SlideShare a Scribd company logo
OCTOBER 13-16, 2016 • AUSTIN, TX
Large Scale Log Analytics with Solr
Rafał Kuć and Radu Gheorghe
Sematext Group
3
01
About Us
RaduRafał
Logsene
4
02
Agenda
Logstash + Solr
rsyslog + Solr
rsyslog + Redis + Logstash + Solr
Solr
5
01
Flow in Logstash
/var/log/apache.log
redis
https://cdn2.iconfinder.com/data/icons/gconstruct/2118/gconstruct1-14.png
input
6
01
Flow in Logstash
/var/log/apache.log
redis
https://cdn2.iconfinder.com/data/icons/gconstruct/2118/gconstruct1-14.png
plain
{json}
input
codec
7
01
Flow in Logstash
/var/log/apache.log
redis
Rafał @kucrafal
grok
{
"user": "Rafał",
"twitter": "@kucrafal"
}
- w $numberOfWorkers
https://cdn2.iconfinder.com/data/icons/gconstruct/2118/gconstruct1-14.png
plain
{json}
input
codec
filter
8
01
Flow in Logstash
/var/log/apache.log
redis
Rafał @kucrafal
grok
{
"user": "Rafał",
"twitter": "@kucrafal"
}
- w $numberOfWorkers
https://cdn2.iconfinder.com/data/icons/gconstruct/2118/gconstruct1-14.png
workers => 2
plain
{json}
input
codec
filter
output
9
01
Simple Config https://github.com/sematext/lucene-revolution-samples/tree/master/2015
input {
file {
path => "/opt/logs/example.log"
start_position => "beginning"
}
}
output {
solr_http {
solr_url => "http://localhost:8983/solr/gettingstarted"
flush_size => 5000
workers => 4
}
}
bin/plugin install logstash-output-solr_http
apache combined logs
10
01
Base Result
11
01
Parse JSON
input {
file {
path => "/opt/logs/example.log.parsed"
start_position => "beginning"
…
filter {
json {
source => "message"
}
}
output {
solr_http {
…
apache combined logs in JSON
bin/logstash -f logstash.conf -w 4 # filterWorkers=4
12
01
JSON Result
input {
file {
path => "/opt/logs/example.log"
start_position => "beginning"
…
filter {
grok {
match => [ "message", "%{COMBINEDAPACHELOG}" ]
}
}
output {
solr_http {
…
13
01
Grok
14
01
Grok Result
15
01
Flow Options
https://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Gorilla-server.svg/2000px-Gorilla-server.svg.png
https://www.elastic.co/assets/blt69f6410148efbab8/logstash.png
16
01
Flow Options (cont.)
http://www.hanselman.com/blog/content/binary/Windows-Live-Writer/ef572a4c3e50_13F7B/redis_logo_a83f44f3-708d-4fad-aa6e-6eb0d6f82001.png
https://upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Question_mark_alternate.svg/2000px-Question_mark_alternate.svg.png
or Kafka or
*MQ or...
something
light here
rsyslog
rsyslog
rsyslog
17
01
Flow in rsyslog
/var/log/apache.log
syslog socket
input
18
01
Flow in rsyslog
/var/log/apache.log
syslog socket
main queue (RAM+Disk)
input
queue.type
queue.size
...
19
01
Flow in rsyslog
/var/log/apache.log
syslog socket
main queue (RAM+Disk)
input
queue.type
queue.size
...
queue.workerThreads
(filter, parse and
send events)
20
01
Flow in rsyslog
/var/log/apache.log
syslog socket
main queue (RAM+Disk)
input
queue.type
queue.size
...
queue.workerThreads
(filter, parse and
send events)
queue.dequeueBatchSize
21
01
Flow in rsyslog
/var/log/apache.log
syslog socket
main queue (RAM+Disk)
input
queue.type
queue.size
...
queue.workerThreads
(filter, parse and
send events)
queue.dequeueBatchSize
rsyslog_solr.py
rsyslog_solr.py
rsyslog_solr.py
action
template {JSON}
22
01
Flow in rsyslog
/var/log/apache.log
syslog socket
main queue (RAM+Disk)
input
queue.type
queue.size
...
queue.workerThreads
(filter, parse and
send events)
queue.dequeueBatchSize
rsyslog_solr.py
rsyslog_solr.py
rsyslog_solr.py
action
template {JSON}
23
01
Simple Config (1/2) https://github.com/sematext/lucene-revolution-samples/tree/master/2015
module(load="imfile")
module(load="omprog")
input(type="imfile"
File="/opt/logs/example.log"
Tag="apache:")
main_queue(
queue.highWatermark="100000"
queue.lowWatermark="50000"
queue.maxDiskSpace="5g"
queue.fileName="solr_action"
queue.spoolDirectory="/opt/rsyslog/queues"
queue.saveOnShutdown="on"
queue.workerThreads="4"
queue.dequeueBatchSize="500"
)
apache combined logs
24
01
Simple Config (2/2)
template(name="json_lines" type="list" option.json="on") {
constant(value="{")
constant(value=""timestamp":"")
property(name="timereported" dateFormat="rfc3339")
constant(value="","message":"")
property(name="msg")
...
constant(value="","syslog-tag":"")
property(name="syslogtag")
constant(value=""}n")
}
action(
type="omprog"
binary="/opt/rsyslog/rsyslog_solr.py"
template="json_lines"
)
get from https://github.com/rsyslog/rsyslog/tree/master/plugins/external/solr
25
01
Base Result
26
01
Base Result
15% rsyslog,
4x1% rsyslog_solr.py
27
01
Base Result
15% rsyslog,
4x1% rsyslog_solr.py
125MB rsyslog, 4x15MB rsyslog_solr.py
Depends on queue. Here up to 100K events in
RAM
28
01
JSON Config
# same main queue settings and modules
input(type="imfile"
File="/opt/logs/example.log.parsed"
Tag="apache:")
module(load="mmnormalize")
action(type="mmnormalize"
rulebase="/opt/rsyslog/json.rb"
)
template(name="json_lines" type="list") {
property(name="$!root") constant(value="n")
}
action(type="omprog"
...
apache combined logs
already parsed in JSON
version=2
rule=:%root:json%
29
01
JSON Result
30
01
Normalizing Config
input(type="imfile"
File="/opt/logs/example.log"
Tag="apache")
action(type="mmnormalize"
rulebase="/opt/rsyslog/apache_combined.rb"
)
template(name="json_lines" type="list") {
property(name="$!all-json")
constant(value="n")
}
version=2
rule=:%[
{"type": "word", "name": "clientip"},
{"type": "literal", "text": " "},
...
{"type": "char-to", "name": "agent", "extradata": """},
{"type": "literal", "text": """},
{"type": "rest", "name": "blob"}
]%
31
01
Normalizing Result
32
01
Normalizing “Should Scale”*
sys
tem log
d -ng
performance depends mostly on log length and not on the number of rules:
http://blog.gerhards.net/2013/01/performance-of-liblognormrsyslog-parse.html
rule=apache_combined:%[
{"type": "word", "name": "clientip"},
...
{"type": "char-to", "name": "agent", "extradata": """},
{"type": "literal", "text": """},
{"type": "rest", "name": "blob"}
]%
rule=apache_common:%[
{"type": "word", "name": "clientip"},
...
{"type": "number", "name": "bytes"},
{"type": "rest", "name": "blob", "priority": 65535}
]%
...
33
01
Normalizing with Five Rules
input(type="imfile"
File="/opt/logs/example*"
Tag="apache")
action(type="mmnormalize"
rulebase="/opt/rsyslog/multiple_rules.rb"
)
if $!root <> "" then {
set $.final-json = $!root;
} else {
set $.final-json = $!all-json;
}
template(name="json_lines" type="list") {
property(name="$.final-json") constant(value="n")
}
34
01
5 Rules Result
35
01
OK, so this works:
rsyslog
rsyslog
rsyslog
36
01
How about this:
rsyslog
rsyslog
rsyslog
37
01
rsyslog.conf
module(load="imfile")
module(load="omhiredis")
input(type="imfile"
File="/opt/logs/example.log"
Tag="apache:")
template(name="json_lines" type="list" option.json="on") {...}
main_queue(queue.workerthreads="1"
queue.dequeueBatchSize="100"
queue.size="10000")
action(type="omhiredis"
mode="publish"
key="rsyslog_logstash"
template="json_lines")
./configure --enable-omhiredis
small&light queue
38
01
logstash.conf
input {
redis {
data_type => "channel"
key => "rsyslog_logstash"
batch_count => 100
}
}
output {
solr_http {
...
}
}
JSON codec is implied
39
01
Combined Result
rsyslog 1%
Redis 2%
Logstash 200%
rsyslog 10MB (10K queue)
Redis 1000MB (configurable)
Logstash 380MB
40
01
5-Rule Normalizing Result
rsyslog 100%
Redis 2%
Logstash 200%
rsyslog 30MB
Redis 1000MB
Logstash 450MB
41
01
Shipper conclusions
rsyslog
rsyslog
rsyslog
rsyslog
rsyslog
rsyslog
easy setup; flexible
heavy
light; fast
less flexible&easy
offloads buffers and Logstash processing;
flexible and efficient
setup and maintenance overhead
42
01
Solr Tuning Agenda
Schema and config adjustments
Time-based collections
Tiered cluster (e.g. hot vs cold nodes)
43
01
Schema: Two Kinds of Fields
message:failed
"docValues": true
"omitNorms": true,
"omitTermFreqAndPositions": true
44
01
Schema: Two Kinds of Fields
message:failed
"docValues": true
"omitNorms": true,
"omitTermFreqAndPositions": true
+20 to 100% capacity* 10% faster indexing*
* http://blog.sematext.com/2014/11/17/solr-presentations-lucene-solr-revolution/
45
01
Commits
"updateHandler.autoSoftCommit.maxTime": 5000
"updateHandler.autoCommit.maxTime": 60000
<ramBufferSizeMB>200</ramBufferSizeMB>
5s feels near-
realtime while
searching
Flush to disk every
minute or 200MB
46
01
Commits
"updateHandler.autoSoftCommit.maxTime": 5000
"updateHandler.autoCommit.maxTime": 60000
<ramBufferSizeMB>200</ramBufferSizeMB>
5s feels near-
realtime while
searching
Flush to disk every
minute of 200MB
+10% capacity; 10% faster indexing*
47
01
Time-Based Collections
indexing, merges,
most searches
doesn’t change => cache friendly
can be optimized
delete without
triggering merges
48
01
Time-Based Collections
indexing, merges,
most searches
doesn’t change => cache friendly
=> can be optimized
delete without
triggering merges
20-30x capacity; less indexing degradation*
* http://www.slideshare.net/sematext/side-by-side-with-elasticsearch-solr-part-2
49
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
50
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
51
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
ADDREPLICA
52
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
53
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
54
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
55
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
quick recent searches
and indexing rare lengthy requests
56
01
Tiered Cluster
cold1
cold2
cold3
cold4
quick recent searches
and indexing rare lengthy requests
hot1
hot2
buffer for indexing spikes
57
01
Tiered Cluster
cold1
cold2
cold3
cold4
quick recent searches
and indexing rare lengthy requests
hot1
hot2
buffer for indexing spikes
less shards per collection
and the cluster is still balanced
58
01
Tiered Cluster
cold1
cold2
cold3
cold4
quick recent searches
and indexing rare lengthy requests
hot1
hot2
buffer for indexing spikes
less shards per collection
and the cluster is still balanced
CPU++
RAM++
IO++
59
01
Wrap-Up
60
01
Wrap-Up
DocValues
commits
61
01
Wrap-Up
DocValues
commits
https://cdn0.iconfinder.com/data/icons/dance-fitness/72/13-512.png
https://www.standardlife.co.uk/resources/custom/uk/images/heroes/illustration/easy-box.png
62
01
Wrap-Up
DocValues
commits
https://cdn0.iconfinder.com/data/icons/dance-fitness/72/13-512.png
https://www.standardlife.co.uk/resources/custom/uk/images/heroes/illustration/easy-box.png
63
01
Wrap-Up
DocValues
commits
http://www.funnyshirts.net/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/z/o/zombies-hate-fast-food-funny-tshirt-preview.png
https://cdn0.iconfinder.com/data/icons/dance-fitness/72/13-512.png
https://www.standardlife.co.uk/resources/custom/uk/images/heroes/illustration/easy-box.png
64
01
Wrap-Up
DocValues
commits
http://www.funnyshirts.net/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/z/o/zombies-hate-fast-food-funny-tshirt-preview.png
https://cdn0.iconfinder.com/data/icons/dance-fitness/72/13-512.png
https://www.standardlife.co.uk/resources/custom/uk/images/heroes/illustration/easy-box.png
rsyslog
65
01
Wrap-Up
DocValues
commits
http://www.funnyshirts.net/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/z/o/zombies-hate-fast-food-funny-tshirt-preview.png
https://cdn0.iconfinder.com/data/icons/dance-fitness/72/13-512.png
https://www.standardlife.co.uk/resources/custom/uk/images/heroes/illustration/easy-box.png
rsyslog
rsyslog
rsyslog
rsyslog
66
01
Questions?
Rafał Kuć
@kucrafal
rafal.kuc@sematext.com
Radu Gheorghe
@radu0gheorghe
radu.gheorghe@sematext.com
Sematext
@sematext
http://sematext.com
67
01
Questions?
Rafał Kuć
@kucrafal
rafal.kuc@sematext.com
Radu Gheorghe
@radu0gheorghe
radu.gheorghe@sematext.com
Sematext
@sematext
http://sematext.com
we’re hiring, too!

More Related Content

PDF
Introduction to solr
PDF
From Zero to Production Hero: Log Analysis with Elasticsearch (from Velocity ...
PDF
Side by Side with Elasticsearch and Solr
PDF
Introduction to Elasticsearch
PDF
Side by Side with Elasticsearch & Solr, Part 2
PDF
Large Scale Log Analytics with Solr: Presented by Rafał Kuć & Radu Gheorghe, ...
PPT
How ElasticSearch lives in my DevOps life
PPTX
Elk stack
Introduction to solr
From Zero to Production Hero: Log Analysis with Elasticsearch (from Velocity ...
Side by Side with Elasticsearch and Solr
Introduction to Elasticsearch
Side by Side with Elasticsearch & Solr, Part 2
Large Scale Log Analytics with Solr: Presented by Rafał Kuć & Radu Gheorghe, ...
How ElasticSearch lives in my DevOps life
Elk stack

What's hot (20)

PDF
Logstash-Elasticsearch-Kibana
PDF
Journée DevOps : Des dashboards pour tous avec ElasticSearch, Logstash et Kibana
PDF
Debugging and Testing ES Systems
PDF
Analyse your SEO Data with R and Kibana
PDF
LogStash in action
ODP
Cool bonsai cool - an introduction to ElasticSearch
PDF
Solr vs. Elasticsearch, Case by Case: Presented by Alexandre Rafalovitch, UN
PDF
Machine Learning in a Twitter ETL using ELK
PPTX
Customer Intelligence: Using the ELK Stack to Analyze ForgeRock OpenAM Audit ...
PPTX
MySQL Slow Query log Monitoring using Beats & ELK
PDF
ElasticSearch
PPT
ELK stack at weibo.com
PDF
Logstash: Get to know your logs
PDF
Spark with Elasticsearch
PPT
Building a CRM on top of ElasticSearch
ODP
Using Logstash, elasticsearch & kibana
PPTX
Elasticsearch, Logstash, Kibana. Cool search, analytics, data mining and more...
PDF
Logstash + Elasticsearch + Kibana Presentation on Startit Tech Meetup
PPT
Logstash
PDF
elasticsearch - advanced features in practice
Logstash-Elasticsearch-Kibana
Journée DevOps : Des dashboards pour tous avec ElasticSearch, Logstash et Kibana
Debugging and Testing ES Systems
Analyse your SEO Data with R and Kibana
LogStash in action
Cool bonsai cool - an introduction to ElasticSearch
Solr vs. Elasticsearch, Case by Case: Presented by Alexandre Rafalovitch, UN
Machine Learning in a Twitter ETL using ELK
Customer Intelligence: Using the ELK Stack to Analyze ForgeRock OpenAM Audit ...
MySQL Slow Query log Monitoring using Beats & ELK
ElasticSearch
ELK stack at weibo.com
Logstash: Get to know your logs
Spark with Elasticsearch
Building a CRM on top of ElasticSearch
Using Logstash, elasticsearch & kibana
Elasticsearch, Logstash, Kibana. Cool search, analytics, data mining and more...
Logstash + Elasticsearch + Kibana Presentation on Startit Tech Meetup
Logstash
elasticsearch - advanced features in practice
Ad

Viewers also liked (20)

PDF
Tuning Solr for Logs: Presented by Radu Gheorghe, Sematext
PPTX
Tuning Elasticsearch Indexing Pipeline for Logs
PDF
Solr for Indexing and Searching Logs
PDF
Monitoring and Log Management for
PDF
How to Run Solr on Docker and Why
PDF
Using Solr to Search and Analyze Logs
PPTX
Running High Performance & Fault-tolerant Elasticsearch Clusters on Docker
PDF
Tuning Solr & Pipeline for Logs
PDF
Top Node.js Metrics to Watch
PDF
Elasticsearch for Logs & Metrics - a deep dive
PDF
Building Resilient Log Aggregation Pipeline with Elasticsearch & Kafka
PDF
Indexing and Searching Logs with Elasticsearch/Solr by Radu Gheorghe from Sem...
PDF
Elasticsearch and Solr for Logs
PDF
From Zero to Hero - Centralized Logging with Logstash & Elasticsearch
PPT
Running High Performance and Fault Tolerant Elasticsearch Clusters on Docker
PDF
How to Gain Greater Business Intelligence from Lucene/Solr
PDF
Docker Logging Webinar
PPTX
HBaseConEast2016: Splice machine open source rdbms
PDF
Docker Monitoring Webinar
PDF
Solr Anti Patterns
Tuning Solr for Logs: Presented by Radu Gheorghe, Sematext
Tuning Elasticsearch Indexing Pipeline for Logs
Solr for Indexing and Searching Logs
Monitoring and Log Management for
How to Run Solr on Docker and Why
Using Solr to Search and Analyze Logs
Running High Performance & Fault-tolerant Elasticsearch Clusters on Docker
Tuning Solr & Pipeline for Logs
Top Node.js Metrics to Watch
Elasticsearch for Logs & Metrics - a deep dive
Building Resilient Log Aggregation Pipeline with Elasticsearch & Kafka
Indexing and Searching Logs with Elasticsearch/Solr by Radu Gheorghe from Sem...
Elasticsearch and Solr for Logs
From Zero to Hero - Centralized Logging with Logstash & Elasticsearch
Running High Performance and Fault Tolerant Elasticsearch Clusters on Docker
How to Gain Greater Business Intelligence from Lucene/Solr
Docker Logging Webinar
HBaseConEast2016: Splice machine open source rdbms
Docker Monitoring Webinar
Solr Anti Patterns
Ad

Similar to Large Scale Log Analytics with Solr (from Lucene Revolution 2015) (20)

ODP
ELK Stack - Turn boring logfiles into sexy dashboard
PPT
Xadoop - new approaches to data analytics
PDF
(Fios#02) 2. elk 포렌식 분석
PDF
Diagnostics & Debugging webinar
PPTX
Introduction to Apache Camel
PDF
Document Conversion & Retrieve and Rank 一問一答
PPTX
Keeping Spark on Track: Productionizing Spark for ETL
PDF
Ams adapters
PDF
Introduction to elasticsearch
PDF
DataFrame: Spark's new abstraction for data science by Reynold Xin of Databricks
PPTX
IOOF IT System Modernisation
PPTX
AWS Hadoop and PIG and overview
PDF
Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017
PDF
Semantic Web & TYPO3
PDF
Logstash for SEO: come monitorare i Log del Web Server in realtime
PDF
Events Processing and Data Analysis with Lucidworks Fusion: Presented by Kira...
PPT
2011 Mongo FR - MongoDB introduction
PPT
Introduction to MongoDB
PDF
Abusing text/template for data transformation
PPTX
Diagnostics and Debugging
ELK Stack - Turn boring logfiles into sexy dashboard
Xadoop - new approaches to data analytics
(Fios#02) 2. elk 포렌식 분석
Diagnostics & Debugging webinar
Introduction to Apache Camel
Document Conversion & Retrieve and Rank 一問一答
Keeping Spark on Track: Productionizing Spark for ETL
Ams adapters
Introduction to elasticsearch
DataFrame: Spark's new abstraction for data science by Reynold Xin of Databricks
IOOF IT System Modernisation
AWS Hadoop and PIG and overview
Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017
Semantic Web & TYPO3
Logstash for SEO: come monitorare i Log del Web Server in realtime
Events Processing and Data Analysis with Lucidworks Fusion: Presented by Kira...
2011 Mongo FR - MongoDB introduction
Introduction to MongoDB
Abusing text/template for data transformation
Diagnostics and Debugging

More from Sematext Group, Inc. (11)

PDF
Tweaking the Base Score: Lucene/Solr Similarities Explained
PDF
OOPs, OOMs, oh my! Containerizing JVM apps
PPTX
Is observability good for your brain?
PDF
Introducing log analysis to your organization
PPTX
Solr Search Engine: Optimize Is (Not) Bad for You
PDF
Solr on Docker - the Good, the Bad and the Ugly
PDF
Metrics, Logs, Transaction Traces, Anomaly Detection at Scale
PDF
Tuning Solr for Logs
PDF
(Elastic)search in big data
PDF
Open Source Search Evolution
PPTX
Administering and Monitoring SolrCloud Clusters
Tweaking the Base Score: Lucene/Solr Similarities Explained
OOPs, OOMs, oh my! Containerizing JVM apps
Is observability good for your brain?
Introducing log analysis to your organization
Solr Search Engine: Optimize Is (Not) Bad for You
Solr on Docker - the Good, the Bad and the Ugly
Metrics, Logs, Transaction Traces, Anomaly Detection at Scale
Tuning Solr for Logs
(Elastic)search in big data
Open Source Search Evolution
Administering and Monitoring SolrCloud Clusters

Recently uploaded (20)

PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PDF
Introduction to the R Programming Language
PDF
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PDF
Business Analytics and business intelligence.pdf
PPTX
Leprosy and NLEP programme community medicine
PDF
How to run a consulting project- client discovery
PPTX
modul_python (1).pptx for professional and student
PDF
Mega Projects Data Mega Projects Data
PPTX
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
PPTX
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
PDF
Lecture1 pattern recognition............
PPT
Predictive modeling basics in data cleaning process
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PPT
DATA COLLECTION METHODS-ppt for nursing research
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PDF
Optimise Shopper Experiences with a Strong Data Estate.pdf
PPTX
Qualitative Qantitative and Mixed Methods.pptx
IBA_Chapter_11_Slides_Final_Accessible.pptx
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
Introduction to the R Programming Language
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
STERILIZATION AND DISINFECTION-1.ppthhhbx
Business Analytics and business intelligence.pdf
Leprosy and NLEP programme community medicine
How to run a consulting project- client discovery
modul_python (1).pptx for professional and student
Mega Projects Data Mega Projects Data
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
Lecture1 pattern recognition............
Predictive modeling basics in data cleaning process
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
DATA COLLECTION METHODS-ppt for nursing research
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
Optimise Shopper Experiences with a Strong Data Estate.pdf
Qualitative Qantitative and Mixed Methods.pptx

Large Scale Log Analytics with Solr (from Lucene Revolution 2015)