This document discusses machine learning algorithms for image classification using five different classification schemes. It summarizes the mathematical models behind each classification algorithm, including Nearest Class Centroid classifier, Nearest Sub-Class Centroid classifier, k-Nearest Neighbor classifier, Perceptron trained using Backpropagation, and Perceptron trained using Mean Squared Error. It also describes two datasets used in the experiments - the MNIST dataset of handwritten digits and the ORL face recognition dataset. The performance of the five classification schemes are compared on these datasets.