The document presents a clustering algorithm for brain image segmentation using fuzzy c-means clustering. It aims to optimize the segmentation process and achieve higher accuracy rates when segmenting human MRI brain images. The fuzzy c-means algorithm is combined with rough set theory for segmentation. The algorithm segments images into homogeneous regions where adjacent regions are heterogeneous. This approach is evaluated on a set of brain images and demonstrates effectiveness as well as a comparison to other related algorithms. The goal of the algorithm is to simplify images and extract useful information for detecting brain tumors.