SlideShare a Scribd company logo
manifold learning
with applications to object recognition




Advanced Perception
David R. Thompson
agenda
1. why learn manifolds?

2. Isomap

3. LLE

4. applications
types of manifolds




exhaust                       Sir Walter
manifold                   Synnot Manifold
                             1849-1928


           low-D surface
           embedded in
           high-D space
manifold learning
Find a low-D basis for
describing high-D data.

X → X' S.T.
dim(X') << dim(X)

uncovers the intrinsic
dimensionality
(invertible)
manifolds in vision
plenoptic function / motion / occlusion
manifolds in vision
  appearance variation




images from hormel corp.
manifolds in vision
  deformation




images from www.golfswingphotos.com
why do manifold learning?
1. data compression

2. “curse of dimensionality”

3. de-noising

4. visualization

5. reasonable distance metrics *
reasonable distance metrics
reasonable distance metrics
reasonable distance metrics



             ?
reasonable distance metrics



                ?



       linear interpolation
reasonable distance metrics



               ?



     manifold interpolation
agenda
1. why learn manifolds?

2. Isomap

3. LLE

4. applications
Isomap
For n data points, and a distance matrix D,


                       i
               Dij =

                              j

...we can construct a m-dimensional space to
preserve inter-point distances by using the top
eigenvectors of D scaled by their eigenvalues.

       yi= [    λ1v1i ,    λ2v2i , ... , λmvmi ]
Isomap

 Infer a distance matrix using
 distances along the
 manifold.
Isomap
1. Build a sparse graph with K-nearest neighbors




Dg =



(distance matrix is
sparse)
Isomap
2. Infer other interpoint distances by finding
shortest paths on the graph (Dijkstra's
algorithm).



Dg =
Isomap
3. Build a low-D embedded space to best
preserve the complete distance matrix.

Error function:                   inner product
                                  distances in new
                  inner product
                                  coordinate
                  distances in
                                  system
                  graph
                                            L2 norm




Solution – set points Y to top eigenvectors of Dg
Isomap
shortest-distance on a graph is easy to
compute
Isomap results: hands
Isomap: pro and con
- preserves global structure

- few free parameters

- sensitive to noise, noise edges

- computationally expensive (dense
matrix eigen-reduction)
Locally Linear Embedding
  Find a mapping to preserve
  local linear relationships
  between neighbors
Locally Linear Embedding
LLE: Two key steps
1. Find weight matrix W of linear
coefficients:



Enforce sum-to-one constraint with the
Lagrange Multiplier:
LLE: Two key steps
2. Find projected vectors Y to minimize
reconstruction error




must solve for whole dataset
simultaneously
LLE: Two key steps



We add constraints to prevent
multiple / degenerate solutions:
LLE: Two key steps
cost function becomes:




the optimal embedded coordinates are
given by bottom m+1 eigenvectors of
the matrix M
LLE: Result
preserves local
topology
                  PCA




                  LLE
LLE: pro and con

- no local minima, one free parameter

- incremental & fast

- simple linear algebra operations

- can distort global structure
Others you may encounter
●
    Laplacian Eigenmaps (Belkin 2001)
     ●
       spectral method similar to LLE
     ●
       better preserves clusters in data
●
    Kernel PCA
●
 Kohonen Self-Organizing Map
(Kohonen, 1990)
     ●
       iterative algorithm fits a network of pre-
       defined connectivity
     ●
       simple, fast for on-line learning
     ●
       local minima
     ●
       lacking theoretical justification
No Free Lunch
the “curvier” your
manifold, the denser your
data must be

           bad              OK!
conclusions
Manifold learning is a key tool in your
object recognition toolbox

A formal framework for many different
ad-hoc object recognition techniques

More Related Content

PDF
What is the Expectation Maximization (EM) Algorithm?
PPTX
【DL輪読会】DayDreamer: World Models for Physical Robot Learning
PDF
Nonlinear dimension reduction
PDF
Visualizing Data Using t-SNE
PDF
2値分類・多クラス分類
PPTX
Rainbow
ZIP
今さら聞けないカーネル法とサポートベクターマシン
PPTX
Curriculum Learning (関東CV勉強会)
What is the Expectation Maximization (EM) Algorithm?
【DL輪読会】DayDreamer: World Models for Physical Robot Learning
Nonlinear dimension reduction
Visualizing Data Using t-SNE
2値分類・多クラス分類
Rainbow
今さら聞けないカーネル法とサポートベクターマシン
Curriculum Learning (関東CV勉強会)

What's hot (20)

PDF
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
PDF
深層生成モデルを用いたマルチモーダル学習
PDF
東京都市大学 データ解析入門 3 行列分解 2
PDF
Dimensionality reduction with UMAP
PPTX
[DL輪読会] マルチエージェント強化学習と心の理論
PDF
Anomaly detection survey
PDF
はじめてのパターン認識8章サポートベクトルマシン
PDF
ICLR2020の異常検知論文の紹介 (2019/11/23)
PDF
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
PDF
スペクトラルグラフ理論入門
PDF
コンピュータビジョンの観点から見たAIの公平性
PDF
A Brief Survey of Schrödinger Bridge (Part I)
PDF
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
PDF
Explicit Density Models
PDF
敵対的学習に対するラデマッハ複雑度
PDF
(2022年3月版)深層学習によるImage Classificaitonの発展
PDF
(文献紹介) 画像復元:Plug-and-Play ADMM
PPTX
【DL輪読会】Transformers are Sample Efficient World Models
PDF
テンソル多重線形ランクの推定法について(Estimation of Multi-linear Tensor Rank)
PDF
文献紹介:Image Segmentation Using Deep Learning: A Survey
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
深層生成モデルを用いたマルチモーダル学習
東京都市大学 データ解析入門 3 行列分解 2
Dimensionality reduction with UMAP
[DL輪読会] マルチエージェント強化学習と心の理論
Anomaly detection survey
はじめてのパターン認識8章サポートベクトルマシン
ICLR2020の異常検知論文の紹介 (2019/11/23)
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
スペクトラルグラフ理論入門
コンピュータビジョンの観点から見たAIの公平性
A Brief Survey of Schrödinger Bridge (Part I)
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
Explicit Density Models
敵対的学習に対するラデマッハ複雑度
(2022年3月版)深層学習によるImage Classificaitonの発展
(文献紹介) 画像復元:Plug-and-Play ADMM
【DL輪読会】Transformers are Sample Efficient World Models
テンソル多重線形ランクの推定法について(Estimation of Multi-linear Tensor Rank)
文献紹介:Image Segmentation Using Deep Learning: A Survey
Ad

Viewers also liked (15)

PDF
The Gaussian Process Latent Variable Model (GPLVM)
PPTX
Dimension Reduction And Visualization Of Large High Dimensional Data Via Inte...
PPT
Topic Models
PDF
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
PDF
関東CV勉強会 Kernel PCA (2011.2.19)
PPTX
Self-organizing map
PDF
[Kim+ ICML2012] Dirichlet Process with Mixed Random Measures : A Nonparametri...
PDF
WSDM2016読み会 Collaborative Denoising Auto-Encoders for Top-N Recommender Systems
PDF
Visualizing Data Using t-SNE
PDF
AutoEncoderで特徴抽出
PDF
LDA入門
PDF
非線形データの次元圧縮 150905 WACODE 2nd
PDF
CVIM#11 3. 最小化のための数値計算
PDF
Numpy scipyで独立成分分析
PDF
Hyperoptとその周辺について
The Gaussian Process Latent Variable Model (GPLVM)
Dimension Reduction And Visualization Of Large High Dimensional Data Via Inte...
Topic Models
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
関東CV勉強会 Kernel PCA (2011.2.19)
Self-organizing map
[Kim+ ICML2012] Dirichlet Process with Mixed Random Measures : A Nonparametri...
WSDM2016読み会 Collaborative Denoising Auto-Encoders for Top-N Recommender Systems
Visualizing Data Using t-SNE
AutoEncoderで特徴抽出
LDA入門
非線形データの次元圧縮 150905 WACODE 2nd
CVIM#11 3. 最小化のための数値計算
Numpy scipyで独立成分分析
Hyperoptとその周辺について
Ad

Similar to Manifold learning with application to object recognition (20)

PDF
Fundamental of deep learning
PDF
Understanding Convolutional Neural Networks
PPTX
PPTX
Deep learning from a novice perspective
PDF
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
PPTX
Deep learning (2)
PPTX
Thesis Presentation
PDF
Paper id 24201464
PDF
Using A Application For A Desktop Application
PDF
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
PDF
Convolutional Neural Networks (CNN)
PDF
Feedforward Networks and Deep Learning Module-02.pdf
PDF
Presentation v3.2
PDF
Presentation v3.2
PPTX
Online learning, Vowpal Wabbit and Hadoop
PPTX
Semantic Mapping of Road Scenes
PPT
deep learning UNIT-1 Introduction Part-1.ppt
PPTX
Android and Deep Learning
PPT
lec6a.ppt
PDF
BriefHistoryTransformerstransformers.pdf
Fundamental of deep learning
Understanding Convolutional Neural Networks
Deep learning from a novice perspective
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
Deep learning (2)
Thesis Presentation
Paper id 24201464
Using A Application For A Desktop Application
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Convolutional Neural Networks (CNN)
Feedforward Networks and Deep Learning Module-02.pdf
Presentation v3.2
Presentation v3.2
Online learning, Vowpal Wabbit and Hadoop
Semantic Mapping of Road Scenes
deep learning UNIT-1 Introduction Part-1.ppt
Android and Deep Learning
lec6a.ppt
BriefHistoryTransformerstransformers.pdf

More from zukun (20)

PDF
My lyn tutorial 2009
PDF
ETHZ CV2012: Tutorial openCV
PDF
ETHZ CV2012: Information
PDF
Siwei lyu: natural image statistics
PDF
Lecture9 camera calibration
PDF
Brunelli 2008: template matching techniques in computer vision
PDF
Modern features-part-4-evaluation
PDF
Modern features-part-3-software
PDF
Modern features-part-2-descriptors
PDF
Modern features-part-1-detectors
PDF
Modern features-part-0-intro
PDF
Lecture 02 internet video search
PDF
Lecture 01 internet video search
PDF
Lecture 03 internet video search
PDF
Icml2012 tutorial representation_learning
PPT
Advances in discrete energy minimisation for computer vision
PDF
Gephi tutorial: quick start
PDF
EM algorithm and its application in probabilistic latent semantic analysis
PDF
Object recognition with pictorial structures
PDF
Iccv2011 learning spatiotemporal graphs of human activities
My lyn tutorial 2009
ETHZ CV2012: Tutorial openCV
ETHZ CV2012: Information
Siwei lyu: natural image statistics
Lecture9 camera calibration
Brunelli 2008: template matching techniques in computer vision
Modern features-part-4-evaluation
Modern features-part-3-software
Modern features-part-2-descriptors
Modern features-part-1-detectors
Modern features-part-0-intro
Lecture 02 internet video search
Lecture 01 internet video search
Lecture 03 internet video search
Icml2012 tutorial representation_learning
Advances in discrete energy minimisation for computer vision
Gephi tutorial: quick start
EM algorithm and its application in probabilistic latent semantic analysis
Object recognition with pictorial structures
Iccv2011 learning spatiotemporal graphs of human activities

Recently uploaded (20)

PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Computing-Curriculum for Schools in Ghana
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Trump Administration's workforce development strategy
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Complications of Minimal Access Surgery at WLH
PDF
Weekly quiz Compilation Jan -July 25.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
01-Introduction-to-Information-Management.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
master seminar digital applications in india
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Microbial diseases, their pathogenesis and prophylaxis
Computing-Curriculum for Schools in Ghana
O7-L3 Supply Chain Operations - ICLT Program
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Trump Administration's workforce development strategy
Final Presentation General Medicine 03-08-2024.pptx
Complications of Minimal Access Surgery at WLH
Weekly quiz Compilation Jan -July 25.pdf
GDM (1) (1).pptx small presentation for students
01-Introduction-to-Information-Management.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
human mycosis Human fungal infections are called human mycosis..pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Orientation - ARALprogram of Deped to the Parents.pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Chinmaya Tiranga quiz Grand Finale.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
master seminar digital applications in india
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx

Manifold learning with application to object recognition