SlideShare a Scribd company logo
0/1 KNAPSACK PROBLEM
DYNAMIC PROGRAMMING
APPROACH
Dr. P. Subathra
Prof/ IT
KAMARAJ College of Engg. & Tech
(AUTONOMOUS)
Madurai
Tamil Nadu
India
0/1 KNAPSACK PROBLEM
2
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
0/1 KNAPSACK PROBLEM
Dynamic Programming
3
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
0/1 KNAPSACK PROBLEM
Dynamic Programming – Bottom Up
4
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0
12 2 1
10 1 2
20 3 3
15 2 4
5
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1
10 1 2
20 3 3
15 2 4
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
6
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0
10 1 2 0
20 3 3 0
15 2 4 0
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
7
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 2/12 2/12 2/12 2/12
10 1 2 0
20 3 3 0
15 2 4 0
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
8
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 2/12 2/12 2/12 2/12
10 1 2 0 1/10 2/12 3/22 3/22 3/22
20 3 3 0
15 2 4 0
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
9
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 2/12 2/12 2/12 2/12
10 1 2 0 1/10 2/12 3/22 3/22 3/22
20 3 3 0 1/10 2/12 3/22 4/30 5/32
15 2 4 0
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
10
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 2/12 2/12 2/12 2/12
10 1 2 0 1/10 2/12 3/22 3/22 3/22
20 3 3 0 1/10 2/12 3/22 4/30 5/32
15 2 4 0 1/10 2/15 3/25 4/30 4/37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
11
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 2/12 2/12 2/12 2/12
10 1 2 0 1/10 2/12 3/22 3/22 3/22
20 3 3 0 1/10 2/12 3/22 4/30 5/32
15 2 4 0 1/10 2/15 3/25 4/30 4/37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
12
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
13
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
14
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
15
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
16
Trace back to (5-2)=3 rd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
17
Trace back to (5-2)=3 rd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
18
Trace back to (5-2)=3 rd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
19
Trace back to (5-2)=3 rd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
20
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
21
X
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
22
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
23
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
24
Trace back to (3-1)=2 nd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
25
Trace back to (3-1)=2 nd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
26
Trace back to (3-1)=2 nd column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
27
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
28
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
29
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
30
Trace back to (2-2)=0 th column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
31
Trace back to (2-2)=0 th column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
32
Trace back to (2-2)=0 th column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
33
Trace back to (2-2)=0 th column
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
Value/
Profit
Of Item
(Vi)
Weight
of Item
(Wi)
Capacity
of Bag
(Cj)
Item
No. (i)
0 1 2 3 4
5
(Max.)
0 0 0 0 0 0 0 0 0
12 2 1 0 0 12 12 12 12
10 1 2 0 10 12 22 22 22
20 3 3 0 10 12 22 30 32
15 2 4 0 10 15 25 30 37
max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0
F(i,Cj) =
F(i-1, Cj) ; if Cj-Wi = 0
34
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
KNAPSACK PROBLEM – Dynamic – Bottom Up
35
Items Selected : 1, 2 & 4
Total Cost = 12+10+15
= 37
v
v
Dr. P. Subathra, KAMARAJ College of Engg &
Tech, Madurai, Tamil Nadu, India
END….!!!

More Related Content

PDF
Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transp...
PDF
A kernel-free particle method: Smile Problem Resolved
PDF
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
PDF
Analyzing Soft Cut-off in Twitter
PPTX
3.1 Trees ( Introduction, Binary Trees & Binary Search Trees)
PPTX
2.2 stack applications Infix to Postfix & Evaluation of Post Fix
Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transp...
A kernel-free particle method: Smile Problem Resolved
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Analyzing Soft Cut-off in Twitter
3.1 Trees ( Introduction, Binary Trees & Binary Search Trees)
2.2 stack applications Infix to Postfix & Evaluation of Post Fix

More from P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai (20)

PPTX
PDF
PDF
The stable marriage problem iterative improvement method
PDF
Maximum matching in bipartite graphs iterative improvement method
PDF
Knapsack dynamic programming formula top down (1)
PDF
Multiplication of integers & strassens matrix multiplication subi notes
PDF
Multiplication of large integers problem subi notes
The stable marriage problem iterative improvement method
Maximum matching in bipartite graphs iterative improvement method
Knapsack dynamic programming formula top down (1)
Multiplication of integers & strassens matrix multiplication subi notes
Multiplication of large integers problem subi notes
Ad

Recently uploaded (20)

PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPT
Project quality management in manufacturing
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Lecture Notes Electrical Wiring System Components
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
Construction Project Organization Group 2.pptx
PPTX
OOP with Java - Java Introduction (Basics)
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
DOCX
573137875-Attendance-Management-System-original
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Model Code of Practice - Construction Work - 21102022 .pdf
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Foundation to blockchain - A guide to Blockchain Tech
Internet of Things (IOT) - A guide to understanding
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Project quality management in manufacturing
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
UNIT 4 Total Quality Management .pptx
Lecture Notes Electrical Wiring System Components
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
R24 SURVEYING LAB MANUAL for civil enggi
Construction Project Organization Group 2.pptx
OOP with Java - Java Introduction (Basics)
Automation-in-Manufacturing-Chapter-Introduction.pdf
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
573137875-Attendance-Management-System-original
Ad

Knapsack dynamic programming formula bottom up

  • 1. 0/1 KNAPSACK PROBLEM DYNAMIC PROGRAMMING APPROACH Dr. P. Subathra Prof/ IT KAMARAJ College of Engg. & Tech (AUTONOMOUS) Madurai Tamil Nadu India
  • 2. 0/1 KNAPSACK PROBLEM 2 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 3. 0/1 KNAPSACK PROBLEM Dynamic Programming 3 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 4. 0/1 KNAPSACK PROBLEM Dynamic Programming – Bottom Up 4 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 5. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 12 2 1 10 1 2 20 3 3 15 2 4 5 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 6. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 10 1 2 20 3 3 15 2 4 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 6 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 7. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 10 1 2 0 20 3 3 0 15 2 4 0 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 7 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 8. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 2/12 2/12 2/12 2/12 10 1 2 0 20 3 3 0 15 2 4 0 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 8 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 9. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 2/12 2/12 2/12 2/12 10 1 2 0 1/10 2/12 3/22 3/22 3/22 20 3 3 0 15 2 4 0 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 9 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 10. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 2/12 2/12 2/12 2/12 10 1 2 0 1/10 2/12 3/22 3/22 3/22 20 3 3 0 1/10 2/12 3/22 4/30 5/32 15 2 4 0 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 10 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 11. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 2/12 2/12 2/12 2/12 10 1 2 0 1/10 2/12 3/22 3/22 3/22 20 3 3 0 1/10 2/12 3/22 4/30 5/32 15 2 4 0 1/10 2/15 3/25 4/30 4/37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 11 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 12. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 2/12 2/12 2/12 2/12 10 1 2 0 1/10 2/12 3/22 3/22 3/22 20 3 3 0 1/10 2/12 3/22 4/30 5/32 15 2 4 0 1/10 2/15 3/25 4/30 4/37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 12 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 13. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 13 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 14. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 14 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 15. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 15 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 16. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 16 Trace back to (5-2)=3 rd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 17. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 17 Trace back to (5-2)=3 rd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 18. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 18 Trace back to (5-2)=3 rd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 19. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 19 Trace back to (5-2)=3 rd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 20. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 20 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 21. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 21 X Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 22. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 22 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 23. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 23 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 24. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 24 Trace back to (3-1)=2 nd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 25. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 25 Trace back to (3-1)=2 nd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 26. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 26 Trace back to (3-1)=2 nd column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 27. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 27 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 28. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 28 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 29. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 29 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 30. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 30 Trace back to (2-2)=0 th column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 31. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 31 Trace back to (2-2)=0 th column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 32. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 32 Trace back to (2-2)=0 th column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 33. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 33 Trace back to (2-2)=0 th column Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 34. KNAPSACK PROBLEM – Dynamic – Bottom Up Value/ Profit Of Item (Vi) Weight of Item (Wi) Capacity of Bag (Cj) Item No. (i) 0 1 2 3 4 5 (Max.) 0 0 0 0 0 0 0 0 0 12 2 1 0 0 12 12 12 12 10 1 2 0 10 12 22 22 22 20 3 3 0 10 12 22 30 32 15 2 4 0 10 15 25 30 37 max { F(i-1, Cj), (Vi+F(i-1,Cj-wi)) } ; if Cj-Wi >=0 F(i,Cj) = F(i-1, Cj) ; if Cj-Wi = 0 34 Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India
  • 35. KNAPSACK PROBLEM – Dynamic – Bottom Up 35 Items Selected : 1, 2 & 4 Total Cost = 12+10+15 = 37 v v Dr. P. Subathra, KAMARAJ College of Engg & Tech, Madurai, Tamil Nadu, India