This document proposes a knowledge graph and question answering system to extract and analyze information from large volumes of unstructured data like annual reports. It discusses using natural language processing techniques like named entity recognition with spaCy and dependency parsing to extract entity-relation pairs from text and construct a knowledge graph. For question answering, it analyzes user queries with similar NLP approaches and then matches query triplets to the knowledge graph to retrieve answers, combining information retrieval and trained classifiers. The proposed system aims to provide faster understanding and analysis of complex, unstructured data for professionals.