SlideShare a Scribd company logo
Convolutional Neural Network Models
Convolutional Neural Network
ILSVRC
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogleNet 2014)
ResNet (2015)
Conclusion
Convolutional Neural Network
ILSVRC
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogleNet 2014)
ResNet (2015)
Conclusion
 Convolutional Neural Network (CNN)is a multi-layer neural
network
 Convolutional Neural Network is comprised of one or more
convolutional layers (often with a pooling layers) and then followed
by one or more fully connected layers.
 Convolutional layer acts as a feature extractor that extracts features
of the inputs such as edges, corners , endpoints.
 Pooling layer reduces the resolution of the image that
reduce the precision of the translation (shift and distortion) effect.
 fully connected layer have full connections to all activations in the
previous layer.
 Fully connect layer act as classifier.
Output Image =
( ( (ImageSize+2*Padding)- KernalSize )/ Stride) +1
 Conv 3x3 with stride=1,padding=0
6x6 Image
4x4
 Conv 3x3 with stride=1,padding=1
4x4 Image
4x4
 Conv 3x3 with stride=2,padding=0
7x7 Image
3x3
 Conv 3x3 with stride=2,padding=1
5x5 Image
3x3
 MaxPooling 2x2 with stride=2
4x4 Image
2x2
 MaxPooling 3x3 with stride=2
7x7 Image
3x3
Convolutional Neural Network
ILSVRC
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogleNet 2014)
ResNet (2015)
Conclusion
 ImageNet Large Scale Visual Recognition Challenge is
image classification challenge to create model that can
correctly classify an input image into 1,000 separate
object categories.
Models are trained on 1.2 million training images with
another 50,000 images for validation and 150,000
images for testing
Convolutional Neural Network
ILSVRC
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogleNet 2014)
ResNet (2015)
Conclusion
 AlexNet achieve on ILSVRC 2012 competition 15.3% Top-5 error
rate compare to 26.2% achieved by the second best entry.
 AlexNet using batch stochastic gradient descent on training, with
specific values for momentum and weight decay.
 AlexNet implement dropout layers in order to combat the problem
of overfitting to the training data.
Image
Conv1
Pool1
Conv2
Pool2
Conv3
Conv4
Conv5
Pool3
FC1
FC2
FC3
 AlexNet has 8 layers without count pooling layers.
 AlexNet use ReLU for the nonlinearity functions
 AlexNet trained on two GTX 580 GPUs for five to six days
Image
227x227x3
Conv11-96 Maxpool Conv5-256
Maxpool
Conv3-384
Conv3-384
Conv3-256
Maxpool FC-4096 FC-4096 FC-1000
 AlexNet Model
 AlexNet Model
 Layer 0: Input image
 Size: 227 x 227 x 3
 Memory: 227 x 227 x 3
 AlexNet Model
 Layer 0: 227 x 227 x 3
 Layer 1: Convolution with 96 filters, size 11×11, stride 4, padding 0
 Outcome Size= 55 x 55 x 96
 (227-11)/4 + 1 = 55 is size of outcome
 Memory: 55 x 55 x 96 x 3 (because of ReLU & LRN(Local Response Normalization))
 Weights (parameters) : 11 x 11 x 3 x 96
 AlexNet Model
 Layer 1: 55 x 55 x 96
 Layer 2: Max-Pooling with 3×3 filter, stride 2
 Outcome Size= 27 x 27 x 96
 (55 – 3)/2 + 1 = 27 is size of outcome
 Memory: 27 x 27 x 96
 AlexNet Model
 Layer 2: 27 x 27 x 96
 Layer 3: Convolution with 256 filters, size 5×5, stride 1, padding 2
 Outcome Size = 27 x 27 x 256
 Original size is restored because of padding
 Memory: 27 x 27 x 256 x 3 (because of ReLU and LRN)
 Weights: 5 x 5 x 96 x 256
 AlexNet Model
 Layer 3: 27 x 27 x 256
 Layer 4: Max-Pooling with 3×3 filter, stride 2
 Outcome Size = 13 x 13 x 256
 (27 – 3)/2 + 1 = 13 is size of outcome
 Memory: 13 x 13 x 256
 AlexNet Model
 Layer 4: 13 x 13 x 256
 Layer 5: Convolution with 384 filters, size 3×3, stride 1, padding 1
 Outcome Size = 13 x 13 x 384
 the original size is restored because of padding (13+2 -3)/1 +1 =13
 Memory: 13 x 13 x 384 x 2 (because of ReLU)
 Weights: 3 x 3 x 256 x 384
 AlexNet Model
 Layer 5: 13 x 13 x 384
 Layer 6: Convolution with 384 filters, size 3×3,
stride 1, padding 1
 Outcome Size = 13 x 13 x 384
 the original size is restored because of padding
 Memory: 13 x 13 x 384 x 2 (because of ReLU)
 Weights: 3 x 3 x 384 x 384
 AlexNet Model
 Layer 6: 13 x 13 x 384
 Layer 7: Convolution with 256 filters, size 3×3, stride 1, padding 1
 Outcome Size = 13 x 13 x 256
 the original size is restored because of padding
 Memory: 13 x 13 x 256 x 2 (because of ReLU)
 Weights: 3 x 3 x 384 x 256
 AlexNet Model
 Layer 7: 13 x 13 x 256
 Layer 8: Max-Pooling with 3×3 filter, stride 2
 Outcome Size = 6 x 6 x 256
 (13 – 3)/2 + 1 = 6 is size of outcome
 Memory: 6 x 6 x 256
 AlexNet Model
 Layer 8: 6x6x256=9216 pixels are fed to FC
 Layer 9: Fully Connected with 4096 neuron
 Memory: 4096 x 3 (because of ReLU and Dropout)
 Weights: 4096 x (6 x 6 x 256)
 AlexNet Model
 Layer 9: Fully Connected with 4096 neuron
 Layer 10: Fully Connected with 4096 neuron
 Memory: 4096 x 3 (because of ReLU and Dropout)
 Weights: 4096 x 4096
 AlexNet Model
 Layer 10: Fully Connected with 4096 neuron
 Layer 11: Fully Connected with 1000 neurons
 Memory: 1000
 Weights: 4096 x 1000
 Total (label and softmax not included)
 Memory: 2.24 million
 Weights: 62.37 million
 first use of ReLU
 Alexnet used Norm layers
 Alexnet heavy used data augmentation
 Alexnet use dropout 0.5
 Alexnet batch size is 128
 Alexnet used SGD Momentum 0.9
 Alexnet used learning rate 1e-2, reduced by 10
[227x227x3] INPUT
[55x55x96] CONV1 : 96 11x11 filters at stride 4, pad 0
27x27x96] MAX POOL1 : 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons
 Implement AlexNet using TFLearn
Lecture 5: Convolutional Neural Network Models
Lecture 5: Convolutional Neural Network Models
Convolutional Neural Network
ILSVRC
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogleNet 2014)
ResNet (2015)
Conclusion
 ZFNet the winner of the competition ILSVRC 2013 with 14.8% Top-5
error rate
 ZFNet built by Matthew Zeiler and Rob Fergus
 ZFNet has the same global architecture as Alexnet, that is to say 5
convolutional layers, two fully connected layers and an output
softmax one. The differences are for example better sized
convolutional kernels.
 ZFNet used filters of size 7x7 and a decreased stride value, instead
of using 11x11 sized filters in the first layer (which is what AlexNet
implemented).
 ZFNet trained on a GTX 580 GPU for twelve days.
 Developed a visualization technique named Deconvolutional
Network “deconvnet” because it maps features to pixels.
AlexNet but:
• CONV1: change from (11x11 stride 4) to (7x7 stride 2)
• CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024,
512
Convolutional Neural Network
ILSVRC
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogleNet 2014)
ResNet (2015)
Conclusion
 Keep it deep. Keep it simple.
 VGGNet the runner up of the competition ILSVRC 2014 with 7.3% Top-5
error rate.
 VGGNet use of only 3x3 sized filters is quite different from AlexNet’s
11x11 filters in the first layer and ZFNet’s 7x7 filters.
 two 3x3 conv layers have an effective receptive field of 5x5
 Three 3x3 conv layers have an effective receptive field of 7x7
 VGGNet trained on 4 Nvidia Titan Black GPUs for two to three weeks
 Interesting to notice that the number of filters doubles after each
maxpool layer. This reinforces the idea of shrinking spatial
dimensions, but growing depth.
 VGGNet used scale jittering as one data augmentation technique
during training
 VGGNet used ReLU layers after each conv layer and trained with
batch gradient descent
Image
Conv
Conv
Pool
Conv
Conv
Pool
Conv
Conv
Conv
Pool
Conv
Conv
Conv
Pool
Conv
Conv
Conv
Pool
FC
FC
FC
Image
Low Level
Feature
Mid Level
Feature
High Level
Feature
Classifier
Input
224x224x3
Conv3-64 Conv3-64 Maxpool Conv3-128 Conv3-128
Maxpool
Conv3-256
Conv3-256
Conv3-256
Maxpool
Conv3-512
Conv3-512 Conv3-512 Maxpool Conv3-512 Conv3-512 Conv3-512
Maxpool
FC-4096
FC-4096
FC-1000
VGGNet 16
VGGNet 16
Input
224x224x3
Conv3-64 Conv3-64 Maxpool Conv3-128 Conv3-128 Maxpool
Conv3-256
Conv3-256
Conv3-256
Conv3-256
Maxpool
Conv3-512
Conv3-512
Conv3-512 Conv3-512 Maxpool Conv3-512 Conv3-512 Conv3-512 Conv3-512
Maxpool
FC-4096
FC-4096
FC-1000
VGGNet 19
 Implement VGGNet16 using TFLearn
Lecture 5: Convolutional Neural Network Models
Lecture 5: Convolutional Neural Network Models
Lecture 5: Convolutional Neural Network Models
Convolutional Neural Network
ILSVRC
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogleNet 2014)
ResNet (2015)
Conclusion
 GoogleNet is the winner of the competition ILSVRC 2014 with 6.7%
Top-5 error rate.
 GoogleNet Trained on “a few high-end GPUs with in a week”
 GoogleNet uses 12x fewer parameters than AlexNet
 GoogleNet use an average pool instead of fully connected layers, to
go from a 7x7x1024 volume to a 1x1x1024 volume. This saves a
huge number of parameters.
 GoogleNet used 9 Inception modules in the whole architecture
 This 1x1 convolutions (bottleneck convolutions) allow to
control/reduce the depth dimension which greatly reduces the
number of used parameters due to removal of redundancy of
correlated filters.
 GoogleNet has 22 Layers deep network
 GoogleNet use inexpensive Conv1 to compute reduction before the
expensive Conv3 and Conv5
 Conv1 follow by Relu to reduce overfitting
 Inception module
Input
224x224x3
Conv7/2-64 Maxpool3/2 Conv1
Conv3/1-
192
Maxpool3/2
Inception3a
256
Inception3b
480
Maxpool3/2
Inception4a
512
Inception4b
512
Inception4c
512
Inception4d
528
Inception4e
832
Maxpool3/2
Inception5a
832
Inception5b
1024
Avgpool7/1
Dropout
40%
FC-1000
Softmax-
1000
GoogleNet
Lecture 5: Convolutional Neural Network Models
Type
Size/
Stride
Output
Depth
Conv1
#
Conv3
Conv3
#
Conv5
Conv5
Pool
Param
Ops
Conv 7x7/2 112x112x64 1 - - - - - - 2.7K 34M
Maxpool 3x3/2 56x56x64 0 - - - - - - - -
Conv 3x3/1 56x56x192 2 - 64 192 - - - 112K 360M
Maxpool 3x3/2 28x28x192 0 - - - - - - - -
Inception 3a - 28x28x256 2 64 96 128 16 32 32 159K 128M
Inception 3b - 28x28x480 2 128 128 192 32 96 64 380K 304M
Maxpool 3x3/2 14x14x480 0 - - - - - - - -
Inception 4a - 14x14x512 2 192 96 208 16 48 64 364K 73M
Inception 4b - 14x14x512 2 160 112 224 24 64 64 437K 88M
Inception 4c - 14x14x512 2 128 128 256 24 64 64 463K 100M
Inception 4d - 14x14x528 2 112 144 288 32 64 64 580K 119M
Type
Size/
Stride
Output
Depth
Conv1
#
Conv3
Conv3
#
Conv5
Conv5
Pool
Param
Ops
Inception 4e - 14x14x832 2 256 160 320 32 128 128 840K 170M
Maxpool 3x3/2 7x7x832 0 - - - - - - - -
Inception 5a - 7x7x832 2 256 160 320 32 128 128 1072K 54M
Inception 5b - 7x7x1024 2 384 192 384 48 128 128 1388K 71M
Avgpool 7x7/1 1x1x1024 0 - - - - - - - -
Dropout .4 - 1x1x1024 0 - - - - - - - -
Linear - 1x1x1024 1 - - - - - - 1000K 1M
Softmax - 1x1x1024 0 - - - - - - - -
Total Layers 22
Convolutional Neural Network
ILSVRC
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogleNet 2014)
ResNet (2015)
Conclusion
 ResNet the winner of the competition ILSVRC 2015 with 3.6% Top-5
error rate.
 ResNet mainly inspired by the philosophy of VGGNet.
 ResNet proposed a residual learning approach to ease the difficulty
of training deeper networks. Based on the design ideas of Batch
Normalization (BN), small convolutional kernels.
 ResNet is a new 152 layer network architecture.
 ResNet Trained on an 8 GPU machine for two to three weeks
 The idea of Batch Normalization, instead of just normalizing the
inputs to the network, BN normalize the inputs to layers within the
network. It's called "batch" normalization because during training,
we normalize each layer's inputs by using the mean and variance
of the values in the current mini-batch.
 Residual network
 Keys:
 No max pooling
 No hidden fc
 No dropout
 Basic design (VGG-style)
 All 3x3 conv (almost)
 Batch normalization
Conv
Layers
Preserving base information
can treat
perturbation
 Residual block
 Residual Bottleneck consist of a 1×1
layer for reducing dimension, a 3×3
layer, and a 1×1 layer for restoring
dimension.
 Residual Bottleneck used for deep
deep network layers.
 Residual block
Conv3-
64
Conv3-
64
2Conv3-
64
Image
Conv7/
2-64
Pool/2
Conv3-
64
Conv3-
64
Conv3-
64
Conv3-
64
Conv3/
2-128
Conv3-
128
Conv3-
128
Conv3-
128
Conv3/
2-256
Conv3-
256
Conv3-
256
Conv3-
256
Conv3/
2-512
Conv3-
512
Conv3-
512
Conv3-
512
Avg
pool
FC-1000
ResNet 18
Image
Conv7/2-
64
Pool/2
2Conv3-
64
2Conv3-
64
2Conv3/2-
128
2Conv3-
128
2Conv3/2-
256
2Conv3-
256
2Conv3/2-
512
2Conv3-
512
Avg pool FC-1000 ResNet 18
Image
Conv7/2
-64
Pool/2
Conv3-
64
Conv3-
64
Conv3-
64
Conv3-
64
Conv3-
64
Conv3-
64
Conv3/2
-128
Conv3-
128
Conv3-
128
Conv3-
128
Conv3-
128
Conv3-
128
Conv3-
128
Conv3-
128
Conv3/2
-256
Conv3-
256
Conv3-
256
Conv3-
256
Conv3-
256
Conv3-
256
Conv3-
256
Conv3-
256
Conv3-
256
Conv3-
256
Conv3-
256
Conv3-
256
Conv3/2
-512
Conv3-
512
Conv3-
512
Conv3-
512
Conv3-
512
Conv3-
512
Avg pool FC-1000
ResNet 34
Image
Conv7/2-
64
Pool/2
2Conv3-
64
2Conv3-
64
2Conv3-
64
2Conv3/2
-128
2Conv3-
128
2Conv3-
128
2Conv3-
128
2Conv3/2
-256
2Conv3-
256
2Conv3-
256
2Conv3-
256
2Conv3-
256
2Conv3-
256
2Conv3/2
-512
2Conv3-
512
2Conv3-
512
Avg pool
FC-1000
ResNet 34
Image
Conv7/2-
64
Pool/2
2Conv3-
64
2Conv3-
128
2Conv3-
256
2Conv3-
512
Avg pool
FC-1000
ResNet 18 2 2 2 2
ResNet 34 3 4 6 3
 Residual Bottleneck
Conv1-64 Conv3-64
Conv1-
256
Conv1-64
Conv3-64
Conv1-256
Image
Conv7/2-
64
Pool/2 Conv1-64 Conv3-64
Conv1-
256
Conv1-64 Conv3-64
Conv1-
256
Conv1-64
Conv3-64
Conv1-
256
Conv1/2-
128
Conv3-
128
Conv1-
512
Conv1-
128
Conv3-
128
Conv1-
512
Conv1-
128
Conv3-
128
Conv1-
512
Conv1-
128
Conv3-
128
Conv1-
512
Conv1/2-
256
Conv3-
256
Conv1-
1024
Conv1-
256
Conv3-
256
Conv1-
1024
Conv1-
256
Conv3-
256
Conv1-
1024
Conv1-
256
Conv3-
256
Conv1-
1024
Conv1-
256
Conv3-
256
Conv1-
1024
Conv1-
256
Conv3-
256
Conv1-
1024
Conv1/2-
512
Conv3-
512
Conv1-
2048
Conv1-
512
Conv3-
512
Conv1-
2048
Conv1-
512
Conv3-
512
Conv1-
2048
Avg pool
FC-1000
ResNet 50
Image Conv7/2-64 Pool/2
Conv1-64
Conv3-64
Conv1-256
Conv1-64
Conv3-64
Conv1-256
Conv1-64
Conv3-64
Conv1-256
Conv1/2-128
Conv3-128
Conv1-512
Conv1-128
Conv3-128
Conv1-512
Conv1-128
Conv3-128
Conv1-512
Conv1-128
Conv3-128
Conv1-512
Conv1/2-256
Conv3-256
Conv1-1024
Conv1-256
Conv3-256
Conv1-1024
Conv1-256
Conv3-256
Conv1-1024
Conv1-256
Conv3-256
Conv1-1024
Conv1-256
Conv3-256
Conv1-1024
Conv1-256
Conv3-256
Conv1-1024
Conv1/2-512
Conv3-512
Conv1-2048
Conv1-512
Conv3-512
Conv1-2048
Conv1-512
Conv3-512
Conv1-2048
Avg pool
FC-1000
ResNet 50
Image Conv7/2-64 Pool/2
Conv1-64
Conv3-64
Conv1-256
Conv1-128
Conv3-128
Conv1-512
Conv1-256
Conv3-256
Conv1-1024
Conv1-512
Conv3-512
Conv1-2048
Avg pool
FC-1000
ResNet 50 3 4 6 3
ResNet 101 3 4 23 3
ResNet 152 3 8 36 3
Lecture 5: Convolutional Neural Network Models
Layer Output 18-Layer 34-Layer 50-Layer 101-Layer 152-Layer
Conv-1 112x112 7x7/2-64
Conv-2 56x56
3x3 Maxpooling/2
𝟐𝐱
𝟑𝐱𝟑, 𝟔𝟒
𝟑𝐱𝟑, 𝟔𝟒
𝟑𝐱
𝟑𝐱𝟑, 𝟔𝟒
𝟑𝐱𝟑, 𝟔𝟒
𝟑𝐱
𝟏𝐱𝟏, 𝟔𝟒
𝟑𝐱𝟑𝐱𝟔𝟒
𝟏𝐱𝟏𝐱𝟐𝟓𝟔
𝟑𝐱
𝟏𝐱𝟏, 𝟔𝟒
𝟑𝐱𝟑𝐱𝟔𝟒
𝟏𝐱𝟏𝐱𝟐𝟓𝟔
𝟑𝐱
𝟏𝐱𝟏, 𝟔𝟒
𝟑𝐱𝟑𝐱𝟔𝟒
𝟏𝐱𝟏𝐱𝟐𝟓𝟔
Conv-3 28x28 𝟐𝐱
𝟑𝐱𝟑, 𝟏𝟐𝟖
𝟑𝐱𝟑, 𝟏𝟐𝟖
𝟒𝐱
𝟑𝐱𝟑, 𝟏𝟐𝟖
𝟑𝐱𝟑, 𝟏𝟐𝟖
𝟒𝐱
𝟏𝐱𝟏, 𝟏𝟐𝟖
𝟑𝐱𝟑𝐱𝟏𝟐𝟖
𝟏𝐱𝟏𝐱𝟓𝟏𝟐
𝟒𝐱
𝟏𝐱𝟏, 𝟏𝟐𝟖
𝟑𝐱𝟑𝐱𝟏𝟐𝟖
𝟏𝐱𝟏𝐱𝟓𝟏𝟐
𝟖𝐱
𝟏𝐱𝟏, 𝟏𝟐𝟖
𝟑𝐱𝟑𝐱𝟏𝟐𝟖
𝟏𝐱𝟏𝐱𝟓𝟏𝟐
Conv-4 14x14 𝟐𝐱
𝟑𝐱𝟑, 𝟐𝟓𝟔
𝟑𝐱𝟑, 𝟐𝟓𝟔
𝟔𝐱
𝟑𝐱𝟑, 𝟐𝟓𝟔
𝟑𝐱𝟑, 𝟐𝟓𝟔
𝟔𝐱
𝟏𝐱𝟏, 𝟐𝟓𝟔
𝟑𝐱𝟑𝐱𝟐𝟓𝟔
𝟏𝐱𝟏𝐱𝟏𝟎𝟐𝟒
𝟐𝟑𝐱
𝟏𝐱𝟏, 𝟐𝟓𝟔
𝟑𝐱𝟑𝐱𝟐𝟓𝟔
𝟏𝐱𝟏𝐱𝟏𝟎𝟐𝟒
𝟑𝟔𝐱
𝟏𝐱𝟏, 𝟐𝟓𝟔
𝟑𝐱𝟑𝐱𝟐𝟓𝟔
𝟏𝐱𝟏𝐱𝟏𝟎𝟐𝟒
Conv-5 7x7 𝟐𝐱
𝟑𝐱𝟑, 𝟓𝟏𝟐
𝟑𝐱𝟑, 𝟓𝟏𝟐
𝟑𝐱
𝟑𝐱𝟑, 𝟓𝟏𝟐
𝟑𝐱𝟑, 𝟓𝟏𝟐
𝟑𝐱
𝟏𝐱𝟏, 𝟓𝟏𝟐
𝟑𝐱𝟑𝐱𝟓𝟏𝟐
𝟏𝐱𝟏𝐱𝟐𝟎𝟒𝟖
𝟑𝐱
𝟏𝐱𝟏, 𝟓𝟏𝟐
𝟑𝐱𝟑𝐱𝟓𝟏𝟐
𝟏𝐱𝟏𝐱𝟐𝟎𝟒𝟖
𝟑𝐱
𝟏𝐱𝟏, 𝟓𝟏𝟐
𝟑𝐱𝟑𝐱𝟓𝟏𝟐
𝟏𝐱𝟏𝐱𝟐𝟎𝟒𝟖
1x1 Avgpool-FC1000-Softmax
Flops 𝟏. 𝟖𝐱𝟏𝟎𝟗 𝟑. 𝟔𝐱𝟏𝟎𝟗 𝟑. 𝟖𝐱𝟏𝟎𝟗 𝟕. 𝟔𝐱𝟏𝟎𝟗 𝟏𝟏. 𝟑𝐱𝟏𝟎𝟗
 Pre Activation ResNet
 Paper: Identity Mappings in
Deep Residual Networks
Original Proposed
Lecture 5: Convolutional Neural Network Models
 Implement ResNet using TFLearn
Lecture 5: Convolutional Neural Network Models
Lecture 5: Convolutional Neural Network Models
Lecture 5: Convolutional Neural Network Models
Convolutional Neural Network
ILSVRC
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogleNet 2014)
ResNet (2015)
Conclusion
26.2
15.3 14.8
7.3 6.7
3.6
0
5
10
15
20
25
30
Before 2012 AlexNet 2012 ZFNet 2013 VGGNet 2014 GoogleNet 2014 ResNet 2015
Lecture 5: Convolutional Neural Network Models
Not The End
Lecture 5: Convolutional Neural Network Models
facebook.com/mloey
mohamedloey@gmail.com
twitter.com/mloey
linkedin.com/in/mloey
mloey@fci.bu.edu.eg
mloey.github.io
www.YourCompany.com
© 2020 Companyname PowerPoint Business Theme. All Rights Reserved.
THANKS FOR
YOUR TIME

More Related Content

PDF
Artificial Neural Networks Lect3: Neural Network Learning rules
PDF
DMTM Lecture 15 Clustering evaluation
PPTX
Deep learning: Mathematical Perspective
PPTX
AlexNet(ImageNet Classification with Deep Convolutional Neural Networks)
PDF
Recurrent Neural Networks, LSTM and GRU
PPTX
AlexNet.pptx
PPTX
PDF
OPTIMIZATION AS A MODEL FOR FEW-SHOT LEARNING
Artificial Neural Networks Lect3: Neural Network Learning rules
DMTM Lecture 15 Clustering evaluation
Deep learning: Mathematical Perspective
AlexNet(ImageNet Classification with Deep Convolutional Neural Networks)
Recurrent Neural Networks, LSTM and GRU
AlexNet.pptx
OPTIMIZATION AS A MODEL FOR FEW-SHOT LEARNING

What's hot (20)

PPTX
Activation functions
PDF
Seq2Seq (encoder decoder) model
PPTX
Convolutional Neural Network and Its Applications
PPTX
Recurrent Neural Networks (RNNs)
PDF
Densenet CNN
PDF
Optimizers
PPTX
Convolutional Neural Networks
PPTX
DeepLab V3+: Encoder-Decoder with Atrous Separable Convolution for Semantic I...
PPTX
cnn ppt.pptx
PDF
Autoencoders
PPTX
Activation function
PPTX
Batch normalization presentation
PDF
Recursive Neural Networks
PPTX
AlexNet, VGG, GoogleNet, Resnet
PDF
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
PPTX
Statistical learning
PPTX
Gradient descent method
PDF
GAN - Theory and Applications
PPTX
Traveling Salesman Problem
PPTX
AlexNet
Activation functions
Seq2Seq (encoder decoder) model
Convolutional Neural Network and Its Applications
Recurrent Neural Networks (RNNs)
Densenet CNN
Optimizers
Convolutional Neural Networks
DeepLab V3+: Encoder-Decoder with Atrous Separable Convolution for Semantic I...
cnn ppt.pptx
Autoencoders
Activation function
Batch normalization presentation
Recursive Neural Networks
AlexNet, VGG, GoogleNet, Resnet
PR-169: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Statistical learning
Gradient descent method
GAN - Theory and Applications
Traveling Salesman Problem
AlexNet
Ad

Similar to Lecture 5: Convolutional Neural Network Models (20)

PDF
Convolutional Neural Network Models - Deep Learning
PDF
Cs231n 2017 lecture9 CNN Architecture
PDF
Introduction to CNN with Application to Object Recognition
PDF
Case Study of Convolutional Neural Network
PPTX
CNN-AlexNet-ResNet presentation describing their architectures
PPTX
cs231n_2017_AI lecture9-converted.pptx
PPTX
Computer Vision for Beginners
PPTX
ImageNet classification with deep convolutional neural networks(2012)
PDF
Hardware Acceleration for Machine Learning
PDF
State-of-the-art Image Processing across all domains
PDF
Finding the best solution for Image Processing
ODP
Convolutional Neural Networks
PPTX
2017 (albawi-alkabi)image-net classification with deep convolutional neural n...
PDF
DA FDAFDSasd
PPTX
Image Classification using deep learning
PDF
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
PDF
PDF
Modern Convolutional Neural Network techniques for image segmentation
PPTX
adlkchiuabcndjhvkajnfdkjhcfatgcbajkbcyudfctauygb
PDF
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf
Convolutional Neural Network Models - Deep Learning
Cs231n 2017 lecture9 CNN Architecture
Introduction to CNN with Application to Object Recognition
Case Study of Convolutional Neural Network
CNN-AlexNet-ResNet presentation describing their architectures
cs231n_2017_AI lecture9-converted.pptx
Computer Vision for Beginners
ImageNet classification with deep convolutional neural networks(2012)
Hardware Acceleration for Machine Learning
State-of-the-art Image Processing across all domains
Finding the best solution for Image Processing
Convolutional Neural Networks
2017 (albawi-alkabi)image-net classification with deep convolutional neural n...
DA FDAFDSasd
Image Classification using deep learning
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
Modern Convolutional Neural Network techniques for image segmentation
adlkchiuabcndjhvkajnfdkjhcfatgcbajkbcyudfctauygb
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf
Ad

More from Mohamed Loey (20)

PDF
Lecture 6: Deep Learning Applications
PDF
Lecture 4: Deep Learning Frameworks
PDF
Lecture 4: How it Works: Convolutional Neural Networks
PPTX
Lecture 3: Convolutional Neural Networks
PDF
Lecture 2: Artificial Neural Network
PDF
Lecture 1: Deep Learning for Computer Vision
PDF
Design of an Intelligent System for Improving Classification of Cancer Diseases
PDF
Computer Security - CCNA Security - Lecture 2
PDF
Computer Security - CCNA Security - Lecture 1
PDF
Algorithms Lecture 8: Pattern Algorithms
PDF
Algorithms Lecture 7: Graph Algorithms
PDF
Algorithms Lecture 6: Searching Algorithms
PDF
Algorithms Lecture 5: Sorting Algorithms II
PDF
Algorithms Lecture 4: Sorting Algorithms I
PDF
Algorithms Lecture 3: Analysis of Algorithms II
PDF
Algorithms Lecture 2: Analysis of Algorithms I
PDF
Algorithms Lecture 1: Introduction to Algorithms
PDF
Deep Learning - Overview of my work II
PDF
Computer Security Lecture 7: RSA
PDF
Computer Security Lecture 5: Simplified Advanced Encryption Standard
Lecture 6: Deep Learning Applications
Lecture 4: Deep Learning Frameworks
Lecture 4: How it Works: Convolutional Neural Networks
Lecture 3: Convolutional Neural Networks
Lecture 2: Artificial Neural Network
Lecture 1: Deep Learning for Computer Vision
Design of an Intelligent System for Improving Classification of Cancer Diseases
Computer Security - CCNA Security - Lecture 2
Computer Security - CCNA Security - Lecture 1
Algorithms Lecture 8: Pattern Algorithms
Algorithms Lecture 7: Graph Algorithms
Algorithms Lecture 6: Searching Algorithms
Algorithms Lecture 5: Sorting Algorithms II
Algorithms Lecture 4: Sorting Algorithms I
Algorithms Lecture 3: Analysis of Algorithms II
Algorithms Lecture 2: Analysis of Algorithms I
Algorithms Lecture 1: Introduction to Algorithms
Deep Learning - Overview of my work II
Computer Security Lecture 7: RSA
Computer Security Lecture 5: Simplified Advanced Encryption Standard

Recently uploaded (20)

PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Computing-Curriculum for Schools in Ghana
PDF
Classroom Observation Tools for Teachers
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Pharma ospi slides which help in ospi learning
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Lesson notes of climatology university.
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Trump Administration's workforce development strategy
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Complications of Minimal Access Surgery at WLH
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Computing-Curriculum for Schools in Ghana
Classroom Observation Tools for Teachers
Anesthesia in Laparoscopic Surgery in India
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Abdominal Access Techniques with Prof. Dr. R K Mishra
human mycosis Human fungal infections are called human mycosis..pptx
Pharma ospi slides which help in ospi learning
Weekly quiz Compilation Jan -July 25.pdf
01-Introduction-to-Information-Management.pdf
Lesson notes of climatology university.
GDM (1) (1).pptx small presentation for students
Trump Administration's workforce development strategy
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Final Presentation General Medicine 03-08-2024.pptx
Complications of Minimal Access Surgery at WLH
Chinmaya Tiranga quiz Grand Finale.pdf
Supply Chain Operations Speaking Notes -ICLT Program
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx

Lecture 5: Convolutional Neural Network Models