SlideShare a Scribd company logo
INFORMATICS
PRACTICES
PROJECT FILE
CAR SALES ANALYSI S
INDEX
• ACKNOWLEDGEMENT
• CODE
• OUTPUTS
• BIBLIOGRAPHY
ACKNOWLEDGEMENT
I would like to express my special thanks and gratitude to our
principal Mrs. Jayshree Balasaria as well as my subject teacher
Mrs. Hiral Dabhi who gave me the golden opportunity to do
this wonderful project because of which I came to know
about many new things.
Secondly, I would also like to thank my parents and friends
who have helped me a lot in finishing the project in limited
time.
##Project Name: Car Model Sales Analysis
##Made By: Kush Shah, 12 Agni/ ZSE-G
import pandas as pd
import numpy as np
import time
import matplotlib.pyplot as plt
df = pd.DataFrame()
def introduction():
def read_csv_file():
df = pd.read_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv")
print(df)
##Name of function: clear()
##Purpose: Clear Output Screen
def clear():
for x in range(3):
print()
def data_analysis_menu():
df = pd.read_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv")
while True:
clear()
print('nnData Analysis MENU ')
print('_'*50)
print('1. Show Columnsn')
print('2. Show Top Rowsn')
print('3. Show Bottom Rowsn')
print('4. Show Specific Columnn')
print('5. Add a New Recordn')
print('6. Delete a Columnn')
print('7. Data Summaryn')
print('8. Exit (Move to main menu)n')
ch = int(input('Enter your choice:'))
if ch == 1:
print (df.columns)
wait = input()
if ch == 2:
n = int(input('Enter Total rows you want to show :'))
print(df.head(n))
wait = input()
if ch == 3:
n = int(input('Enter Total rows you want to show :'))
print(df.tail(n))
wait = input()
if ch == 4:
print(df.columns)
col_name = input('Enter Column Name that You want to print : ')
print(df[col_name])
wait = input()
if ch==5:
a = input('Enter New Model Name :')
b = input(' Enter Sales in 2015 :')
c= int(input('Enter Sales in 2016 :'))
d = int(input('Enter Sales in 2017 :'))
e = int(input('Enter Sales in 2018 :'))
f = int(input('Enter Sales in 2019 :'))
g= int(input('Enter Sales in 2020 :'))
new_data= pd.Series([b,c,d,e,f,g])
df= pd.read_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv", index_col=None)
z=len(df.axes[1])
df.insert(z, a, new_data)
df.to_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv", index=False)
print(df)
wait=input()
if ch==6:
col_name =input('Enter column Name to delete :')
del df[col_name]
df.to_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv", index= False)
print(df)
print('nnn Press any key to continue....')
wait=input()
if ch==7:
print(df.describe())
print("nnnPress any key to continue....")
wait=input()
if ch ==8:
main_menu()
break
# name of function : graph
# purpose : To generate a Graph menu
def graph():
df = pd.read_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv")
while True:
clear()
print('nGRAPH MENU ')
print('_'*50)
print('1. Car Wise Line Graphn')
print('2. Car Wise Bar Graphn')
print('3. Exit (Move to main menu)n')
ch = int(input('Enter your choice:'))
if ch == 1:
clear()
print('nSELECT MANUFACTURER')
print('_'*50)
print('1. Hondan')
print('2. Hyundain')
print('3. Maruti Suzukin')
print('4. Tatan')
print('5. Nissann')
print('6. Audin')
ch1 = int(input('Enter your choice:'))
if ch1 == 1:
clear()
print('nSELECT CAR')
print('_'*50)
print('1. Amazen')
print('2. Jazzn')
print('3. WR-Vn')
print('4. CR-Vn')
print('5. HR-Vn')
print('6. Cityn')
print('7. Civicn')
ch2 = int(input('Enter your choice:'))
if ch2==1:
g = df.groupby('AMAZE')
x = df['MODEL']
y = df['AMAZE']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch2==2:
g = df.groupby('JAZZ')
x = df['MODEL']
y = df['JAZZ']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch2==3:
g = df.groupby('WR-V')
x = df['MODEL']
y = df['WR-V']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch2==4:
g = df.groupby('CR-V')
x = df['MODEL']
y = df['CR-V']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch2==5:
g = df.groupby('HR-V')
x = df['MODEL']
y = df['HR-V']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch2==6:
g = df.groupby('CITY')
x = df['MODEL']
y = df['CITY']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch2==7:
g = df.groupby('CIVIC')
x = df['MODEL']
y = df['CIVIC']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch1==2:
clear()
print('nSELECT CAR')
print('_'*50)
print('1. i10n')
print('2. i20n')
print('3. Cretan')
print('4. Venuen')
print('5. Vernan')
print('6. Santron')
print('7. Elantran')
print('8. Xcentn')
print('9. Sonatan')
print('10. Palisaden')
print('11. Konan')
ch3 = int(input('Enter your choice:'))
if ch3==1:
g = df.groupby('i10')
x = df['MODEL']
y = df['i10']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch3==2:
g = df.groupby('i20')
x = df['MODEL']
y = df['i20']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch3==3:
g = df.groupby('CRETA')
x = df['MODEL']
y = df['CRETA']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch3==4:
g = df.groupby('VENUE')
x = df['MODEL']
y = df['VENUE']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch3==5:
g = df.groupby('VERNA')
x = df['MODEL']
y = df['VERNA']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch3==6:
g = df.groupby('SANTRO')
x = df['MODEL']
y = df['SANTRO']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch3==7:
g = df.groupby('ELANTRA')
x = df['MODEL']
y = df['ELANTRA']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch3==8:
g = df.groupby('XCENT')
x = df['MODEL']
y = df['XCENT']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch3==9:
g = df.groupby('SONATA')
x = df['MODEL']
y = df['SONATA']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch3==10:
g = df.groupby('PALISADE')
x = df['MODEL']
y = df['PALISADE']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch3==11:
g = df.groupby('KONA')
x = df['MODEL']
y = df['KONA']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch1==3:
clear()
print('nSELECT CAR')
print('_'*50)
print('1. Balenon')
print('2. Swiftn')
print('3. DZiren')
print('4. Alton')
print('5. Ciazn')
print('6. Eecon')
print('7. Ignisn')
print('8. Celerio Xn')
print('9 S-Crossn')
print('10. XL6n')
ch4 = int(input('Enter your choice:'))
if ch4==1:
g = df.groupby('BALENO')
x = df['MODEL']
y = df['BALENO']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch4==2:
g = df.groupby('SWIFT')
x = df['MODEL']
y = df['SWIFT']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch4==3:
g = df.groupby('DZIRE')
x = df['MODEL']
y = df['DZIRE']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch4==4:
g = df.groupby('ALTO')
x = df['MODEL']
y = df['ALTO']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch4==5:
g = df.groupby('CIAZ')
x = df['MODEL']
y = df['CIAZ']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch4==6:
g = df.groupby('EECO')
x = df['MODEL']
y = df['EECO']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch4==7:
g = df.groupby('IGNIS')
x = df['MODEL']
y = df['IGNIS']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch4==8:
g = df.groupby('CELERIO X')
x = df['MODEL']
y = df['CELERIO X']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch4==9:
g = df.groupby('S-CROSS')
x = df['MODEL']
y = df['S-CROSS']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch4==10:
g = df.groupby('XL6')
x = df['MODEL']
y = df['XL6']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch1==4:
clear()
print('nSELECT CAR')
print('_'*50)
print('1. Tiagon')
print('2. Nexonn')
print('3. Tigorn')
print('4. Harriern')
print('5. Altrozn')
print('6. Nanon')
print('7. Safarin')
print('8. HBXn')
ch5 = int(input('Enter your choice:'))
if ch5==1:
g = df.groupby('TIAGO')
x = df['MODEL']
y = df['TIAGO']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch5==2:
g = df.groupby('NEXON')
x = df['MODEL']
y = df['NEXON']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch5==3:
g = df.groupby('TIGOR')
x = df['MODEL']
y = df['TIGOR']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch5==4:
g = df.groupby('HARRIER')
x = df['MODEL']
y = df['HARRIER']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch5==5:
g = df.groupby('ALTROZ')
x = df['MODEL']
y = df['ALTROZ']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch5==6:
g = df.groupby('NANO')
x = df['MODEL']
y = df['NANO']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch5==7:
g = df.groupby('SAFARI')
x = df['MODEL']
y = df['SAFARI']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch5==8:
g = df.groupby('HBX')
x = df['MODEL']
y = df['HBX']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch1==5:
clear()
print('nSELECT CAR')
print('_'*50)
print('1. Sunnyn')
print('2. Magniten')
print('3. Kicksn')
print('4. GT-Rn')
print('5. Terran')
ch6 = int(input('Enter your choice:'))
if ch6==1:
g = df.groupby('SUNNY')
x = df['MODEL']
y = df['SUNNY']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch6==2:
g = df.groupby('MAGNITE')
x = df['MODEL']
y = df['MAGNITE']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch6==3:
g = df.groupby('KICKS')
x = df['MODEL']
y = df['KICKS']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch6==4:
g = df.groupby('GT-R')
x = df['MODEL']
y = df['GT-R']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch6==5:
g = df.groupby('TERRA')
x = df['MODEL']
y = df['TERRA']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch1==6:
clear()
print('nSELECT CAR')
print('_'*50)
print('1. A4n')
print('2. A6n')
print('3. A8n')
print('4. Q2n')
print('5. Q8n')
print('6. RS7n')
ch7 = int(input('Enter your choice:'))
if ch7==1:
g = df.groupby('A4')
x = df['MODEL']
y = df['A4']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch7==2:
g = df.groupby('A6')
x = df['MODEL']
y = df['A8']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch7==3:
g = df.groupby('A8')
x = df['MODEL']
y = df['A8']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch7==4:
g = df.groupby('Q2')
x = df['MODEL']
y = df['Q2']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch7==5:
g = df.groupby('Q8')
x = df['MODEL']
y = df['Q8']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch7==6:
g = df.groupby('RS7')
x = df['MODEL']
y = df['RS7']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.plot(x, y)
plt.show()
if ch == 2:
clear()
print('nSELECT MANUFACTURER')
print('_'*50)
print('1. Hondan')
print('2. Hyundain')
print('3. Maruti Suzukin')
print('4. Tatan')
print('5. Nissann')
print('6. Audin')
ch8 = int(input('Enter your choice:'))
if ch8==1:
clear()
print('nSELECT CAR')
print('_'*50)
print('1. Amazen')
print('2. Jazzn')
print('3. WR-Vn')
print('4. CR-Vn')
print('5. HR-Vn')
print('6. Cityn')
print('7. Civicn')
ch9 = int(input('Enter your choice:'))
if ch9==1:
g = df.groupby('AMAZE')
x = df['MODEL']
y = df['AMAZE']
plt.xticks(rotation='vertical')
plt.xlabel('Year')
plt.ylabel('Total Sales')
plt.title('Car Wise Sales Count')
plt.bar(x, y)
plt.grid(True)
plt.show()
if ch9==2:
g = df.groupby('JAZZ')
x = df['MODEL']
y = df['JAZZ']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Car Wise Sales Count')
plt.bar(x, y)
plt.grid(True)
plt.show()
if ch9==3:
g = df.groupby('WR-V')
x = df['MODEL']
y = df['WR_V']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Car Wise Sales Count')
plt.bar(x, y)
plt.grid(True)
plt.show()
if ch9==4:
g = df.groupby('CR-V')
x = df['MODEL']
y = df['CR-V']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Car Wise Sales Count')
plt.bar(x, y)
plt.grid(True)
plt.show()
if ch9==5:
g = df.groupby('HR-V')
x = df['MODEL']
y = df['HR-V']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Car Wise Sales Count')
plt.bar(x, y)
plt.grid(True)
plt.show()
if ch9==6:
g = df.groupby('CITY')
x = df['MODEL']
y = df['CITY']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Car Wise Sales Count')
plt.bar(x, y)
plt.grid(True)
plt.show()
if ch9==7:
g = df.groupby('CIVIC')
x = df['MODEL']
y = df['CIVIC']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Car Wise Sales Count')
plt.bar(x, y)
plt.grid(True)
plt.show()
if ch8==2:
clear()
print('nSELECT CAR')
print('_'*50)
print('1. i10n')
print('2. i20n')
print('3. Cretan')
print('4. Venuen')
print('5. Vernan')
print('6. Santron')
print('7. Elantran')
print('8. Xcentn')
print('9. Sonatan')
print('10. Palisaden')
print('11. Konan')
ch10 = int(input('Enter your choice:'))
if ch10==1:
g = df.groupby('i10')
x = df['MODEL']
y = df['i10']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch10==2:
g = df.groupby('i20')
x = df['MODEL']
y = df['i20']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch10==3:
g = df.groupby('CRETA')
x = df['MODEL']
y = df['CRETA']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch10==4:
g = df.groupby('VENUE')
x = df['MODEL']
y = df['VENUE']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch10==5:
g = df.groupby('VERNA')
x = df['MODEL']
y = df['VERNA']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch10==6:
g = df.groupby('SANTRO')
x = df['MODEL']
y = df['SANTRO']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch10==7:
g = df.groupby('ELANTRA')
x = df['MODEL']
y = df['ELANTRA']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch10==8:
g = df.groupby('XCENT')
x = df['MODEL']
y = df['XCENT']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch10==9:
g = df.groupby('SONATA')
x = df['MODEL']
y = df['SONATA']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch10==10:
g = df.groupby('PALISADE')
x = df['MODEL']
y = df['PALISADE']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch10==11:
g = df.groupby('KONA')
x = df['MODEL']
y = df['KONA']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch8==3:
clear()
print('nSELECT CAR')
print('_'*50)
print('1. Balenon')
print('2. Swiftn')
print('3. DZiren')
print('4. Alton')
print('5. Ciazn')
print('6. Eecon')
print('7. Ignisn')
print('8. Celerio Xn')
print('9 S-Crossn')
print('10. XL6n')
ch11 = int(input('Enter your choice:'))
if ch11==1:
g = df.groupby('BALENO')
x = df['MODEL']
y = df['BALENO']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch11==2:
g = df.groupby('SWIFT')
x = df['MODEL']
y = df['SWIFT']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch11==3:
g = df.groupby('DZIRE')
x = df['MODEL']
y = df['DZIRE']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch11==4:
g = df.groupby('ALTO')
x = df['MODEL']
y = df['ALTO']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch11==5:
g = df.groupby('CIAZ')
x = df['MODEL']
y = df['CIAZ']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch11==6:
g = df.groupby('EECO')
x = df['MODEL']
y = df['EECO']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch11==7:
g = df.groupby('IGNIS')
x = df['MODEL']
y = df['IGNIS']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch11==8:
g = df.groupby('CELERIO X')
x = df['MODEL']
y = df['CELERIO X']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch11==9:
g = df.groupby('S-CROSS')
x = df['MODEL']
y = df['S-CROSS']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch11==10:
g = df.groupby('XL6')
x = df['MODEL']
y = df['XL6']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch8==4:
clear()
print('nSELECT CAR')
print('_'*50)
print('1. Tiagon')
print('2. Nexonn')
print('3. Tigorn')
print('4. Harriern')
print('5. Altrozn')
print('6. Nanon')
print('7. Safarin')
print('8. HBXn')
ch12 = int(input('Enter your choice:'))
if ch12==1:
g = df.groupby('TIAGO')
x = df['MODEL']
y = df['TIAGO']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch12==2:
g = df.groupby('NEXON')
x = df['MODEL']
y = df['NEXON']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch12==3:
g = df.groupby('TIGOR')
x = df['MODEL']
y = df['TIGOR']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch12==4:
g = df.groupby('HARRIER')
x = df['MODEL']
y = df['HARRIER']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch12==5:
g = df.groupby('ALTROZ')
x = df['MODEL']
y = df['ALTROZ']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch12==6:
g = df.groupby('NANO')
x = df['MODEL']
y = df['NANO']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch12==7:
g = df.groupby('SAFARI')
x = df['MODEL']
y = df['SAFARI']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch12==8:
g = df.groupby('HBX')
x = df['MODEL']
y = df['HBX']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch8==5:
clear()
print('nSELECT CAR')
print('_'*50)
print('1. Sunnyn')
print('2. Magniten')
print('3. Kicksn')
print('4. GT-Rn')
print('5. Terran')
ch13 = int(input('Enter your choice:'))
if ch13==1:
g = df.groupby('SUNNY')
x = df['MODEL']
y = df['SUNNY']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch13==2:
g = df.groupby('MAGNITE')
x = df['MODEL']
y = df['MAGNITE']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch13==3:
g = df.groupby('KICKS')
x = df['MODEL']
y = df['KICKS']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch13==4:
g = df.groupby('GT-R')
x = df['MODEL']
y = df['GT-R']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch13==5:
g = df.groupby('TERRA')
x = df['MODEL']
y = df['TERRA']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch8==6:
clear()
print('nSELECT CAR')
print('_'*50)
print('1. A4n')
print('2. A6n')
print('3. A8n')
print('4. Q2n')
print('5. Q8n')
print('6. RS7n')
ch14 = int(input('Enter your choice:'))
if ch14==1:
g = df.groupby('A4')
x = df['MODEL']
y = df['A4']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch14==2:
g = df.groupby('A6')
x = df['MODEL']
y = df['A8']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch14==3:
g = df.groupby('A8')
x = df['MODEL']
y = df['A8']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch14==4:
g = df.groupby('Q2')
x = df['MODEL']
y = df['Q2']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch14==5:
g = df.groupby('Q8')
x = df['MODEL']
y = df['Q8']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch14==6:
g = df.groupby('RS7')
x = df['MODEL']
y = df['RS7']
plt.xticks(rotation='vertical')
plt.xlabel('COMPANY')
plt.ylabel('Total Sales')
plt.title('Company wise sales count')
plt.grid(True)
plt.bar(x, y)
plt.show()
if ch == 3:
main_menu()
wait = input()
def main_menu():
clear()
introduction()
while True:
clear()
print('MAIN MENU ')
print('_'*50)
print()
print('1. Read CSV Filen')
print('2. Data Analysis Menun')
print('3. Graph Menun')
print('4. Exitn')
choice = int(input('Enter your choice :'))
if choice == 1:
df = pd.read_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv")
print (df)
wait = input()
if choice == 2:
data_analysis_menu()
wait = input()
if choice == 3:
graph()
wait = input()
if choice == 4:
print ("Project Made by- Kush Shah")
break
clear()
# call your main menu
main_menu()
OUTPUTS
MAIN MENU
1. READ CSV FILE
2. DATA ANALYSIS MENU
2,1- SHOW COLUMNS
2,2- SHOW TOP ROWS
2,3- SHOW BOTTOM ROWS
2,4- SHOW PARTICULAR COLUMN (SAY, AMAZE)
2,5- ADD A NEW RECORD
2,6- DELETE A COLUMN
2,7- DATA SUMMARY
3. GRAPH MENU
THE GRAPHS OF SALES OF VARIOUS CARS IS SHOWN
WHEN THE USER SELECTS THEM. FIRST THE USER
SELECTS THE MANUFACTURER FROM THE GIVEN SIX
OPTIONS. ONCE THE MANUFACTURER IS SELECTED, THE
USER IS SUPPOSED TO SELECT THE NAME OF THE CAR
MODEL FROM THE GIVEN LIST.
SINCE THERE ARE A LOT OF CAR MODELS IN THE CSV, I
HAVE NOT PRINTED ALL THE CHARTS BUT TWO OR
THREE CHARTS OF EACH TYPE RANDOMLY SELECTED.
STILL ALL THE CAR MODELS ARE CHECKED AND ALL OF
THOSE ARE WORKING JUST PERFECTLY.
LINE GRAPHS OF CARS- (SELECTED RANDOMLY)
HONDA- AMAZE NISSAN- KICKS
TATA- TIGOR MARUTI SUZUKI- CELERIO X
BAR GRAPHS OF CARS- (SELECTED RANDOMLY)
AUDI- A8 NISSAN- TERRA
TATA- NANO HONDA- CITY

More Related Content

PDF
Python and MySQL Linking Class 12th Project File 23-24
DOCX
Ip library management project
PDF
IP Project for Class 12th CBSE
DOCX
computer science with python project for class 12 cbse
PDF
Computer science project.pdf
DOCX
IP Final project 12th
PDF
Computer Science Investigatory Project Class 12
DOCX
class 12th computer science project Employee Management System In Python
Python and MySQL Linking Class 12th Project File 23-24
Ip library management project
IP Project for Class 12th CBSE
computer science with python project for class 12 cbse
Computer science project.pdf
IP Final project 12th
Computer Science Investigatory Project Class 12
class 12th computer science project Employee Management System In Python

What's hot (20)

ODT
Library Management Project (computer science) class 12
PDF
Computer project final for class 12 Students
DOCX
Project front page, index, certificate, and acknowledgement
PDF
ASL/ALS CLASS 12 ENGLISH PROJECT
PDF
Computer science Project for class 11th and 12th(library management system)
DOCX
Acknowledgement
DOC
Ip project
DOCX
English project
PDF
English ASL Project Work - The Enemy - The Conflict of Human Emotions
PDF
Library Management Python, MySQL
DOCX
CLASS 12 PHYSICS PROJECT - Measuring current using halfwave rectifier
PDF
English Project work.pdf
PDF
Computer science class 12 project on Super Market Billing
DOCX
CBSE Investigatory Project Of Subject Chemistry- Class 11
PDF
CLASS 12 ENGLISH PROJECT ON CHILD LABOUR
PDF
Social Media Site User Management System Class 12th Informatics Practices Pyt...
PPTX
Keeping quiet- Pablo Neruda
PPT
Lost spring ppt
PPTX
Project on Digital India Class 12
PDF
Business Studies Class 12th Marketing management Project- Fruit Juice
Library Management Project (computer science) class 12
Computer project final for class 12 Students
Project front page, index, certificate, and acknowledgement
ASL/ALS CLASS 12 ENGLISH PROJECT
Computer science Project for class 11th and 12th(library management system)
Acknowledgement
Ip project
English project
English ASL Project Work - The Enemy - The Conflict of Human Emotions
Library Management Python, MySQL
CLASS 12 PHYSICS PROJECT - Measuring current using halfwave rectifier
English Project work.pdf
Computer science class 12 project on Super Market Billing
CBSE Investigatory Project Of Subject Chemistry- Class 11
CLASS 12 ENGLISH PROJECT ON CHILD LABOUR
Social Media Site User Management System Class 12th Informatics Practices Pyt...
Keeping quiet- Pablo Neruda
Lost spring ppt
Project on Digital India Class 12
Business Studies Class 12th Marketing management Project- Fruit Juice
Ad

Similar to Informatics Practices/ Information Practices Project (IP Project Class 12) (20)

PPTX
cars design code power system detai.pptx
PPTX
EDA.pptx
PPTX
BigData_HW3_Boris_Menshikov_15613416.pptx
PPTX
Introduction to data analyticals123232.pptx
PDF
Predicting model for prices of used cars
PPTX
Unit 3_Numpy_Vsp.pptx
PDF
Predicción de precio de automóviles en python
PDF
Data Analysis with Pandas CheatSheet .pdf
PPTX
Unit 4_Working with Graphs _python (2).pptx
PPTX
Manipulation and Python Tools-fundamantals of data science
PPTX
python-pandas-For-Data-Analysis-Manipulate.pptx
PPTX
Lecture 9.pptx
PDF
Pink and beige Data Visualization Basics modern presentation.pdf
PPTX
Pandas csv
PPTX
Unit 1 Ch 2 Data Frames digital vis.pptx
PPTX
Unit 3_Numpy_VP.pptx
DOCX
Data Manipulation with Numpy and Pandas in PythonStarting with N
PPTX
Python Programming.pptx
PPTX
Data Visualization_pandas in hadoop.pptx
PPTX
DBMS CAPSTONE PPT (1).pptx
cars design code power system detai.pptx
EDA.pptx
BigData_HW3_Boris_Menshikov_15613416.pptx
Introduction to data analyticals123232.pptx
Predicting model for prices of used cars
Unit 3_Numpy_Vsp.pptx
Predicción de precio de automóviles en python
Data Analysis with Pandas CheatSheet .pdf
Unit 4_Working with Graphs _python (2).pptx
Manipulation and Python Tools-fundamantals of data science
python-pandas-For-Data-Analysis-Manipulate.pptx
Lecture 9.pptx
Pink and beige Data Visualization Basics modern presentation.pdf
Pandas csv
Unit 1 Ch 2 Data Frames digital vis.pptx
Unit 3_Numpy_VP.pptx
Data Manipulation with Numpy and Pandas in PythonStarting with N
Python Programming.pptx
Data Visualization_pandas in hadoop.pptx
DBMS CAPSTONE PPT (1).pptx
Ad

Recently uploaded (20)

PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PPTX
Spectroscopy.pptx food analysis technology
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Encapsulation theory and applications.pdf
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
sap open course for s4hana steps from ECC to s4
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Empathic Computing: Creating Shared Understanding
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
Big Data Technologies - Introduction.pptx
PDF
Electronic commerce courselecture one. Pdf
Advanced methodologies resolving dimensionality complications for autism neur...
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Encapsulation_ Review paper, used for researhc scholars
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Spectroscopy.pptx food analysis technology
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
20250228 LYD VKU AI Blended-Learning.pptx
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Encapsulation theory and applications.pdf
Agricultural_Statistics_at_a_Glance_2022_0.pdf
NewMind AI Weekly Chronicles - August'25 Week I
sap open course for s4hana steps from ECC to s4
The Rise and Fall of 3GPP – Time for a Sabbatical?
Unlocking AI with Model Context Protocol (MCP)
Empathic Computing: Creating Shared Understanding
Spectral efficient network and resource selection model in 5G networks
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Network Security Unit 5.pdf for BCA BBA.
Big Data Technologies - Introduction.pptx
Electronic commerce courselecture one. Pdf

Informatics Practices/ Information Practices Project (IP Project Class 12)

  • 2. INDEX • ACKNOWLEDGEMENT • CODE • OUTPUTS • BIBLIOGRAPHY
  • 3. ACKNOWLEDGEMENT I would like to express my special thanks and gratitude to our principal Mrs. Jayshree Balasaria as well as my subject teacher Mrs. Hiral Dabhi who gave me the golden opportunity to do this wonderful project because of which I came to know about many new things. Secondly, I would also like to thank my parents and friends who have helped me a lot in finishing the project in limited time.
  • 4. ##Project Name: Car Model Sales Analysis ##Made By: Kush Shah, 12 Agni/ ZSE-G import pandas as pd import numpy as np import time import matplotlib.pyplot as plt df = pd.DataFrame() def introduction(): def read_csv_file(): df = pd.read_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv") print(df) ##Name of function: clear() ##Purpose: Clear Output Screen def clear(): for x in range(3): print() def data_analysis_menu(): df = pd.read_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv") while True: clear() print('nnData Analysis MENU ') print('_'*50) print('1. Show Columnsn') print('2. Show Top Rowsn') print('3. Show Bottom Rowsn') print('4. Show Specific Columnn') print('5. Add a New Recordn') print('6. Delete a Columnn') print('7. Data Summaryn') print('8. Exit (Move to main menu)n') ch = int(input('Enter your choice:')) if ch == 1: print (df.columns) wait = input() if ch == 2: n = int(input('Enter Total rows you want to show :')) print(df.head(n)) wait = input() if ch == 3: n = int(input('Enter Total rows you want to show :')) print(df.tail(n)) wait = input() if ch == 4: print(df.columns) col_name = input('Enter Column Name that You want to print : ') print(df[col_name]) wait = input() if ch==5: a = input('Enter New Model Name :') b = input(' Enter Sales in 2015 :') c= int(input('Enter Sales in 2016 :')) d = int(input('Enter Sales in 2017 :')) e = int(input('Enter Sales in 2018 :')) f = int(input('Enter Sales in 2019 :'))
  • 5. g= int(input('Enter Sales in 2020 :')) new_data= pd.Series([b,c,d,e,f,g]) df= pd.read_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv", index_col=None) z=len(df.axes[1]) df.insert(z, a, new_data) df.to_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv", index=False) print(df) wait=input() if ch==6: col_name =input('Enter column Name to delete :') del df[col_name] df.to_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv", index= False) print(df) print('nnn Press any key to continue....') wait=input() if ch==7: print(df.describe()) print("nnnPress any key to continue....") wait=input() if ch ==8: main_menu() break # name of function : graph # purpose : To generate a Graph menu def graph(): df = pd.read_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv") while True: clear() print('nGRAPH MENU ') print('_'*50) print('1. Car Wise Line Graphn') print('2. Car Wise Bar Graphn') print('3. Exit (Move to main menu)n') ch = int(input('Enter your choice:')) if ch == 1: clear() print('nSELECT MANUFACTURER') print('_'*50) print('1. Hondan') print('2. Hyundain') print('3. Maruti Suzukin') print('4. Tatan') print('5. Nissann') print('6. Audin') ch1 = int(input('Enter your choice:')) if ch1 == 1: clear() print('nSELECT CAR') print('_'*50) print('1. Amazen') print('2. Jazzn') print('3. WR-Vn') print('4. CR-Vn')
  • 6. print('5. HR-Vn') print('6. Cityn') print('7. Civicn') ch2 = int(input('Enter your choice:')) if ch2==1: g = df.groupby('AMAZE') x = df['MODEL'] y = df['AMAZE'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch2==2: g = df.groupby('JAZZ') x = df['MODEL'] y = df['JAZZ'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch2==3: g = df.groupby('WR-V') x = df['MODEL'] y = df['WR-V'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch2==4: g = df.groupby('CR-V') x = df['MODEL'] y = df['CR-V'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch2==5: g = df.groupby('HR-V') x = df['MODEL'] y = df['HR-V'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch2==6: g = df.groupby('CITY') x = df['MODEL']
  • 7. y = df['CITY'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch2==7: g = df.groupby('CIVIC') x = df['MODEL'] y = df['CIVIC'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch1==2: clear() print('nSELECT CAR') print('_'*50) print('1. i10n') print('2. i20n') print('3. Cretan') print('4. Venuen') print('5. Vernan') print('6. Santron') print('7. Elantran') print('8. Xcentn') print('9. Sonatan') print('10. Palisaden') print('11. Konan') ch3 = int(input('Enter your choice:')) if ch3==1: g = df.groupby('i10') x = df['MODEL'] y = df['i10'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch3==2: g = df.groupby('i20') x = df['MODEL'] y = df['i20'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch3==3: g = df.groupby('CRETA') x = df['MODEL'] y = df['CRETA']
  • 8. plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch3==4: g = df.groupby('VENUE') x = df['MODEL'] y = df['VENUE'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch3==5: g = df.groupby('VERNA') x = df['MODEL'] y = df['VERNA'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch3==6: g = df.groupby('SANTRO') x = df['MODEL'] y = df['SANTRO'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch3==7: g = df.groupby('ELANTRA') x = df['MODEL'] y = df['ELANTRA'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch3==8: g = df.groupby('XCENT') x = df['MODEL'] y = df['XCENT'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch3==9: g = df.groupby('SONATA')
  • 9. x = df['MODEL'] y = df['SONATA'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch3==10: g = df.groupby('PALISADE') x = df['MODEL'] y = df['PALISADE'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch3==11: g = df.groupby('KONA') x = df['MODEL'] y = df['KONA'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch1==3: clear() print('nSELECT CAR') print('_'*50) print('1. Balenon') print('2. Swiftn') print('3. DZiren') print('4. Alton') print('5. Ciazn') print('6. Eecon') print('7. Ignisn') print('8. Celerio Xn') print('9 S-Crossn') print('10. XL6n') ch4 = int(input('Enter your choice:')) if ch4==1: g = df.groupby('BALENO') x = df['MODEL'] y = df['BALENO'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch4==2: g = df.groupby('SWIFT') x = df['MODEL'] y = df['SWIFT'] plt.xticks(rotation='vertical')
  • 10. plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch4==3: g = df.groupby('DZIRE') x = df['MODEL'] y = df['DZIRE'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch4==4: g = df.groupby('ALTO') x = df['MODEL'] y = df['ALTO'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch4==5: g = df.groupby('CIAZ') x = df['MODEL'] y = df['CIAZ'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch4==6: g = df.groupby('EECO') x = df['MODEL'] y = df['EECO'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch4==7: g = df.groupby('IGNIS') x = df['MODEL'] y = df['IGNIS'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch4==8: g = df.groupby('CELERIO X') x = df['MODEL']
  • 11. y = df['CELERIO X'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch4==9: g = df.groupby('S-CROSS') x = df['MODEL'] y = df['S-CROSS'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch4==10: g = df.groupby('XL6') x = df['MODEL'] y = df['XL6'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch1==4: clear() print('nSELECT CAR') print('_'*50) print('1. Tiagon') print('2. Nexonn') print('3. Tigorn') print('4. Harriern') print('5. Altrozn') print('6. Nanon') print('7. Safarin') print('8. HBXn') ch5 = int(input('Enter your choice:')) if ch5==1: g = df.groupby('TIAGO') x = df['MODEL'] y = df['TIAGO'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch5==2: g = df.groupby('NEXON') x = df['MODEL'] y = df['NEXON'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count')
  • 12. plt.grid(True) plt.plot(x, y) plt.show() if ch5==3: g = df.groupby('TIGOR') x = df['MODEL'] y = df['TIGOR'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch5==4: g = df.groupby('HARRIER') x = df['MODEL'] y = df['HARRIER'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch5==5: g = df.groupby('ALTROZ') x = df['MODEL'] y = df['ALTROZ'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch5==6: g = df.groupby('NANO') x = df['MODEL'] y = df['NANO'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch5==7: g = df.groupby('SAFARI') x = df['MODEL'] y = df['SAFARI'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch5==8: g = df.groupby('HBX') x = df['MODEL'] y = df['HBX'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY')
  • 13. plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch1==5: clear() print('nSELECT CAR') print('_'*50) print('1. Sunnyn') print('2. Magniten') print('3. Kicksn') print('4. GT-Rn') print('5. Terran') ch6 = int(input('Enter your choice:')) if ch6==1: g = df.groupby('SUNNY') x = df['MODEL'] y = df['SUNNY'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch6==2: g = df.groupby('MAGNITE') x = df['MODEL'] y = df['MAGNITE'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch6==3: g = df.groupby('KICKS') x = df['MODEL'] y = df['KICKS'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch6==4: g = df.groupby('GT-R') x = df['MODEL'] y = df['GT-R'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch6==5: g = df.groupby('TERRA')
  • 14. x = df['MODEL'] y = df['TERRA'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch1==6: clear() print('nSELECT CAR') print('_'*50) print('1. A4n') print('2. A6n') print('3. A8n') print('4. Q2n') print('5. Q8n') print('6. RS7n') ch7 = int(input('Enter your choice:')) if ch7==1: g = df.groupby('A4') x = df['MODEL'] y = df['A4'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch7==2: g = df.groupby('A6') x = df['MODEL'] y = df['A8'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch7==3: g = df.groupby('A8') x = df['MODEL'] y = df['A8'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch7==4: g = df.groupby('Q2') x = df['MODEL'] y = df['Q2'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True)
  • 15. plt.plot(x, y) plt.show() if ch7==5: g = df.groupby('Q8') x = df['MODEL'] y = df['Q8'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch7==6: g = df.groupby('RS7') x = df['MODEL'] y = df['RS7'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.plot(x, y) plt.show() if ch == 2: clear() print('nSELECT MANUFACTURER') print('_'*50) print('1. Hondan') print('2. Hyundain') print('3. Maruti Suzukin') print('4. Tatan') print('5. Nissann') print('6. Audin') ch8 = int(input('Enter your choice:')) if ch8==1: clear() print('nSELECT CAR') print('_'*50) print('1. Amazen') print('2. Jazzn') print('3. WR-Vn') print('4. CR-Vn') print('5. HR-Vn') print('6. Cityn') print('7. Civicn') ch9 = int(input('Enter your choice:')) if ch9==1: g = df.groupby('AMAZE') x = df['MODEL'] y = df['AMAZE'] plt.xticks(rotation='vertical') plt.xlabel('Year') plt.ylabel('Total Sales') plt.title('Car Wise Sales Count') plt.bar(x, y) plt.grid(True) plt.show()
  • 16. if ch9==2: g = df.groupby('JAZZ') x = df['MODEL'] y = df['JAZZ'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Car Wise Sales Count') plt.bar(x, y) plt.grid(True) plt.show() if ch9==3: g = df.groupby('WR-V') x = df['MODEL'] y = df['WR_V'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Car Wise Sales Count') plt.bar(x, y) plt.grid(True) plt.show() if ch9==4: g = df.groupby('CR-V') x = df['MODEL'] y = df['CR-V'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Car Wise Sales Count') plt.bar(x, y) plt.grid(True) plt.show() if ch9==5: g = df.groupby('HR-V') x = df['MODEL'] y = df['HR-V'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Car Wise Sales Count') plt.bar(x, y) plt.grid(True) plt.show() if ch9==6: g = df.groupby('CITY') x = df['MODEL'] y = df['CITY'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Car Wise Sales Count') plt.bar(x, y) plt.grid(True) plt.show() if ch9==7: g = df.groupby('CIVIC') x = df['MODEL'] y = df['CIVIC'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Car Wise Sales Count') plt.bar(x, y)
  • 17. plt.grid(True) plt.show() if ch8==2: clear() print('nSELECT CAR') print('_'*50) print('1. i10n') print('2. i20n') print('3. Cretan') print('4. Venuen') print('5. Vernan') print('6. Santron') print('7. Elantran') print('8. Xcentn') print('9. Sonatan') print('10. Palisaden') print('11. Konan') ch10 = int(input('Enter your choice:')) if ch10==1: g = df.groupby('i10') x = df['MODEL'] y = df['i10'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch10==2: g = df.groupby('i20') x = df['MODEL'] y = df['i20'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch10==3: g = df.groupby('CRETA') x = df['MODEL'] y = df['CRETA'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch10==4: g = df.groupby('VENUE') x = df['MODEL'] y = df['VENUE'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y)
  • 18. plt.show() if ch10==5: g = df.groupby('VERNA') x = df['MODEL'] y = df['VERNA'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch10==6: g = df.groupby('SANTRO') x = df['MODEL'] y = df['SANTRO'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch10==7: g = df.groupby('ELANTRA') x = df['MODEL'] y = df['ELANTRA'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch10==8: g = df.groupby('XCENT') x = df['MODEL'] y = df['XCENT'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch10==9: g = df.groupby('SONATA') x = df['MODEL'] y = df['SONATA'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch10==10: g = df.groupby('PALISADE') x = df['MODEL'] y = df['PALISADE'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count')
  • 19. plt.grid(True) plt.bar(x, y) plt.show() if ch10==11: g = df.groupby('KONA') x = df['MODEL'] y = df['KONA'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch8==3: clear() print('nSELECT CAR') print('_'*50) print('1. Balenon') print('2. Swiftn') print('3. DZiren') print('4. Alton') print('5. Ciazn') print('6. Eecon') print('7. Ignisn') print('8. Celerio Xn') print('9 S-Crossn') print('10. XL6n') ch11 = int(input('Enter your choice:')) if ch11==1: g = df.groupby('BALENO') x = df['MODEL'] y = df['BALENO'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch11==2: g = df.groupby('SWIFT') x = df['MODEL'] y = df['SWIFT'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch11==3: g = df.groupby('DZIRE') x = df['MODEL'] y = df['DZIRE'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y)
  • 20. plt.show() if ch11==4: g = df.groupby('ALTO') x = df['MODEL'] y = df['ALTO'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch11==5: g = df.groupby('CIAZ') x = df['MODEL'] y = df['CIAZ'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch11==6: g = df.groupby('EECO') x = df['MODEL'] y = df['EECO'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch11==7: g = df.groupby('IGNIS') x = df['MODEL'] y = df['IGNIS'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch11==8: g = df.groupby('CELERIO X') x = df['MODEL'] y = df['CELERIO X'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch11==9: g = df.groupby('S-CROSS') x = df['MODEL'] y = df['S-CROSS'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count')
  • 21. plt.grid(True) plt.bar(x, y) plt.show() if ch11==10: g = df.groupby('XL6') x = df['MODEL'] y = df['XL6'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch8==4: clear() print('nSELECT CAR') print('_'*50) print('1. Tiagon') print('2. Nexonn') print('3. Tigorn') print('4. Harriern') print('5. Altrozn') print('6. Nanon') print('7. Safarin') print('8. HBXn') ch12 = int(input('Enter your choice:')) if ch12==1: g = df.groupby('TIAGO') x = df['MODEL'] y = df['TIAGO'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch12==2: g = df.groupby('NEXON') x = df['MODEL'] y = df['NEXON'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch12==3: g = df.groupby('TIGOR') x = df['MODEL'] y = df['TIGOR'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch12==4: g = df.groupby('HARRIER')
  • 22. x = df['MODEL'] y = df['HARRIER'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch12==5: g = df.groupby('ALTROZ') x = df['MODEL'] y = df['ALTROZ'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch12==6: g = df.groupby('NANO') x = df['MODEL'] y = df['NANO'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch12==7: g = df.groupby('SAFARI') x = df['MODEL'] y = df['SAFARI'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch12==8: g = df.groupby('HBX') x = df['MODEL'] y = df['HBX'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch8==5: clear() print('nSELECT CAR') print('_'*50) print('1. Sunnyn') print('2. Magniten') print('3. Kicksn') print('4. GT-Rn') print('5. Terran')
  • 23. ch13 = int(input('Enter your choice:')) if ch13==1: g = df.groupby('SUNNY') x = df['MODEL'] y = df['SUNNY'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch13==2: g = df.groupby('MAGNITE') x = df['MODEL'] y = df['MAGNITE'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch13==3: g = df.groupby('KICKS') x = df['MODEL'] y = df['KICKS'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch13==4: g = df.groupby('GT-R') x = df['MODEL'] y = df['GT-R'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch13==5: g = df.groupby('TERRA') x = df['MODEL'] y = df['TERRA'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch8==6: clear() print('nSELECT CAR') print('_'*50) print('1. A4n') print('2. A6n') print('3. A8n')
  • 24. print('4. Q2n') print('5. Q8n') print('6. RS7n') ch14 = int(input('Enter your choice:')) if ch14==1: g = df.groupby('A4') x = df['MODEL'] y = df['A4'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch14==2: g = df.groupby('A6') x = df['MODEL'] y = df['A8'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch14==3: g = df.groupby('A8') x = df['MODEL'] y = df['A8'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch14==4: g = df.groupby('Q2') x = df['MODEL'] y = df['Q2'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch14==5: g = df.groupby('Q8') x = df['MODEL'] y = df['Q8'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch14==6: g = df.groupby('RS7') x = df['MODEL']
  • 25. y = df['RS7'] plt.xticks(rotation='vertical') plt.xlabel('COMPANY') plt.ylabel('Total Sales') plt.title('Company wise sales count') plt.grid(True) plt.bar(x, y) plt.show() if ch == 3: main_menu() wait = input() def main_menu(): clear() introduction() while True: clear() print('MAIN MENU ') print('_'*50) print() print('1. Read CSV Filen') print('2. Data Analysis Menun') print('3. Graph Menun') print('4. Exitn') choice = int(input('Enter your choice :')) if choice == 1: df = pd.read_csv("/Users/admin/Desktop/Kush/Study/IP/PROJECT/CAR.csv") print (df) wait = input() if choice == 2: data_analysis_menu() wait = input() if choice == 3: graph() wait = input() if choice == 4: print ("Project Made by- Kush Shah") break clear() # call your main menu main_menu()
  • 28. 2,1- SHOW COLUMNS 2,2- SHOW TOP ROWS 2,3- SHOW BOTTOM ROWS
  • 29. 2,4- SHOW PARTICULAR COLUMN (SAY, AMAZE) 2,5- ADD A NEW RECORD
  • 30. 2,6- DELETE A COLUMN 2,7- DATA SUMMARY
  • 31. 3. GRAPH MENU THE GRAPHS OF SALES OF VARIOUS CARS IS SHOWN WHEN THE USER SELECTS THEM. FIRST THE USER SELECTS THE MANUFACTURER FROM THE GIVEN SIX OPTIONS. ONCE THE MANUFACTURER IS SELECTED, THE USER IS SUPPOSED TO SELECT THE NAME OF THE CAR MODEL FROM THE GIVEN LIST. SINCE THERE ARE A LOT OF CAR MODELS IN THE CSV, I HAVE NOT PRINTED ALL THE CHARTS BUT TWO OR THREE CHARTS OF EACH TYPE RANDOMLY SELECTED. STILL ALL THE CAR MODELS ARE CHECKED AND ALL OF THOSE ARE WORKING JUST PERFECTLY.
  • 32. LINE GRAPHS OF CARS- (SELECTED RANDOMLY) HONDA- AMAZE NISSAN- KICKS TATA- TIGOR MARUTI SUZUKI- CELERIO X
  • 33. BAR GRAPHS OF CARS- (SELECTED RANDOMLY) AUDI- A8 NISSAN- TERRA TATA- NANO HONDA- CITY