This document discusses semantic-based automatic text summarization using soft computing techniques. It begins with an introduction describing how large amounts of data are generated daily and the need for automated summarization. The next sections cover related work on text summarization methods including syntactic parsing, extractive techniques using n-gram language models and A* search, and mathematical reduction techniques like singular value decomposition and non-negative matrix factorization. The document also discusses using part-of-speech tagging, hidden Markov models, and named entity recognition for extractive summarization in Indian languages.