This document discusses linear programming techniques for managerial decision making. Linear programming can determine the optimal allocation of scarce resources among competing demands. It consists of linear objectives and constraints where variables have a proportionate relationship. Essential elements of a linear programming model include limited resources, objectives to maximize or minimize, linear relationships between variables, homogeneity of products/resources, and divisibility of resources/products. The linear programming problem is formulated by defining variables and constraints, with the objective of optimizing a linear function subject to the constraints. It is then solved using graphical or simplex methods through an iterative process to find the optimal solution.