SlideShare a Scribd company logo
Introduction To R
Samuel Bosch (mail@samuelbosch.com)
What is R
R is a language and environment for statistical computing and graphics. It
is a GNU project which is similar to the S language.
Created in 1993, license: GNU GPL, current version 3.2.3
Interpreted
C-like syntax
Functional programming language semantics (Lisp, APL)
Object oriented (3 different OO systems)
Garbage collector
Mostly call-by-value
Lexical scope
Function closure
·
·
·
·
·
·
·
·
·
/
Popularity
TIOBE: 18
Github: 12
Stackoverflow: 117341 questions (Java: 978006, Python: 507653)
Most popular tool for statistical data analysis
·
·
·
·
/
Usage
CRAN Task Views: https://cran.r-project.org/web/views/
Statistics (frequentist and bayesian)
Machine learning and data mining
Science (mathematics, chemistry, physics, medical, ecology, genetics,
economy, history, …)
Finance
Natural Language Processing
Data visualization
Analyzing spatial, spatio-temporal data and time series
…
·
·
·
·
·
·
·
·
/
R Markdown
This is an R Markdown presentation. Markdown is a simple formatting
syntax for authoring HTML, PDF, and MS Word documents. For more
details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that
includes both content as well as the output of any embedded R code
chunks within the document.
/
Competitors/colleagues
SAS, SPSS, STATA, Mathematica and other statistical software
Python + Numpy + Pandas + matplotlib + …
Matlab/Octave
Julia
K/J and other APL like languages
Java (Weka), Clojure, .NET (F#), …
·
·
·
·
·
·
/
Calling R
command line
SAS, SPSS, Stata, Statistica, JMP
Java, C++, F#
Python, Perl, Ruby, Julia
PostgreSQL: PL/R
·
·
·
·
·
/
Ecosystem
IDE: RStudio or one of the alternatives (plugins for Eclipse, Visual
Studio, Atom, Sublime Text, Vim, …) Packages: CRAN (6700+ packages),
Bioconductor, RForge, Github
Learning more and getting help:
Built-in documentation (?, help(), F1) and package vignettes
Official manuals: https://cran.r-project.org/manuals.html
Short reference card: https://cran.r-project.org/doc/contrib/Short-
refcard.pdf
(Free) books: Advanced R and R packages by Hadley Wickham
Courses on Edx and Coursera
Stack Overflow and Cross validated (for statistical questions)
mail@samuelbosch.com
·
·
·
·
·
·
·
/
View help
?Filter
/
Operators
+  ‐  *  /   
^ or ** for exponentiation   
%% modulus   
%/% integer division   
 
<   <=   >   >=   ==   !=   !x   isTRUE(x)   xor(x, y)  
# element wise OR and AND 
c(FALSE, FALSE) | c(TRUE, FALSE) & c(TRUE, FALSE)
## [1]  TRUE FALSE
# first element OR and AND 
c(FALSE, FALSE) || c(TRUE, FALSE) && c(TRUE, TRUE)
## [1] TRUE /
Vectors
List of elements of the same type
a <‐ c(1,2,5.3,6,‐2,4) # numeric vector 
a[c(2,4)] # 2nd and 4th element
## [1] 2 6
names(a) <‐ c("c","d","e","f","g","h") 
a
##    c    d    e    f    g    h  
##  1.0  2.0  5.3  6.0 ‐2.0  4.0
/
Vectors
a[a > 3] ## a[c(F, F, T, T, F, T)]
##   e   f   h  
## 5.3 6.0 4.0
a[3:5]
##    e    f    g  
##  5.3  6.0 ‐2.0
a[‐1]
##    d    e    f    g    h  
##  2.0  5.3  6.0 ‐2.0  4.0
/
Vectors
a[c("c","d","e")]
##   c   d   e  
## 1.0 2.0 5.3
a[a %in% c(1,2)]
## c d  
## 1 2
is.null(c()) & is.null(NULL)
## [1] TRUE
/
Vectors
c(1,2,3)[c(TRUE,FALSE,NA)]
## [1]  1 NA
c(sum=sum(a), sumna=sum(c(a,NA)), sumnona=sum(c(a,NA), na.rm = TRUE),   
  mean=mean(a), sd=sd(a), max=max(1,2,a))
##       sum     sumna   sumnona      mean        sd       max  
## 16.300000        NA 16.300000  2.716667  2.993604  6.000000
/
Data Types: numeric vectors
Default type for numbers
class(c(1, 2.3))
## [1] "numeric"
c(is.integer(1), is.numeric(1))
## [1] FALSE  TRUE
c(seq(from = 1, to = 5, by = 2), rep(c(6,7), times = c(2,3)))
## [1] 1 3 5 6 6 7 7 7
/
Data Types: integer vectors
as.integer(c(1,2.3,"4.5","bla"))
## Warning: NAs introduced by coercion
## [1]  1  2  4 NA
as.integer(c(TRUE,FALSE))
## [1] 1 0
/
Factors
Used to encode a vector as a factor ('category'/'enumerated type')
f <‐ factor(c(1,1,2,2,3,3,2,1), levels=c(1,2,3), labels=c("a", "b", "c")) 
f
## [1] a a b b c c b a 
## Levels: a b c
table(f)
## f 
## a b c  
## 3 3 2
/
Factors
as.character(f)
## [1] "a" "a" "b" "b" "c" "c" "b" "a"
as.numeric(f)
## [1] 1 1 2 2 3 3 2 1
/
Other Vectorial Data Types
Complex
Logical: 1 < 2, TRUE, T, FALSE, F
Character:
·
·
·
as.character(1.2)
## [1] "1.2"
fizz <‐ paste0("fi", paste(rep("z", 2), collapse = "")) 
paste(fizz, "buzz", 1:3, sep="_", collapse = " | ")
## [1] "fizz_buzz_1 | fizz_buzz_2 | fizz_buzz_3"
/
Matrices
Multiple vector columns of the same type and the same length
m <‐ matrix(1:10, nrow=5, ncol=2, byrow = TRUE) 
m[1,] # 1st row
## [1] 1 2
m[,2] # 2nd column
## [1]  2  4  6  8 10
m[1,2] # 1st row, 2nd column
## [1] 2
/
Matrices
m * 1:5
##      [,1] [,2] 
## [1,]    1    2 
## [2,]    6    8 
## [3,]   15   18 
## [4,]   28   32 
## [5,]   45   50
t(m) %*% m
##      [,1] [,2] 
## [1,]  165  190 
## [2,]  190  220
/
Matrices
diag(1, nrow = 2, ncol = 2)
##      [,1] [,2] 
## [1,]    1    0 
## [2,]    0    1
sum(c(rowSums(m), colSums(m))) == sum(2*m)
## [1] TRUE
apply(m, MARGIN = 1, function(x) { sum(x) }) == rowSums(m)
## [1] TRUE TRUE TRUE TRUE TRUE
/
Matrices
head(m, n = 3)
##      [,1] [,2] 
## [1,]    1    2 
## [2,]    3    4 
## [3,]    5    6
summary(m)
##        V1          V2     
##  Min.   :1   Min.   : 2   
##  1st Qu.:3   1st Qu.: 4   
##  Median :5   Median : 6   
##  Mean   :5   Mean   : 6   
##  3rd Qu.:7   3rd Qu.: 8   
##  Max.   :9   Max.   :10 /
Arrays
One, two or more dimensions
a <‐ array(data = t(1:24), dim = c(2,3,4)) 
a[1,,]
##      [,1] [,2] [,3] [,4] 
## [1,]    1    7   13   19 
## [2,]    3    9   15   21 
## [3,]    5   11   17   23
a[1,1,1]
## [1] 1
/
Data frames
A data frame combines columns with the same length and different
data types
d <‐ data.frame(number=1:2, bool=c(TRUE, FALSE), string=c("y", "z")) 
d$number
## [1] 1 2
d[1,c(2,3)]
##   bool string 
## 1 TRUE      y
/
Data frames
d[,"string"]
## [1] y z 
## Levels: y z
data.frame(string=c("y", "z"), stringsAsFactors = FALSE)[,1]
## [1] "y" "z"
/
dplyr
Lots of operators for manipulating local and database data (sqlite,
mysql and postgresql). Basic verbs:
Other goodies:
select
filter
arrange (= sort)
mutate
summarise
·
·
·
·
·
piping (chaining)
database access as lazy as possible
Bigquery support (Google)
·
·
· /
dplyr
library(dplyr) 
cars <‐ mutate(mtcars, hp_mpg = hp/mpg) 
cars %>%  
  group_by(cyl) %>% 
  summarise(mean(disp), mean(hp), mean(mpg), mean(hp_mpg))
## Source: local data frame [3 x 5] 
##  
##     cyl mean(disp)  mean(hp) mean(mpg) mean(hp_mpg) 
##   (dbl)      (dbl)     (dbl)     (dbl)        (dbl) 
## 1     4   105.1364  82.63636  26.66364     3.244667 
## 2     6   183.3143 122.28571  19.74286     6.231013 
## 3     8   353.1000 209.21429  15.10000    14.419146
/
dplyr
## options("samuelb@obisdb‐stage.vliz.be" = "<your password here>") 
pwd <‐ getOption("samuelb@obisdb‐stage.vliz.be") 
 
src <‐ src_postgres(dbname = "obis", host = "obisdb‐stage.vliz.be",  
                    port = "5432", user="samuelb", 
                    password = pwd, options="‐c search_path=obis") 
tbl(src, "positions") %>%  
  select(id, bottomdepth) %>%  
  filter(longitude == 0 && latitude == 0) %>%  
  collect()
## Source: local data frame [1 x 2] 
##  
##        id bottomdepth 
##     (int)       (int) 
## 1 8667455        4935
/
Lists
Ordered collection of objects
l <‐ list(name="Samuel", age=33, 
          workdays=c("Mon","Tues","Wed", "Thurs", "Fri")) 
l
## $name 
## [1] "Samuel" 
##  
## $age 
## [1] 33 
##  
## $workdays 
## [1] "Mon"   "Tues"  "Wed"   "Thurs" "Fri"
/
Lists
l$name
## [1] "Samuel"
l[["age"]]
## [1] 33
l[[3]]
## [1] "Mon"   "Tues"  "Wed"   "Thurs" "Fri"
/
Functions
sumf <‐ function(x, na.rm = FALSE) { 
  x <‐ ifelse(na.rm, na.omit(x), x) 
  Reduce("+", x) 
} 
sumf(1:3)
## [1] 1
sumf
## function(x, na.rm = FALSE) { 
##   x <‐ ifelse(na.rm, na.omit(x), x) 
##   Reduce("+", x) 
## }
/
Functions
sumf <‐ function(x, na.rm = FALSE) { 
  if(na.rm) { 
    x <‐ na.omit(x) 
  } 
  sum <‐ 0 
  for (element in x) { 
    sum <‐ sum + element 
  } 
  sum 
} 
sumf(c(1, 2, NA))
## [1] NA
sumf(c(1, 2, NA), na.rm = TRUE)
## [1] 3
/
Errors
try({ stop("Not supported") }, silent = TRUE) 
 
tryCatch(expr = { qwerty + 1 }, 
         error = function (e) str(e), 
         finally = print("Finally"))
## List of 2 
##  $ message: chr "object 'qwerty' not found" 
##  $ call   : language doTryCatch(return(expr), name, parentenv, handler) 
##  ‐ attr(*, "class")= chr [1:3] "simpleError" "error" "condition" 
## [1] "Finally"
/
Files
f <‐ file(filename, open = "r")  
on.exit(close(f)) 
readLines 
writeLines 
cat 
sink 
scan 
parse 
 
url 
gzfile 
 
read.table 
read.csv 
read.csv2 
write.table 
write.csv 
write.csv2
/
Short example
aphia_ids <‐ c() 
for (file in list.files("demo", pattern="*[.]txt", full.names=T)) { 
  print(file) 
  species <‐ read.table(file, header=T, sep="t", quote="", fill=T) 
  exact_match <‐ species[species$Match.type == "exact",] 
  aphia_ids <‐ c(aphia_ids, exact_match$AphiaID_accepted) 
}
## [1] "demo/corals_red_sea_matched.txt" 
## [1] "demo/red_sea_non_coral_invertebrate_1_matched.txt" 
## [1] "demo/red_sea_non_coral_invertebrate_2_matched.txt" 
## [1] "demo/red_sea_shore_fish_2_matched.txt" 
## [1] "demo/red_sea_shore_fish_matched.txt"
paste(na.omit(aphia_ids[1:6]), collapse = ",")
## [1] "216153,216155,216154,286927,216152,210746"
/
Data visualization
plot(runif(n=1000, 0, 0.5), runif(n=1000, 0, 1), pch=3, col="red",  
     xlab="", ylab="", xlim=0:1, ylim=0:1) 
points(runif(n=50, .5, 1), runif(n=50, 0, 1), pch=20, col="blue")
/
Data visualization
library(ggplot2) 
 
mtcars$gear <‐ factor(mtcars$gear,levels=c(3,4,5), 
    labels=c("3gears","4gears","5gears"))  
mtcars$cyl <‐ factor(mtcars$cyl,levels=c(4,6,8), 
   labels=c("4cyl","6cyl","8cyl"))  
 
qplot(mpg, data=mtcars, geom="density", fill=gear, alpha=I(.5),  
   main="Distribution of Gas Milage", xlab="Miles Per Gallon",  
   ylab="Density") 
 
## linear regression 
qplot(wt, mpg, data=mtcars, geom=c("point", "smooth"),  
   method="lm", formula=y~x, color=cyl,  
   main="Regression of MPG on Weight",  
   xlab="Weight", ylab="Miles per Gallon")
/
Data visualization
/
Data visualization
/
Data visualization
ggplot(movies, aes(x=rating)) +  
  geom_histogram(binwidth = 0.1, aes(fill = ..count..)) +  
  scale_fill_gradient("Count", low = "green", high = "red")
/
Objects
Recommended reading: http://adv-r.had.co.nz/OO-essentials.html
S3: generic function OO, very casual system e.g. drawRect(canvas,
"blue")
S4: similar to S3 but more rigid, has multiple dispatch
Reference classes: message-passing OO (like Java, C++, etc), objects
are mutable
Base classes: defined in C
·
·
·
·
/
Debugging
RStudio setting: Debug -> On Error -> Break in code
DEMO
recover() 
traceback()
/
Packages
    install.packages("caret") ## installs caret and it's dependencies 
    devtools::install_github("rstudio/packrat") # install from github 
     
    library(caret) # load the library and import all functions 
    if(!require(raster)) { 
      print("raster package could not be loaded") 
    } 
    dplyr::aggregate ## calling a function without importing the full package 
    plyr::select ##  or handle naming conflicts
/
Packrat
Per project private package libraries
    install.packages("packrat") 
    packrat::init(project = ".") 
    install.packages("survival") 
    packrat::snapshot() 
     
    packrat::init() 
     
    packrat::snapshot() 
    packrat::restore() 
    packrat::clean() 
 
    packrat::bundle() 
    packrat::unbundle() 
     
    packrat::on() 
    packrat::off()
/
Package development
devtools + roxygen2 + testthat
Advantages:
Disadvantage:
Get started with the book http://r-pkgs.had.co.nz/ by Hadley Wickham
testing
documentation
versioning
distribution
·
·
·
·
more work·
/
Testing
library(testthat) 
 
test_that("list_datasets result is same as datasets.csv", { 
  skip_on_cran() 
  original <‐ read.csv2(data_raw_file("datasets.csv"), stringsAsFactors = FALSE) 
  df <‐ list_datasets() 
  expect_equal(nrow(df),nrow(original)) 
  expect_equal(df, original) 
})
/
Performance
Some resources:
compiler package (byte-code compiler)
parallel package
http://www.noamross.net/blog/2013/4/25/faster-talk.html
http://adv-r.had.co.nz/Performance.html
http://adv-r.had.co.nz/Profiling.html
http://adv-r.had.co.nz/memory.html
http://adv-r.had.co.nz/Rcpp.html
https://cran.r-
project.org/web/views/HighPerformanceComputing.html
·
·
·
·
·
·
·
·
/
Parallel
  # Calculate the number of cores 
  no_cores <‐ detectCores() ‐ 1 
  # Initiate cluster 
  cl <‐ makeCluster(no_cores) 
  on.exit(stopCluster(cl)) 
  clusterExport(cl, "species") 
  clusterExport(cl, "background") 
  results <‐ parLapply(cl, seq(0.1, 0.9, 0.1), function(beta) { 
    source("sdmExperiment.R") 
    kresults <‐ lapply(1:10, function(k) { 
      data <‐ species[[paste0("beta",beta)]][[paste0("k",k)]] 
      cbind(beta, k, t(build_sdm_rcew(data, background))) 
    }) 
    dplyr::rbind_all(kresults) 
  }) 
  results <‐ dplyr::rbind_all(results) ## combine list of data.frames
/
Web
Shiny: http://shiny.rstudio.com/
OpenCPU: https://www.opencpu.org/
RServe: https://rforge.net/Rserve/doc.html
·
interactive web pages
no need for javascript (at least not for simple things)
reactive programming
typically ui.R and a server.R
example: http://shiny.rstudio.com/gallery/movie-explorer.html
DEMO
-
-
-
-
-
-
·
HTTP API for data analysis in R-
·
Binary R server-
/
Machine learning
https://cran.r-project.org/web/views/MachineLearning.html
caret, rattle
specific libraries for the different machine learning algorithms
·
·
·
/
Machine Learning example
library(e1071) 
 
train_idx <‐ sample(1:nrow(mtcars), nrow(mtcars)/2) 
train <‐ mtcars[train_idx,] 
test <‐ mtcars[‐train_idx,] 
 
model <‐ svm(hp ~ mpg + cyl + gear, data = train) 
train_results <‐ predict(model, train) 
test_results <‐ predict(model, test) 
 
rmse <‐ function(error) 
{ 
  sqrt(mean(error^2)) 
}
/
Machine learning example
print(paste("training rmse",rmse(train_results ‐ train$hp)))
## [1] "training rmse 22.1904078087206"
print(paste("test rmse",rmse(test_results ‐ test$hp)))
## [1] "test rmse 38.6500402049542"
plot_data <‐ data.frame(hp=c(train$hp,test$hp),  
                        predicted=c(train_results,test_results), 
                        split=c("train","test"))
/
Machine learning example
ggplot(plot_data, aes(hp, predicted)) +  
  geom_point(aes(colour = factor(split), shape = factor(split)))
/
Questions
ggplot(data.frame(a="?", x=0, y=0), aes(x=x, y=y, label=a)) + 
  geom_text(size=100)
/

More Related Content

PPTX
R Programming Language
PDF
RDataMining slides-r-programming
KEY
Presentation R basic teaching module
PPTX
R language
PPTX
Workshop presentation hands on r programming
PDF
R programming groundup-basic-section-i
PPTX
R Programming Tutorial for Beginners - -TIB Academy
ODP
Introduction to the language R
R Programming Language
RDataMining slides-r-programming
Presentation R basic teaching module
R language
Workshop presentation hands on r programming
R programming groundup-basic-section-i
R Programming Tutorial for Beginners - -TIB Academy
Introduction to the language R

What's hot (20)

PDF
R programming & Machine Learning
PPTX
R programming Fundamentals
PPT
R programming slides
PDF
R - the language
PDF
Introduction to R Programming
PDF
Machine Learning in R
PPTX
Introduction To R Language
PDF
R tutorial
PPT
R tutorial for a windows environment
PPTX
R language tutorial
PDF
Data Analysis with R (combined slides)
PDF
Introduction to Data Mining with R and Data Import/Export in R
PDF
R programming for data science
PDF
Introduction to Rstudio
PPT
Rtutorial
PPTX
Getting Started with R
PPTX
A Workshop on R
PDF
Introduction to the R Statistical Computing Environment
PDF
Introduction to data analysis using R
PPT
Best corporate-r-programming-training-in-mumbai
R programming & Machine Learning
R programming Fundamentals
R programming slides
R - the language
Introduction to R Programming
Machine Learning in R
Introduction To R Language
R tutorial
R tutorial for a windows environment
R language tutorial
Data Analysis with R (combined slides)
Introduction to Data Mining with R and Data Import/Export in R
R programming for data science
Introduction to Rstudio
Rtutorial
Getting Started with R
A Workshop on R
Introduction to the R Statistical Computing Environment
Introduction to data analysis using R
Best corporate-r-programming-training-in-mumbai
Ad

Viewers also liked (20)

PPTX
Getting Started with R
PDF
R presentation
PPTX
Introduction To R
PPTX
Moving Data to and From R
PDF
2 R Tutorial Programming
PPTX
R Introduction
PDF
1 R Tutorial Introduction
PPTX
R at Microsoft (useR! 2016)
PDF
Intro to RStudio
PPTX
R at Microsoft
PDF
Introduction to R for Data Science :: Session 7 [Multiple Linear Regression i...
PPTX
R- Introduction
PPTX
Why R? A Brief Introduction to the Open Source Statistics Platform
PPTX
Language R
PDF
Grouping & Summarizing Data in R
PPTX
R programming
PPTX
Step By Step Guide to Learn R
PPTX
Data mining tools (R , WEKA, RAPID MINER, ORANGE)
PDF
R introduction v2
PPTX
Introduction to R
Getting Started with R
R presentation
Introduction To R
Moving Data to and From R
2 R Tutorial Programming
R Introduction
1 R Tutorial Introduction
R at Microsoft (useR! 2016)
Intro to RStudio
R at Microsoft
Introduction to R for Data Science :: Session 7 [Multiple Linear Regression i...
R- Introduction
Why R? A Brief Introduction to the Open Source Statistics Platform
Language R
Grouping & Summarizing Data in R
R programming
Step By Step Guide to Learn R
Data mining tools (R , WEKA, RAPID MINER, ORANGE)
R introduction v2
Introduction to R
Ad

Similar to Introduction to R (20)

PPT
An introduction to R is a document useful
PPTX
Introduction to R for Learning Analytics Researchers
PPTX
R programming presentation
PPTX
Data Science With R Programming Unit - II Part-1.pptx
PPTX
Data science with R Unit - II Part-1.pptx
PPT
Basics of R-Programming with example.ppt
PPT
Basocs of statistics with R-Programming.ppt
PPT
R-Programming.ppt it is based on R programming language
PPT
R Programming for Statistical Applications
PPT
R-programming with example representation.ppt
PPTX
Big data analytics with R tool.pptx
PPT
R programming by ganesh kavhar
PDF
Data analysis in R
PDF
Unit1_Introduction to R.pdf
PPTX
R_L1-Aug-2022.pptx
PPTX
R and Rcmdr Statistical Software
PDF
A Handbook Of Statistical Analyses Using R
PDF
The History and Use of R
PPTX
Intro to data science module 1 r
PPT
How to obtain and install R.ppt
An introduction to R is a document useful
Introduction to R for Learning Analytics Researchers
R programming presentation
Data Science With R Programming Unit - II Part-1.pptx
Data science with R Unit - II Part-1.pptx
Basics of R-Programming with example.ppt
Basocs of statistics with R-Programming.ppt
R-Programming.ppt it is based on R programming language
R Programming for Statistical Applications
R-programming with example representation.ppt
Big data analytics with R tool.pptx
R programming by ganesh kavhar
Data analysis in R
Unit1_Introduction to R.pdf
R_L1-Aug-2022.pptx
R and Rcmdr Statistical Software
A Handbook Of Statistical Analyses Using R
The History and Use of R
Intro to data science module 1 r
How to obtain and install R.ppt

Recently uploaded (20)

PPTX
history of c programming in notes for students .pptx
PPTX
Advanced SystemCare Ultimate Crack + Portable (2025)
PDF
medical staffing services at VALiNTRY
PDF
17 Powerful Integrations Your Next-Gen MLM Software Needs
PDF
Adobe Illustrator 28.6 Crack My Vision of Vector Design
PDF
iTop VPN 6.5.0 Crack + License Key 2025 (Premium Version)
PPTX
CHAPTER 2 - PM Management and IT Context
PDF
AutoCAD Professional Crack 2025 With License Key
PDF
Designing Intelligence for the Shop Floor.pdf
PDF
Product Update: Alluxio AI 3.7 Now with Sub-Millisecond Latency
PDF
Download FL Studio Crack Latest version 2025 ?
PDF
Tally Prime Crack Download New Version 5.1 [2025] (License Key Free
PDF
Design an Analysis of Algorithms I-SECS-1021-03
PPTX
Embracing Complexity in Serverless! GOTO Serverless Bengaluru
PPTX
Transform Your Business with a Software ERP System
PPTX
AMADEUS TRAVEL AGENT SOFTWARE | AMADEUS TICKETING SYSTEM
PDF
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
PDF
Wondershare Filmora 15 Crack With Activation Key [2025
PDF
Nekopoi APK 2025 free lastest update
PPTX
Patient Appointment Booking in Odoo with online payment
history of c programming in notes for students .pptx
Advanced SystemCare Ultimate Crack + Portable (2025)
medical staffing services at VALiNTRY
17 Powerful Integrations Your Next-Gen MLM Software Needs
Adobe Illustrator 28.6 Crack My Vision of Vector Design
iTop VPN 6.5.0 Crack + License Key 2025 (Premium Version)
CHAPTER 2 - PM Management and IT Context
AutoCAD Professional Crack 2025 With License Key
Designing Intelligence for the Shop Floor.pdf
Product Update: Alluxio AI 3.7 Now with Sub-Millisecond Latency
Download FL Studio Crack Latest version 2025 ?
Tally Prime Crack Download New Version 5.1 [2025] (License Key Free
Design an Analysis of Algorithms I-SECS-1021-03
Embracing Complexity in Serverless! GOTO Serverless Bengaluru
Transform Your Business with a Software ERP System
AMADEUS TRAVEL AGENT SOFTWARE | AMADEUS TICKETING SYSTEM
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
Wondershare Filmora 15 Crack With Activation Key [2025
Nekopoi APK 2025 free lastest update
Patient Appointment Booking in Odoo with online payment

Introduction to R