SlideShare a Scribd company logo
InfoGAN : Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets
ISL Lab Seminar
Hansol Kang
: Mutual Information
Contents
Review
InfoGAN
Experiment
Summary
2019-04-08
2
I. Review
Review
Vanilla GAN, DCGAN
Review
• Concept of GAN
2019-04-08
4
VsD
GF1
F1
F1
F1
FakeR1
Review
• Concept of GAN
2019-04-08
5
VsD
G
Fake?R1
@
F1
Review
• Adversarial nets
2019-04-08
6
)))]((1[log()]([log),(maxmin )(~)(~ zGDExDEGDV zpzxpx
DG zdata
−+=
Smart D
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata
−+Real case
Fake case
1
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata
−+
0
should be 0
should be 0
1
Log(x)
cf.
Stupid D
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata
−+Real case
Fake case
0
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata
−+
1
should be negative infinity
should be negative infinity
D perspective,
it should be maximum.
Review
• Adversarial nets
2019-04-08
7
)))]((1[log()]([log),(maxmin )(~)(~ zGDExDEGDV zpzxpx
DG zdata
−+=
Generator
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata
−+
1
should be negative infinity
1
Log(x)
cf.
G perspective,
it should be minimum.
Smart G
Stupid G )))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata
−+
0
should be 0
Review
2019-04-08
8
• GAN
1) Global Optimality of datag pp =
2) Convergence of Algorithm
D GVs
x
)(xpdata
“Generative Adversarial Networks”
Goal Method
Review
2019-04-08
9
• DCGAN : network
D
G
“쟤들 뭐하냐?”
“CNN이 MLP보다 훨씬 낫지롱”
D
“우리가 짱이야.”
G
Vanilla GAN DCGAN
Review
2019-04-08
10
• DCGAN : latent space
0 1
0.1
0.15
0.18
0.143
0.5
0.45
0.47
0.473
0.9
0.95
0.96
0.937
0.607±
II. InfoGAN
InfoGAN
Concept, Mutual Information, Variational method, Results
InfoGAN
2019-04-08
12
• Concept
D
GNoise
Real(Kurt Cobain)
Fake(Not Kurt Cobain)
…
Latent code
Dataset
InfoGAN
2019-04-08
13
• Concept
D
GNoise
Real(Kurt Cobain)
Fake(Not Kurt Cobain)
…
Latent code
Dataset
0
Simplify
InfoGAN
2019-04-08
14
• Concept
D
GNoise
Real(Kurt Cobain)
Fake(Not Kurt Cobain)
…
Latent code
Dataset
0.5
Simplify
InfoGAN
2019-04-08
15
• Concept
D
GNoise
Real(Kurt Cobain)
Fake(Not Kurt Cobain)
…
Latent code
Dataset
1
Simplify
InfoGAN
2019-04-08
16
• Concept
D
GNoise
Real(Kurt Cobain)
Fake(Not Kurt Cobain)
…
Latent code
Dataset
0.001
0.008
1.000
0.007
…
0.005
But…
? : 실제 latent code의 구조는 복잡하여
해석이 어려움(entangled).
InfoGAN
2019-04-08
17
• Concept
GNoise
Latent code
0.001
0.008
1.000
0.007
…
0.005
? : 실제 latent code의 구조는 복잡하여
해석이 어려움(entangled).
Let's make the latent code simple.
The proper generation is difficult.
[0.001, 0.008, …, 005] [005]
Latent code
0.001
0.008
1.000
0.007
…
0.005
0
0
0
0
…
1
Z C
Z C : Condition
How about adding latent code?
Idea
InfoGAN
2019-04-08
18
• Concept
G
Latent code
Z C
“뭐야? 그러면 C를 Z 옆에 바로
붙이면 되는 거야?”
[0.001, 0.008, …, 005 | 0, 0, … 1]
z c
[0.001, 0.008, …, 005 | 1, 0, … 0]
z c
[0.001, 0.008, …, 005 ]
z
[0.001, 0.008, …, 005 ]
z
Ignore the additional latent code c
Cost function을 수정하여 c의 영향을 만듦.),(maxmin GDV
DG
(Mutual Information)
InfoGAN
2019-04-08
19
• Mutual Information
)|()();( YXHXHYXI −=
)()(
)(
);(
YPXP
YXP
YXI

=
ISL Browser
https://isl.cnu.ac.kr
Supervised Learning
검색 결과 약 107,000,000개
Unsupervised Learning
검색 결과 약 13,400,000개
Clustering
검색 결과 약 40,900,000개
Supervised Learning Clustering
검색 결과 약 25,300,000개
Unsupervised Learning Clustering
검색 결과 약 7,770,000개
Deep Learning
검색 결과 약 1,380,000,000개
07754.0)( =SLP
00971.0)( =ULP
02964.0)( =CP
0.01833)( =CSLP 
0.00563)( =CULP 
97551.7
02964.007754.0
01833.0
)()(
)(
=

=
CPSLP
CSLP 
56190.19
02964.000971.0
00563.0
)()(
)(
=

=
CPULP
CULP 
“두 사건 사이의 연관성 파악”
InfoGAN
2019-04-08
20
• Mutual Information
: Generator와 c 사이의 연관성을 cost로 정의( )),(;),(),(maxmin czGcIGDVGDVI
DG
−=
Maximize
Hard to maximize directly as it requires access to the posterior )|( xcP
( )  ( ))(||)|()(|log),,( )|( zpxzqKLzgxExL xzq 
 +−=
),,(min xL 
Reconstruction Error Regularization
VAE Seminar (18.07.23)
InfoGAN
2019-04-08
21
• Variational method
)|( xcP )|( xcQ
Intractable(Very complicated) Tractable(e.g Gaussian)
( )),(;),(),(maxmin czGcIGDVGDVI
DG
−=
( ) ( )),(|)(),(; czGcHcHczGcI −=
( ) ( ) ( ) ),(),(|ln),(,),(| czdcdGczGcPczGcPczGcH −=
( ) dydxxyPxyPxyH )|(ln),(| −=
dydxxyPxPxyP )|(ln)()|(−=
c.f Conditional Entropy
Product rule
( ) ( ) ( ) ),(),(|ln),(),(| czdcdGczGcPczGPczGcP−=
( ) ( ) ( ) ),(),(|ln),(|),( czdcdGczGcPczGcPczGP−=
( )   ),()|'(ln),( )|(~' czdGxcPEczGP xcPc−=
  )|'(ln)|(~'),(~ xcPEE xcPcczGx−= ( )   )|'(ln)(),(; )|(~'),(~ xcPEEcHczGcI xcPcczGx+=
(1)
(2)
InfoGAN
2019-04-08
22
• Variational method
( )   )|'(ln)(),(; )|(~'),(~ xcPEEcHczGcI xcPcczGx+= (2)
( ) 





=
)'(
)|'(
ln)|'(||)|'( )|(~'
xcQ
xcP
ExcQxcPD xcPcKL
)|'(ln)'(ln )|(~')|(~' xcQExcPE xcPcxcPc −=
( ) )|'(ln)|'(||)|'()'(ln )|(~')|(~' xcQExcQxcPDxcPE xcPcKLxcPc +=
( ) ( ) )|'(ln)|'(||)|'()(),(; )|(~'),(~ xcQExcQxcPDEcHczGcI xcPcKLczGx ++= (3)
0
( ) 





=
)(
)(
ln|| ~
xQ
xP
EQPD PxKL
c.f KL Divergence
( ) 0|| =QPDKL : 동일 분포
 )|'(ln)( )|(~'),(~ xcQEEcH xcPcczGx+ (4)
)|( xcQ Tractable distribution
InfoGAN
2019-04-08
23
• Variational method
( )  )|'(ln)(),(; )|(~'),(~ xcQEEcHczGcI xcPcczGx+ (4)
)|( xcP : 여전히 남음.
   ),'(),( |~',|~,~|~,~ yxfEyxfE yXxxYyXxxYyXx =
Lemma
 )|(ln)(),( ),(~),(~ xcQEcHQGL czGxcPcI +=
 )|'(ln)( )|(~'),(~ xcQEEcH xcPcczGx+=
),(),(),,(maxmin QGLGDVQGDV IInfoGAN
DG
−=
(5)
InfoGAN
2019-04-08
24
• Results
InfoGAN
2019-04-08
25
• Results
InfoGAN
2019-04-08
26
• Results
InfoGAN
2019-04-08
27
• Results
III. Experiment
Experiment
MNIST, FashionMNIST, LSUN
Experiment
• Results#1 MNIST (continuous)
2019-04-08
29
Epoch 1 Epoch 5 Epoch 10
Epoch 30 Epoch 50 GIF
Experiment
• Results#1 MNIST (categorical)
2019-04-08
30
Epoch 1 Epoch 5 Epoch 10
Epoch 30 Epoch 50 GIF
Experiment
• Results#2 Fashion MNIST (continuous)
2019-04-08
31
Epoch 1 Epoch 5 Epoch 10
Epoch 30 Epoch 50 GIF
Experiment
• Results#2 Fashion MNIST (categorical)
2019-04-08
32
Epoch 1 Epoch 5 Epoch 10
Epoch 30 Epoch 50 GIF
Experiment
• Results#3 LSUN (continuous)
2019-04-08
33
Epoch 1 Epoch 2 Epoch 3
Epoch 4 Epoch 5
Experiment
• Results#3 LSUN (categorical)
2019-04-08
34
Epoch 1 Epoch 2 Epoch 3
Epoch 4 Epoch 5
Experiment
• Results#3 LSUN (categorical, ep 5)
2019-04-08
35
IV. Summary
Summary
Summary, Future Work
Summary
2019-04-08
37
• Latent code에 추가적인 code를 할당하여 학습함.
• 기존의 GAN 학습법으로는 추가된 code를 무시하기에 새로운 학습 방법이 필요함.
• Mutual information을 통해 추가된 code와 네트워크 간의 상호 연관성을 부여함.
• 주어진 code는 그 형태에 따라 categorical(discrete)or continuous로 구분되며, 실제 실험을 통
해 적절히 학습되는 것을 확인함.
(cGAN과 비슷한 접근법)
Future work
2019-04-08
38
GAN Research
Vanilla GAN
DCGAN
InfoGAN
LS GAN
BEGAN
Pix2Pix
Cycle GAN
Novel GAN(about depth)
Tools
Document
Programming
PyTorch
Python executable & UI
I Know What You Did
Last Faculty
C++ Coding Standard
Mathematical theory
LSM applications
Other Research
Level Processor
Ice Propagation
&

More Related Content

PDF
LSGAN - SIMPle(Simple Idea Meaningful Performance Level up)
PDF
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
PDF
N-gram IDF: A Global Term Weighting Scheme Based on Information Distance (WWW...
PDF
Generative adversarial networks
PDF
Variational Autoencoded Regression of Visual Data with Generative Adversarial...
PDF
그림 그리는 AI
PDF
Graph convolutional networks in apache spark
PDF
Speaker Diarization
LSGAN - SIMPle(Simple Idea Meaningful Performance Level up)
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
N-gram IDF: A Global Term Weighting Scheme Based on Information Distance (WWW...
Generative adversarial networks
Variational Autoencoded Regression of Visual Data with Generative Adversarial...
그림 그리는 AI
Graph convolutional networks in apache spark
Speaker Diarization

What's hot (17)

PPT
Project seminar ppt_steelcasting
PPTX
Aaex3 group2
PDF
기계학습을 이용하여 정적 분석기의 안전성을 선별적으로 조절하는 방법
PDF
Probabilistic Data Structures and Approximate Solutions
PDF
Generative adversarial text to image synthesis
PDF
Overlap Layout Consensus assembly
PDF
EuroPython 2017 - PyData - Deep Learning your Broadband Network @ HOME
PDF
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
PDF
ZK Study Club: Sumcheck Arguments and Their Applications
PPT
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...
PDF
Introduction to Homomorphic Encryption
PDF
Graph Convolutional Neural Networks
PDF
ICME 2013
PDF
A survey on Fully Homomorphic Encryption
PPTX
論文紹介 Fast imagetagging
PDF
[Japanese]Obake-GAN (Perturbative GAN): GAN with Perturbation Layers
PPTX
Homomorphic Encryption
Project seminar ppt_steelcasting
Aaex3 group2
기계학습을 이용하여 정적 분석기의 안전성을 선별적으로 조절하는 방법
Probabilistic Data Structures and Approximate Solutions
Generative adversarial text to image synthesis
Overlap Layout Consensus assembly
EuroPython 2017 - PyData - Deep Learning your Broadband Network @ HOME
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
ZK Study Club: Sumcheck Arguments and Their Applications
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...
Introduction to Homomorphic Encryption
Graph Convolutional Neural Networks
ICME 2013
A survey on Fully Homomorphic Encryption
論文紹介 Fast imagetagging
[Japanese]Obake-GAN (Perturbative GAN): GAN with Perturbation Layers
Homomorphic Encryption
Ad

Similar to InfoGAN : Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets (20)

PDF
Declare Your Language: Transformation by Strategic Term Rewriting
PDF
Lecture9 xing
PDF
20181212 - PGconfASIA - LT - English
PPTX
R Language Introduction
DOCX
Lisp and prolog in artificial intelligence
PDF
ENBIS 2018 presentation on Deep k-Means
PDF
Deep generative model.pdf
PPTX
Seminar PSU 10.10.2014 mme
PPTX
MuVM: Higher Order Mutation Analysis Virtual Machine for C
PDF
A gentle introduction to functional programming through music and clojure
PDF
Appendix of heterogeneous cellular network user distribution model
PDF
Iterative methods with special structures
PDF
Introduction to Polyhedral Compilation
PPTX
Introduction to datastructure and algorithm
PDF
Graphical Model Selection for Big Data
PDF
Conditional neural processes
PDF
[DL輪読会]Conditional Neural Processes
PPT
Introduction to MatLab programming
PDF
Aggregation is not Replication
PDF
VJAI Paper Reading#3-KDD2019-ClusterGCN
Declare Your Language: Transformation by Strategic Term Rewriting
Lecture9 xing
20181212 - PGconfASIA - LT - English
R Language Introduction
Lisp and prolog in artificial intelligence
ENBIS 2018 presentation on Deep k-Means
Deep generative model.pdf
Seminar PSU 10.10.2014 mme
MuVM: Higher Order Mutation Analysis Virtual Machine for C
A gentle introduction to functional programming through music and clojure
Appendix of heterogeneous cellular network user distribution model
Iterative methods with special structures
Introduction to Polyhedral Compilation
Introduction to datastructure and algorithm
Graphical Model Selection for Big Data
Conditional neural processes
[DL輪読会]Conditional Neural Processes
Introduction to MatLab programming
Aggregation is not Replication
VJAI Paper Reading#3-KDD2019-ClusterGCN
Ad

More from Hansol Kang (20)

PDF
이 세계로의 전송_파이썬과 함께하는 궤도모험.pdf
PDF
Support Vector Machine - 기본 이해와 OpenCV 실습.pdf
PDF
ROS 시작하기(Getting Started with ROS:: Your First Steps in Robot Programming )
PPTX
관측 임무스케줄링 (Selecting and scheduling observations of agile satellites)
PDF
알아두면 쓸모있는 깃허브 2
PDF
알아두면 쓸모있는 깃허브 1
PDF
FPN 리뷰
PDF
R-FCN 리뷰
PDF
basic of deep learning
PDF
파이썬 제대로 활용하기
PPTX
모던 C++ 정리
PDF
딥러닝 중급 - AlexNet과 VggNet (Basic of DCNN : AlexNet and VggNet)
PDF
PyTorch 튜토리얼 (Touch to PyTorch)
PDF
Deep Convolutional GANs - meaning of latent space
PDF
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
PDF
문서와 개발에 필요한 간단한 팁들(Too easy, but important things - document, development)
PDF
신뢰 전파 기법을 이용한 스테레오 정합(Stereo matching using belief propagation algorithm)
PDF
HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법
PDF
QT 프로그래밍 기초(basic of QT programming tutorial)
PDF
Continuously Adaptive Mean Shift(CAMSHIFT)
이 세계로의 전송_파이썬과 함께하는 궤도모험.pdf
Support Vector Machine - 기본 이해와 OpenCV 실습.pdf
ROS 시작하기(Getting Started with ROS:: Your First Steps in Robot Programming )
관측 임무스케줄링 (Selecting and scheduling observations of agile satellites)
알아두면 쓸모있는 깃허브 2
알아두면 쓸모있는 깃허브 1
FPN 리뷰
R-FCN 리뷰
basic of deep learning
파이썬 제대로 활용하기
모던 C++ 정리
딥러닝 중급 - AlexNet과 VggNet (Basic of DCNN : AlexNet and VggNet)
PyTorch 튜토리얼 (Touch to PyTorch)
Deep Convolutional GANs - meaning of latent space
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
문서와 개발에 필요한 간단한 팁들(Too easy, but important things - document, development)
신뢰 전파 기법을 이용한 스테레오 정합(Stereo matching using belief propagation algorithm)
HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법
QT 프로그래밍 기초(basic of QT programming tutorial)
Continuously Adaptive Mean Shift(CAMSHIFT)

Recently uploaded (20)

PPTX
A Presentation on Artificial Intelligence
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
OMC Textile Division Presentation 2021.pptx
PDF
Getting Started with Data Integration: FME Form 101
PDF
Empathic Computing: Creating Shared Understanding
PPT
Teaching material agriculture food technology
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
August Patch Tuesday
A Presentation on Artificial Intelligence
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Encapsulation_ Review paper, used for researhc scholars
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
OMC Textile Division Presentation 2021.pptx
Getting Started with Data Integration: FME Form 101
Empathic Computing: Creating Shared Understanding
Teaching material agriculture food technology
Per capita expenditure prediction using model stacking based on satellite ima...
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Accuracy of neural networks in brain wave diagnosis of schizophrenia
SOPHOS-XG Firewall Administrator PPT.pptx
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Assigned Numbers - 2025 - Bluetooth® Document
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Diabetes mellitus diagnosis method based random forest with bat algorithm
Univ-Connecticut-ChatGPT-Presentaion.pdf
A comparative analysis of optical character recognition models for extracting...
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
August Patch Tuesday

InfoGAN : Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets