaluation
AAC
Ground
Truth
Train
CPMC SIFT-based
features (O2P)
11
Outline
● Introduction
● Related Work and Contributions
● Architecture
● Experiments
● Conclusions
Experiments
● Experiments with ideal object
candidates
○ Train set: train11
○ Test set: val11
F[1] F-B F-G[1] F-B-G
eSIFT 63.9 66.2 66.4 68.6
eMSIFT 64.8 68.9 67.6 70.8
[1] Carreira et al, Semantic segmentation with second-order pooling. ECCV’12 13
Experiments
● Experiments with ideal object
candidates
○ Train set: train11
○ Test set: val11
F F-B F-B-G
non SP 64.8 [1] 68.9 70.8
crown-based SP 68.7 71.1 71.7
Cartesian-based SP 67.7 71.6 72.7
Figure SP(Figure) Border Ground AAC
eSIFT+eMSIFT+eLBP eSIFT 72.98 [1]
eSIFT+eMSIFT eMSIFT+eSIFT eMSIFT+eSIFT 73.84
eSIFT+eMSIFT+eLBP eMSIFT eMSIFT+eSIFT eMSIFT+eSIFT 75.86
[1] Carreira et al, Semantic segmentation with second-order pooling. ECCV’12
14
Experiments
● Experiments with CPMC object candidates
○ Train set: train11
○ Test set: val11
[1] Carreira et al, Semantic segmentation with second-order pooling. ECCV’12
Figure SP(Figure) Border Ground AAC
eSIFT eSIFT 28.6 [1]
eSIFT eSIFT eSIFT 34.8
eSIFT+eMSIFT+eLBP eSIFT 37.2 [1]
eSIFT eSIFT eSIFT eSIFT 37.4
eSIFT+eMSIFT+eLBP eSIFT eSIFT eSIFT 39.6
15
Experiments
● Experiments with CPMC object
candidates in comp5 challenge
○ Train set: trainval11 /
trainval12
○ Test set: test11 / test12
F-G [1] F-B-G SP(F)-B-G
PASCAL
VOC11
38.8 43.8 40.3
PASCAL
VOC12
39.9 42.2 40.8
[1] Carreira et al, Semantic segmentation with second-order pooling. ECCV’12
16
Experiments
● Experiments with MCG object
candidates [1]
○ Train set: train11
○ Test set: val11
F-G[2] F-B-G SP(F)-B-G
CPMC 37.2 38.9 39.6
MCG 30.9 34.1 36.1
[1] Arbeláez et al, Multiscale Combinatorial Grouping. CVPR’14
[2] Carreira et al, Semantic segmentation with second-order pooling. ECCV’12 17
Experiments
● Qualitative results F-B-G spatial pooling with CPMC
18
F-G F-B-G F-G F-B-G
aeroplane
bicycle bicycle
birdcat
motorbike boat
bottle
bus
bus
motorbike
car
chair
cat
chair
chair
horse
cow
bird
Experiments
● Qualitative results F-B-G spatial pooling with CPMC
19
chair
dining table
cow
dog
person
horse
person motorbike
motorbike
motorbike
person
plotted plant bottle
sheep
sofa
dog
bus
train train
tvmonitor
F-G F-B-G F-G F-B-G
Outline
● Introduction
● Related Work and Contributions
● Architecture
● Experiments
● Conclusions
Conclusions
● 2 proposals beyond the classic Figure-Ground pooling
○ Figure-Border-Ground spatial pooling
■ Extended to realistic scenario with CPMC object
candidates
○ A novel contour-based spatial pyramid has been introduced
■ Cartesian-based spatial pyramid
■ Crown-based spatial pyramid
● Validation of both proposals also for MCG object candidates
21
Improving Spatial Codification in Semantic Segmentation
Related Work
● The Visual
Extent of an
Object (Uijlings
et al, IJCV’12)
23

More Related Content

What's hot (10)

PDF
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
MeetupDataScienceRoma
 
PDF
New approaches for boosting to uniformity
Nikita Kazeev
 
PDF
Csr2011 june16 12_00_wagner
CSR2011
 
PDF
The Origin of Grad-CAM
Shintaro Yoshida
 
PDF
Second order traffic flow models on networks
Guillaume Costeseque
 
PDF
Traffic flow modeling on road networks using Hamilton-Jacobi equations
Guillaume Costeseque
 
PDF
Presentacion granada
Rene García
 
PDF
On Convolution of Graph Signals and Deep Learning on Graph Domains
Jean-Charles Vialatte
 
PDF
Graph Edit Distance: Basics & Trends
Luc Brun
 
PDF
Deep Learning for Computer Vision: Unsupervised Learning (UPC 2016)
Universitat Politècnica de Catalunya
 
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
MeetupDataScienceRoma
 
New approaches for boosting to uniformity
Nikita Kazeev
 
Csr2011 june16 12_00_wagner
CSR2011
 
The Origin of Grad-CAM
Shintaro Yoshida
 
Second order traffic flow models on networks
Guillaume Costeseque
 
Traffic flow modeling on road networks using Hamilton-Jacobi equations
Guillaume Costeseque
 
Presentacion granada
Rene García
 
On Convolution of Graph Signals and Deep Learning on Graph Domains
Jean-Charles Vialatte
 
Graph Edit Distance: Basics & Trends
Luc Brun
 
Deep Learning for Computer Vision: Unsupervised Learning (UPC 2016)
Universitat Politècnica de Catalunya
 

Viewers also liked (15)

PDF
Semantic segmentation
Takuya Minagawa
 
PDF
(Semantic Web Technologies and Applications track) "A Quantitative Comparison...
icwe2015
 
PPTX
Semantic-Aware Sky Replacement (SIGGRAPH 2016)
Yi-Hsuan Tsai
 
PDF
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
Edge AI and Vision Alliance
 
PPTX
Semantic Mapping of Road Scenes
Sunando Sengupta
 
PDF
crfasrnn_presentation
Sadeep Jayasumana
 
PPTX
Semantic Segmentation Methods using Deep Learning
Sungjoon Choi
 
PDF
#6 PyData Warsaw: Deep learning for image segmentation
Matthew Opala
 
PDF
Dataset for Semantic Urban Scene Understanding
Yosuke Shinya
 
PPTX
Deep learning intro
beamandrew
 
PDF
DeconvNet, DecoupledNet, TransferNet in Image Segmentation
NamHyuk Ahn
 
PDF
Deep Learning for Computer Vision: Segmentation (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
SSD: Single Shot MultiBox Detector (ECCV2016)
Takanori Ogata
 
PDF
Efficient exploration of region hierarchies for semantic segmentation
Universitat Politècnica de Catalunya
 
PDF
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
nlab_utokyo
 
Semantic segmentation
Takuya Minagawa
 
(Semantic Web Technologies and Applications track) "A Quantitative Comparison...
icwe2015
 
Semantic-Aware Sky Replacement (SIGGRAPH 2016)
Yi-Hsuan Tsai
 
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
Edge AI and Vision Alliance
 
Semantic Mapping of Road Scenes
Sunando Sengupta
 
crfasrnn_presentation
Sadeep Jayasumana
 
Semantic Segmentation Methods using Deep Learning
Sungjoon Choi
 
#6 PyData Warsaw: Deep learning for image segmentation
Matthew Opala
 
Dataset for Semantic Urban Scene Understanding
Yosuke Shinya
 
Deep learning intro
beamandrew
 
DeconvNet, DecoupledNet, TransferNet in Image Segmentation
NamHyuk Ahn
 
Deep Learning for Computer Vision: Segmentation (UPC 2016)
Universitat Politècnica de Catalunya
 
SSD: Single Shot MultiBox Detector (ECCV2016)
Takanori Ogata
 
Efficient exploration of region hierarchies for semantic segmentation
Universitat Politècnica de Catalunya
 
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
nlab_utokyo
 
Ad

Similar to Improving Spatial Codification in Semantic Segmentation (20)

PPTX
Visual Object Analysis using Regions and Local Features
Universitat Politècnica de Catalunya
 
PDF
IRJET- Semantic Segmentation using Deep Learning
IRJET Journal
 
PPTX
DefenseTalk_Trimmed
Abhishek Sharma
 
PDF
The Future of Health Monitoring: Advances in Wearable Sensor Data Processing
IgMin Publications Inc.
 
PDF
[unofficial] Pyramid Scene Parsing Network (CVPR 2017)
Shunta Saito
 
PDF
IMAGE SEGMENTATION AND ITS TECHNIQUES
IRJET Journal
 
PPTX
Contextless Object Recognition with Shape-enriched SIFT and Bags of Features
Universitat Politècnica de Catalunya
 
PPTX
[NS][Lab_Seminar_241118]Relation Matters: Foreground-aware Graph-based Relati...
thanhdowork
 
PDF
Intelligent Auto Horn System Using Artificial Intelligence
IRJET Journal
 
PDF
Semantic Scene Classification for Image Annotation
IRJET Journal
 
PPTX
Semantic segmentation with Convolutional Neural Network Approaches
UMBC
 
PPTX
AaSeminar_Template.pptx
ManojGowdaKb
 
PDF
Semantic Video Segmentation with Using Ensemble of Particular Classifiers and...
ITIIIndustries
 
PDF
IRJET- Saliency based Image Co-Segmentation
IRJET Journal
 
PDF
Deep Learning for X ray Image to Text Generation
ijtsrd
 
PDF
Object segmentation by alignment of poselet activations to image contours
irisshicat
 
PDF
Object Detetcion using SSD-MobileNet
IRJET Journal
 
PDF
IRJET- Optimization of Semantic Image Retargeting by using Guided Fusion Network
IRJET Journal
 
PPTX
Image Segmentation Using Deep Learning : A survey
NUPUR YADAV
 
PPTX
SYNOPSIS on Parse representation and Linear SVM.
bhavinecindus
 
Visual Object Analysis using Regions and Local Features
Universitat Politècnica de Catalunya
 
IRJET- Semantic Segmentation using Deep Learning
IRJET Journal
 
DefenseTalk_Trimmed
Abhishek Sharma
 
The Future of Health Monitoring: Advances in Wearable Sensor Data Processing
IgMin Publications Inc.
 
[unofficial] Pyramid Scene Parsing Network (CVPR 2017)
Shunta Saito
 
IMAGE SEGMENTATION AND ITS TECHNIQUES
IRJET Journal
 
Contextless Object Recognition with Shape-enriched SIFT and Bags of Features
Universitat Politècnica de Catalunya
 
[NS][Lab_Seminar_241118]Relation Matters: Foreground-aware Graph-based Relati...
thanhdowork
 
Intelligent Auto Horn System Using Artificial Intelligence
IRJET Journal
 
Semantic Scene Classification for Image Annotation
IRJET Journal
 
Semantic segmentation with Convolutional Neural Network Approaches
UMBC
 
AaSeminar_Template.pptx
ManojGowdaKb
 
Semantic Video Segmentation with Using Ensemble of Particular Classifiers and...
ITIIIndustries
 
IRJET- Saliency based Image Co-Segmentation
IRJET Journal
 
Deep Learning for X ray Image to Text Generation
ijtsrd
 
Object segmentation by alignment of poselet activations to image contours
irisshicat
 
Object Detetcion using SSD-MobileNet
IRJET Journal
 
IRJET- Optimization of Semantic Image Retargeting by using Guided Fusion Network
IRJET Journal
 
Image Segmentation Using Deep Learning : A survey
NUPUR YADAV
 
SYNOPSIS on Parse representation and Linear SVM.
bhavinecindus
 
Ad

More from Universitat Politècnica de Catalunya (20)

PDF
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Universitat Politècnica de Catalunya
 
PDF
Deep Generative Learning for All
Universitat Politècnica de Catalunya
 
PDF
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
Universitat Politècnica de Catalunya
 
PDF
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Universitat Politècnica de Catalunya
 
PDF
The Transformer - Xavier Giró - UPC Barcelona 2021
Universitat Politècnica de Catalunya
 
PDF
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Universitat Politècnica de Catalunya
 
PDF
Open challenges in sign language translation and production
Universitat Politècnica de Catalunya
 
PPTX
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Universitat Politècnica de Catalunya
 
PPTX
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Universitat Politècnica de Catalunya
 
PDF
Learn2Sign : Sign language recognition and translation using human keypoint e...
Universitat Politècnica de Catalunya
 
PDF
Intepretability / Explainable AI for Deep Neural Networks
Universitat Politècnica de Catalunya
 
PDF
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
PDF
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Universitat Politècnica de Catalunya
 
PDF
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
PDF
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Universitat Politècnica de Catalunya
 
PDF
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Universitat Politècnica de Catalunya
 
PDF
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Universitat Politècnica de Catalunya
 
PDF
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Universitat Politècnica de Catalunya
 
PDF
Curriculum Learning for Recurrent Video Object Segmentation
Universitat Politècnica de Catalunya
 
PDF
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Universitat Politècnica de Catalunya
 
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Universitat Politècnica de Catalunya
 
Deep Generative Learning for All
Universitat Politècnica de Catalunya
 
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
Universitat Politècnica de Catalunya
 
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Universitat Politècnica de Catalunya
 
The Transformer - Xavier Giró - UPC Barcelona 2021
Universitat Politècnica de Catalunya
 
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Universitat Politècnica de Catalunya
 
Open challenges in sign language translation and production
Universitat Politècnica de Catalunya
 
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Universitat Politècnica de Catalunya
 
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Universitat Politècnica de Catalunya
 
Learn2Sign : Sign language recognition and translation using human keypoint e...
Universitat Politècnica de Catalunya
 
Intepretability / Explainable AI for Deep Neural Networks
Universitat Politècnica de Catalunya
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Universitat Politècnica de Catalunya
 
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Universitat Politècnica de Catalunya
 
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Universitat Politècnica de Catalunya
 
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Universitat Politècnica de Catalunya
 
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Universitat Politècnica de Catalunya
 
Curriculum Learning for Recurrent Video Object Segmentation
Universitat Politècnica de Catalunya
 
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Universitat Politècnica de Catalunya
 

Recently uploaded (20)

PDF
Kubernetes - Architecture & Components.pdf
geethak285
 
PPTX
𝙳𝚘𝚠𝚗𝚕𝚘𝚊𝚍—Wondershare Filmora Crack 14.0.7 + Key Download 2025
sebastian aliya
 
PDF
Database Benchmarking for Performance Masterclass: Session 1 - Benchmarking F...
ScyllaDB
 
PDF
Enhancing Environmental Monitoring with Real-Time Data Integration: Leveragin...
Safe Software
 
PPTX
Paycifi - Programmable Trust_Breakfast_PPTXT
FinTech Belgium
 
PPSX
Usergroup - OutSystems Architecture.ppsx
Kurt Vandevelde
 
PDF
2025_06_18 - OpenMetadata Community Meeting.pdf
OpenMetadata
 
PDF
5 Things to Consider When Deploying AI in Your Enterprise
Safe Software
 
PPTX
reInforce 2025 Lightning Talk - Scott Francis.pptx
ScottFrancis51
 
PDF
EIS-Webinar-Engineering-Retail-Infrastructure-06-16-2025.pdf
Earley Information Science
 
PDF
Database Benchmarking for Performance Masterclass: Session 2 - Data Modeling ...
ScyllaDB
 
PPTX
Enabling the Digital Artisan – keynote at ICOCI 2025
Alan Dix
 
DOCX
Daily Lesson Log MATATAG ICT TEchnology 8
LOIDAALMAZAN3
 
PDF
ArcGIS Utility Network Migration - The Hunter Water Story
Safe Software
 
PDF
“MPU+: A Transformative Solution for Next-Gen AI at the Edge,” a Presentation...
Edge AI and Vision Alliance
 
PDF
Quantum AI Discoveries: Fractal Patterns Consciousness and Cyclical Universes
Saikat Basu
 
PDF
Java 25 and Beyond - A Roadmap of Innovations
Ana-Maria Mihalceanu
 
PDF
My Journey from CAD to BIM: A True Underdog Story
Safe Software
 
PDF
UiPath Agentic AI ile Akıllı Otomasyonun Yeni Çağı
UiPathCommunity
 
PDF
LLM Search Readiness Audit - Dentsu x SEO Square - June 2025.pdf
Nick Samuel
 
Kubernetes - Architecture & Components.pdf
geethak285
 
𝙳𝚘𝚠𝚗𝚕𝚘𝚊𝚍—Wondershare Filmora Crack 14.0.7 + Key Download 2025
sebastian aliya
 
Database Benchmarking for Performance Masterclass: Session 1 - Benchmarking F...
ScyllaDB
 
Enhancing Environmental Monitoring with Real-Time Data Integration: Leveragin...
Safe Software
 
Paycifi - Programmable Trust_Breakfast_PPTXT
FinTech Belgium
 
Usergroup - OutSystems Architecture.ppsx
Kurt Vandevelde
 
2025_06_18 - OpenMetadata Community Meeting.pdf
OpenMetadata
 
5 Things to Consider When Deploying AI in Your Enterprise
Safe Software
 
reInforce 2025 Lightning Talk - Scott Francis.pptx
ScottFrancis51
 
EIS-Webinar-Engineering-Retail-Infrastructure-06-16-2025.pdf
Earley Information Science
 
Database Benchmarking for Performance Masterclass: Session 2 - Data Modeling ...
ScyllaDB
 
Enabling the Digital Artisan – keynote at ICOCI 2025
Alan Dix
 
Daily Lesson Log MATATAG ICT TEchnology 8
LOIDAALMAZAN3
 
ArcGIS Utility Network Migration - The Hunter Water Story
Safe Software
 
“MPU+: A Transformative Solution for Next-Gen AI at the Edge,” a Presentation...
Edge AI and Vision Alliance
 
Quantum AI Discoveries: Fractal Patterns Consciousness and Cyclical Universes
Saikat Basu
 
Java 25 and Beyond - A Roadmap of Innovations
Ana-Maria Mihalceanu
 
My Journey from CAD to BIM: A True Underdog Story
Safe Software
 
UiPath Agentic AI ile Akıllı Otomasyonun Yeni Çağı
UiPathCommunity
 
LLM Search Readiness Audit - Dentsu x SEO Square - June 2025.pdf
Nick Samuel
 

Improving Spatial Codification in Semantic Segmentation

  • 1. C. Ventura X. Giró-i-Nieto V. Vilaplana F. Marqués K. McGuinness N. O’Connor Improving Spatial Codification in Semantic Segmentation
  • 2. Outline ● Introduction ● Related Work and Contributions ● Architecture ● Experiments ● Conclusions
  • 3. Introduction ● Object segmentation vs Class segmentation Image Object segmentation Class segmentation 3
  • 4. Outline ● Introduction ● Related Work and Contributions ● Architecture ● Experiments ● Conclusions
  • 5. Related Work ● The Visual Extent of an Object [1] 5 [1] Uijlings et al, The VIsual Extent of an Object. IJCV’12
  • 6. 1st Contribution ● Using a Figure-Border-Ground spatial pooling with object candidates 6 Figure-Ground spatial pooling Figure-Border-Ground spatial pooling
  • 7. Related Work ● Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories [1] 7 [1] Lazebnik et al, Beyond bags of features: Spatial pyramid matching for recognizing natural scenes. CVPR’06
  • 8. Related Work ● Variations of SPM ○ Non-arbitrary division ■ Object-centric pooling [1] ■ Object confidence map partition [2] ○ SPM over bounding boxes [3] [4] [1] Russakovky et al, Object-centric spatial pooling for image classification. ECCV’12 [2] Chen et al, Hierarchical Matching with Side Information for Image Classification. CVPR’12 [3] Arbeláez et at, Semantic segmentation using regions and parts. CVPR’12 [4] Gu et al, Multi-component models for object detection. ECCV’12 8
  • 9. 2nd Contribution ● Applying a contour-based spatial pyramid (SP) ○ Crown-based SP ○ Cartesian-based SP 9 Crown-based spatial pyramid Cartesian-based spatial pyramid
  • 10. Outline ● Introduction ● Related Work and Contributions ● Architecture ● Experiments ● Conclusions
  • 11. Architecture ● Architecture proposed and released in [1] [1] Carreira et al, Semantic segmentation with second-order pooling. ECCV’12 Train Test DataBase Object Candidates Feature Extraction Test Model Prediction Evaluation AAC Ground Truth Train CPMC SIFT-based features (O2P) 11
  • 12. Outline ● Introduction ● Related Work and Contributions ● Architecture ● Experiments ● Conclusions
  • 13. Experiments ● Experiments with ideal object candidates ○ Train set: train11 ○ Test set: val11 F[1] F-B F-G[1] F-B-G eSIFT 63.9 66.2 66.4 68.6 eMSIFT 64.8 68.9 67.6 70.8 [1] Carreira et al, Semantic segmentation with second-order pooling. ECCV’12 13
  • 14. Experiments ● Experiments with ideal object candidates ○ Train set: train11 ○ Test set: val11 F F-B F-B-G non SP 64.8 [1] 68.9 70.8 crown-based SP 68.7 71.1 71.7 Cartesian-based SP 67.7 71.6 72.7 Figure SP(Figure) Border Ground AAC eSIFT+eMSIFT+eLBP eSIFT 72.98 [1] eSIFT+eMSIFT eMSIFT+eSIFT eMSIFT+eSIFT 73.84 eSIFT+eMSIFT+eLBP eMSIFT eMSIFT+eSIFT eMSIFT+eSIFT 75.86 [1] Carreira et al, Semantic segmentation with second-order pooling. ECCV’12 14
  • 15. Experiments ● Experiments with CPMC object candidates ○ Train set: train11 ○ Test set: val11 [1] Carreira et al, Semantic segmentation with second-order pooling. ECCV’12 Figure SP(Figure) Border Ground AAC eSIFT eSIFT 28.6 [1] eSIFT eSIFT eSIFT 34.8 eSIFT+eMSIFT+eLBP eSIFT 37.2 [1] eSIFT eSIFT eSIFT eSIFT 37.4 eSIFT+eMSIFT+eLBP eSIFT eSIFT eSIFT 39.6 15
  • 16. Experiments ● Experiments with CPMC object candidates in comp5 challenge ○ Train set: trainval11 / trainval12 ○ Test set: test11 / test12 F-G [1] F-B-G SP(F)-B-G PASCAL VOC11 38.8 43.8 40.3 PASCAL VOC12 39.9 42.2 40.8 [1] Carreira et al, Semantic segmentation with second-order pooling. ECCV’12 16
  • 17. Experiments ● Experiments with MCG object candidates [1] ○ Train set: train11 ○ Test set: val11 F-G[2] F-B-G SP(F)-B-G CPMC 37.2 38.9 39.6 MCG 30.9 34.1 36.1 [1] Arbeláez et al, Multiscale Combinatorial Grouping. CVPR’14 [2] Carreira et al, Semantic segmentation with second-order pooling. ECCV’12 17
  • 18. Experiments ● Qualitative results F-B-G spatial pooling with CPMC 18 F-G F-B-G F-G F-B-G aeroplane bicycle bicycle birdcat motorbike boat bottle bus bus motorbike car chair cat chair chair horse cow bird
  • 19. Experiments ● Qualitative results F-B-G spatial pooling with CPMC 19 chair dining table cow dog person horse person motorbike motorbike motorbike person plotted plant bottle sheep sofa dog bus train train tvmonitor F-G F-B-G F-G F-B-G
  • 20. Outline ● Introduction ● Related Work and Contributions ● Architecture ● Experiments ● Conclusions
  • 21. Conclusions ● 2 proposals beyond the classic Figure-Ground pooling ○ Figure-Border-Ground spatial pooling ■ Extended to realistic scenario with CPMC object candidates ○ A novel contour-based spatial pyramid has been introduced ■ Cartesian-based spatial pyramid ■ Crown-based spatial pyramid ● Validation of both proposals also for MCG object candidates 21
  • 23. Related Work ● The Visual Extent of an Object (Uijlings et al, IJCV’12) 23