SlideShare a Scribd company logo
PythonForDataScience Cheat Sheet
Keras
Learn Python for data science Interactively at www.DataCamp.com
Keras
DataCamp
Learn Python for Data Science Interactively
Data Also see NumPy, Pandas & Scikit-Learn
Keras is a powerful and easy-to-use deep learning library for
Theano and TensorFlow that provides a high-level neural
networks API to develop and evaluate deep learning models.
Model Architecture
Model Fine-tuning
Optimization Parameters
>>> from keras.optimizers import RMSprop
>>> opt = RMSprop(lr=0.0001, decay=1e-6)
>>> model2.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
A Basic Example
>>> import numpy as np
>>> from keras.models import Sequential
>>> from keras.layers import Dense
>>> data = np.random.random((1000,100))
>>> labels = np.random.randint(2,size=(1000,1))
>>> model = Sequential()
>>> model.add(Dense(32,
activation='relu',
input_dim=100))
>>> model.add(Dense(1, activation='sigmoid'))
>>> model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
>>> model.fit(data,labels,epochs=10,batch_size=32)
>>> predictions = model.predict(data)
Preprocessing
One-Hot Encoding
>>> from keras.utils import to_categorical
>>> Y_train = to_categorical(y_train, num_classes)
>>> Y_test = to_categorical(y_test, num_classes)
>>> Y_train3 = to_categorical(y_train3, num_classes)
>>> Y_test3 = to_categorical(y_test3, num_classes)
Also see NumPy & Scikit-Learn
>>> model.output_shape Model output shape
>>> model.summary() Model summary representation
>>> model.get_config() Model configuration
>>> model.get_weights() List all weight tensors in the model
Your data needs to be stored as NumPy arrays or as a list of NumPy arrays. Ide-
ally, you split the data in training and test sets, for which you can also resort
to the train_test_split module of sklearn.cross_validation.
Early Stopping
>>> from keras.callbacks import EarlyStopping
>>> early_stopping_monitor = EarlyStopping(patience=2)
>>> model3.fit(x_train4,
y_train4,
batch_size=32,
epochs=15,
validation_data=(x_test4,y_test4),
callbacks=[early_stopping_monitor])
Inspect Model
Sequential Model
>>> from keras.models import Sequential
>>> model = Sequential()
>>> model2 = Sequential()
>>> model3 = Sequential()
Multilayer Perceptron (MLP)
>>> from keras.layers import Dropout
>>> model.add(Dense(512,activation='relu',input_shape=(784,)))
>>> model.add(Dropout(0.2))
>>> model.add(Dense(512,activation='relu'))
>>> model.add(Dropout(0.2))
>>> model.add(Dense(10,activation='softmax'))
Standardization/Normalization
Sequence Padding
>>> from keras.preprocessing import sequence
>>> x_train4 = sequence.pad_sequences(x_train4,maxlen=80)
>>> x_test4 = sequence.pad_sequences(x_test4,maxlen=80)
>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().fit(x_train2)
>>> standardized_X = scaler.transform(x_train2)
>>> standardized_X_test = scaler.transform(x_test2)
Keras Data Sets
>>> from keras.datasets import boston_housing,
mnist,
cifar10,
imdb
>>> (x_train,y_train),(x_test,y_test) = mnist.load_data()
>>> (x_train2,y_train2),(x_test2,y_test2) = boston_housing.load_data()
>>> (x_train3,y_train3),(x_test3,y_test3) = cifar10.load_data()
>>> (x_train4,y_train4),(x_test4,y_test4) = imdb.load_data(num_words=20000)
>>> num_classes = 10
Convolutional Neural Network (CNN)
>>> from keras.layers import Activation,Conv2D,MaxPooling2D,Flatten
>>> model2.add(Conv2D(32,(3,3),padding='same',input_shape=x_train.shape[1:]))
>>> model2.add(Activation('relu'))
>>> model2.add(Conv2D(32,(3,3)))
>>> model2.add(Activation('relu'))
>>> model2.add(MaxPooling2D(pool_size=(2,2)))
>>> model2.add(Dropout(0.25))
>>> model2.add(Conv2D(64,(3,3), padding='same'))
>>> model2.add(Activation('relu'))
>>> model2.add(Conv2D(64,(3, 3)))
>>> model2.add(Activation('relu'))
>>> model2.add(MaxPooling2D(pool_size=(2,2)))
>>> model2.add(Dropout(0.25))
>>> model2.add(Flatten())
>>> model2.add(Dense(512))
>>> model2.add(Activation('relu'))
>>> model2.add(Dropout(0.5))
>>> model2.add(Dense(num_classes))
>>> model2.add(Activation('softmax'))
Recurrent Neural Network (RNN)
Compile Model
MLP: Binary Classification
>>> model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
MLP: Multi-Class Classification
>>> model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
MLP: Regression
>>> model.compile(optimizer='rmsprop',
loss='mse',
metrics=['mae'])
>>> from keras.klayers import Embedding,LSTM
>>> model3.add(Embedding(20000,128))
>>> model3.add(LSTM(128,dropout=0.2,recurrent_dropout=0.2))
>>> model3.add(Dense(1,activation='sigmoid'))
Prediction
Evaluate Your Model's Performance
>>> score = model3.evaluate(x_test,
y_test,
batch_size=32)
>>> model3.predict(x_test4, batch_size=32)
>>> model3.predict_classes(x_test4,batch_size=32)
Model Training
>>> model3.fit(x_train4,
y_train4,
batch_size=32,
epochs=15,
verbose=1,
validation_data=(x_test4,y_test4))
>>> from keras.models import load_model
>>> model3.save('model_file.h5')
>>> my_model = load_model('my_model.h5')
Save/ Reload Models
>>> from keras.layers import Dense
>>> model.add(Dense(12,
input_dim=8,
kernel_initializer='uniform',
activation='relu'))
>>> model.add(Dense(8,kernel_initializer='uniform',activation='relu'))
>>> model.add(Dense(1,kernel_initializer='uniform',activation='sigmoid'))
>>> model.add(Dense(64,activation='relu',input_dim=train_data.shape[1]))
>>> model.add(Dense(1))
Binary Classification
Multi-Class Classification
Regression
Other
>>> from urllib.request import urlopen
>>> data = np.loadtxt(urlopen("http://archive.ics.uci.edu/
ml/machine-learning-databases/pima-indians-diabetes/
pima-indians-diabetes.data"),delimiter=",")
>>> X = data[:,0:8]
>>> y = data [:,8]
>>> from sklearn.model_selection import train_test_split
>>> X_train5,X_test5,y_train5,y_test5 = train_test_split(X,
y,
test_size=0.33,
random_state=42)
Train and Test Sets
Recurrent Neural Network
>>> model3.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])

More Related Content

PDF
Neural networks using tensor flow in amazon deep learning server
PDF
Python For Data Science Cheat Sheet
PPTX
Time Series Analysis for Network Secruity
PDF
DCN Practical
PDF
Email Classifier using Spark 1.3 Mlib / ML Pipeline
KEY
Python 的文件系統
PDF
Basic data structures in python
PDF
5-minute intro to property-based testing in Python with hypothesis
Neural networks using tensor flow in amazon deep learning server
Python For Data Science Cheat Sheet
Time Series Analysis for Network Secruity
DCN Practical
Email Classifier using Spark 1.3 Mlib / ML Pipeline
Python 的文件系統
Basic data structures in python
5-minute intro to property-based testing in Python with hypothesis

What's hot (20)

PPTX
Java Language fundamental
PPTX
Chap1 array
PDF
Spark RDD-DF-SQL-DS-Spark Hadoop User Group Munich Meetup 2016
PPTX
Introduction to python programming 1
PDF
Arrays in python
PDF
Using Java Streams
PPTX
SQL Server Select Topics
PPTX
Introduction to python programming 2
PDF
Java 8 - An Introduction by Jason Swartz
PDF
Postgres can do THAT?
PDF
Python faster for loop
PDF
Beyond xUnit example-based testing: property-based testing with ScalaCheck
PDF
Python3 cheatsheet
PDF
Python_ 3 CheatSheet
PDF
Introduction to TensorFlow 2.0
PPTX
Java Foundations: Lists, ArrayList<T>
PDF
orca_fosdem_FINAL
PPTX
Python array
PDF
RAPIDS: ускоряем Pandas и scikit-learn на GPU Павел Клеменков, NVidia
PPT
Spsl v unit - final
Java Language fundamental
Chap1 array
Spark RDD-DF-SQL-DS-Spark Hadoop User Group Munich Meetup 2016
Introduction to python programming 1
Arrays in python
Using Java Streams
SQL Server Select Topics
Introduction to python programming 2
Java 8 - An Introduction by Jason Swartz
Postgres can do THAT?
Python faster for loop
Beyond xUnit example-based testing: property-based testing with ScalaCheck
Python3 cheatsheet
Python_ 3 CheatSheet
Introduction to TensorFlow 2.0
Java Foundations: Lists, ArrayList<T>
orca_fosdem_FINAL
Python array
RAPIDS: ускоряем Pandas и scikit-learn на GPU Павел Клеменков, NVidia
Spsl v unit - final
Ad

Similar to Keras cheat sheet_python (20)

PDF
The Ultimate Keras Cheat Sheet for Deep Learning!
PDF
Deep Learning for Computer Vision: Software Frameworks (UPC 2016)
PDF
Scikit learn cheat_sheet_python
PDF
Scikit-learn Cheatsheet-Python
PDF
Cheat Sheet for Machine Learning in Python: Scikit-learn
PPTX
Mata Kuliah AI_Pengenalan Library Python.pptx
PDF
Keras and TensorFlow
PDF
Viktor Tsykunov: Azure Machine Learning Service
PDF
Data mining with caret package
PDF
Intro to DL with Keras - chapter3 - datacamp.pdf
PPTX
What is new in Java 8
PPTX
slide-keras-tf.pptx
PPTX
interface with mysql.pptx
PPTX
Training course lect3
PDF
Nyc open-data-2015-andvanced-sklearn-expanded
PPTX
AWS re:Invent 2018 - AIM401 - Deep Learning using Tensorflow
PDF
Celery with python
PDF
Introducing Reactive Machine Learning
PDF
Machinelearning Spark Hadoop User Group Munich Meetup 2016
DOCX
LSTM Framework For Univariate Time series
The Ultimate Keras Cheat Sheet for Deep Learning!
Deep Learning for Computer Vision: Software Frameworks (UPC 2016)
Scikit learn cheat_sheet_python
Scikit-learn Cheatsheet-Python
Cheat Sheet for Machine Learning in Python: Scikit-learn
Mata Kuliah AI_Pengenalan Library Python.pptx
Keras and TensorFlow
Viktor Tsykunov: Azure Machine Learning Service
Data mining with caret package
Intro to DL with Keras - chapter3 - datacamp.pdf
What is new in Java 8
slide-keras-tf.pptx
interface with mysql.pptx
Training course lect3
Nyc open-data-2015-andvanced-sklearn-expanded
AWS re:Invent 2018 - AIM401 - Deep Learning using Tensorflow
Celery with python
Introducing Reactive Machine Learning
Machinelearning Spark Hadoop User Group Munich Meetup 2016
LSTM Framework For Univariate Time series
Ad

Recently uploaded (20)

PPTX
Supervised vs unsupervised machine learning algorithms
PDF
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
PDF
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
PDF
Taxes Foundatisdcsdcsdon Certificate.pdf
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PDF
The Rise of Impact Investing- How to Align Profit with Purpose
PPTX
Business Acumen Training GuidePresentation.pptx
PDF
Mega Projects Data Mega Projects Data
PDF
Foundation of Data Science unit number two notes
PPTX
Moving the Public Sector (Government) to a Digital Adoption
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PDF
Launch Your Data Science Career in Kochi – 2025
PPTX
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
PPTX
Computer network topology notes for revision
PPTX
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
Supervised vs unsupervised machine learning algorithms
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
Taxes Foundatisdcsdcsdon Certificate.pdf
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
The Rise of Impact Investing- How to Align Profit with Purpose
Business Acumen Training GuidePresentation.pptx
Mega Projects Data Mega Projects Data
Foundation of Data Science unit number two notes
Moving the Public Sector (Government) to a Digital Adoption
Miokarditis (Inflamasi pada Otot Jantung)
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
STUDY DESIGN details- Lt Col Maksud (21).pptx
Launch Your Data Science Career in Kochi – 2025
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
Computer network topology notes for revision
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx

Keras cheat sheet_python

  • 1. PythonForDataScience Cheat Sheet Keras Learn Python for data science Interactively at www.DataCamp.com Keras DataCamp Learn Python for Data Science Interactively Data Also see NumPy, Pandas & Scikit-Learn Keras is a powerful and easy-to-use deep learning library for Theano and TensorFlow that provides a high-level neural networks API to develop and evaluate deep learning models. Model Architecture Model Fine-tuning Optimization Parameters >>> from keras.optimizers import RMSprop >>> opt = RMSprop(lr=0.0001, decay=1e-6) >>> model2.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) A Basic Example >>> import numpy as np >>> from keras.models import Sequential >>> from keras.layers import Dense >>> data = np.random.random((1000,100)) >>> labels = np.random.randint(2,size=(1000,1)) >>> model = Sequential() >>> model.add(Dense(32, activation='relu', input_dim=100)) >>> model.add(Dense(1, activation='sigmoid')) >>> model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) >>> model.fit(data,labels,epochs=10,batch_size=32) >>> predictions = model.predict(data) Preprocessing One-Hot Encoding >>> from keras.utils import to_categorical >>> Y_train = to_categorical(y_train, num_classes) >>> Y_test = to_categorical(y_test, num_classes) >>> Y_train3 = to_categorical(y_train3, num_classes) >>> Y_test3 = to_categorical(y_test3, num_classes) Also see NumPy & Scikit-Learn >>> model.output_shape Model output shape >>> model.summary() Model summary representation >>> model.get_config() Model configuration >>> model.get_weights() List all weight tensors in the model Your data needs to be stored as NumPy arrays or as a list of NumPy arrays. Ide- ally, you split the data in training and test sets, for which you can also resort to the train_test_split module of sklearn.cross_validation. Early Stopping >>> from keras.callbacks import EarlyStopping >>> early_stopping_monitor = EarlyStopping(patience=2) >>> model3.fit(x_train4, y_train4, batch_size=32, epochs=15, validation_data=(x_test4,y_test4), callbacks=[early_stopping_monitor]) Inspect Model Sequential Model >>> from keras.models import Sequential >>> model = Sequential() >>> model2 = Sequential() >>> model3 = Sequential() Multilayer Perceptron (MLP) >>> from keras.layers import Dropout >>> model.add(Dense(512,activation='relu',input_shape=(784,))) >>> model.add(Dropout(0.2)) >>> model.add(Dense(512,activation='relu')) >>> model.add(Dropout(0.2)) >>> model.add(Dense(10,activation='softmax')) Standardization/Normalization Sequence Padding >>> from keras.preprocessing import sequence >>> x_train4 = sequence.pad_sequences(x_train4,maxlen=80) >>> x_test4 = sequence.pad_sequences(x_test4,maxlen=80) >>> from sklearn.preprocessing import StandardScaler >>> scaler = StandardScaler().fit(x_train2) >>> standardized_X = scaler.transform(x_train2) >>> standardized_X_test = scaler.transform(x_test2) Keras Data Sets >>> from keras.datasets import boston_housing, mnist, cifar10, imdb >>> (x_train,y_train),(x_test,y_test) = mnist.load_data() >>> (x_train2,y_train2),(x_test2,y_test2) = boston_housing.load_data() >>> (x_train3,y_train3),(x_test3,y_test3) = cifar10.load_data() >>> (x_train4,y_train4),(x_test4,y_test4) = imdb.load_data(num_words=20000) >>> num_classes = 10 Convolutional Neural Network (CNN) >>> from keras.layers import Activation,Conv2D,MaxPooling2D,Flatten >>> model2.add(Conv2D(32,(3,3),padding='same',input_shape=x_train.shape[1:])) >>> model2.add(Activation('relu')) >>> model2.add(Conv2D(32,(3,3))) >>> model2.add(Activation('relu')) >>> model2.add(MaxPooling2D(pool_size=(2,2))) >>> model2.add(Dropout(0.25)) >>> model2.add(Conv2D(64,(3,3), padding='same')) >>> model2.add(Activation('relu')) >>> model2.add(Conv2D(64,(3, 3))) >>> model2.add(Activation('relu')) >>> model2.add(MaxPooling2D(pool_size=(2,2))) >>> model2.add(Dropout(0.25)) >>> model2.add(Flatten()) >>> model2.add(Dense(512)) >>> model2.add(Activation('relu')) >>> model2.add(Dropout(0.5)) >>> model2.add(Dense(num_classes)) >>> model2.add(Activation('softmax')) Recurrent Neural Network (RNN) Compile Model MLP: Binary Classification >>> model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) MLP: Multi-Class Classification >>> model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) MLP: Regression >>> model.compile(optimizer='rmsprop', loss='mse', metrics=['mae']) >>> from keras.klayers import Embedding,LSTM >>> model3.add(Embedding(20000,128)) >>> model3.add(LSTM(128,dropout=0.2,recurrent_dropout=0.2)) >>> model3.add(Dense(1,activation='sigmoid')) Prediction Evaluate Your Model's Performance >>> score = model3.evaluate(x_test, y_test, batch_size=32) >>> model3.predict(x_test4, batch_size=32) >>> model3.predict_classes(x_test4,batch_size=32) Model Training >>> model3.fit(x_train4, y_train4, batch_size=32, epochs=15, verbose=1, validation_data=(x_test4,y_test4)) >>> from keras.models import load_model >>> model3.save('model_file.h5') >>> my_model = load_model('my_model.h5') Save/ Reload Models >>> from keras.layers import Dense >>> model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu')) >>> model.add(Dense(8,kernel_initializer='uniform',activation='relu')) >>> model.add(Dense(1,kernel_initializer='uniform',activation='sigmoid')) >>> model.add(Dense(64,activation='relu',input_dim=train_data.shape[1])) >>> model.add(Dense(1)) Binary Classification Multi-Class Classification Regression Other >>> from urllib.request import urlopen >>> data = np.loadtxt(urlopen("http://archive.ics.uci.edu/ ml/machine-learning-databases/pima-indians-diabetes/ pima-indians-diabetes.data"),delimiter=",") >>> X = data[:,0:8] >>> y = data [:,8] >>> from sklearn.model_selection import train_test_split >>> X_train5,X_test5,y_train5,y_test5 = train_test_split(X, y, test_size=0.33, random_state=42) Train and Test Sets Recurrent Neural Network >>> model3.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])