This document describes a face recognition-based attendance system. It begins with an introduction to face recognition and the challenges of implementing such a system in real-time. It then reviews related work on algorithms used for face detection (Haar cascade), feature extraction (Histogram of Oriented Gradients), and recognition (Convolutional Neural Networks). The proposed system is described as collecting a student database, extracting encodings from images using CNN, and comparing real-time detected faces to the database using HOG detection and Euclidean distance matching to mark attendance. Experimental results aimed to test recognition under different training, lighting, and pose conditions.