This document discusses the implementation of the K-means clustering algorithm using R programming. It begins with an introduction to machine learning and the different types of machine learning algorithms. It then focuses on the K-means algorithm, describing the steps of the algorithm and how it is used for cluster analysis in unsupervised learning. The document then demonstrates implementing K-means clustering in R by generating sample data, initializing random centroids, calculating distances between data points and centroids, assigning data points to clusters based on closest centroid, recalculating centroids, and plotting the results. It concludes that K-means clustering is useful for gaining insights into dataset structure and was successfully implemented in R.