The document summarizes two papers about MapReduce frameworks for cloud computing. The first paper describes Hadoop, which uses MapReduce and HDFS to process large amounts of distributed data across clusters. HDFS stores data across cluster nodes in a fault-tolerant manner, while MapReduce splits jobs into parallel map and reduce tasks. The second paper discusses P2P-MapReduce, which allows for a dynamic cloud environment where nodes can join and leave. It uses a peer-to-peer model where nodes can be masters or slaves, and maintains backup masters to prevent job loss if the primary master fails.