SlideShare a Scribd company logo
Program 1:
clear all;close all;clc;clf;
t=0:0.01*pi:4*pi;
x=sin(t);
y=x;
z=x;
n=length(y);
for i=1:n
if (x(i)<0)
y(i)=0;
z(i)=-1*z(i);
end
end
u=figure(1);
set(u,'color','w')
subplot 221
plot(t,x)
title('input:sinusoidal wave')
subplot 222
plot(t,y)
title('half wave rectifier')
subplot 223
plot(t,z)
title('full wave rectifier')
subplot 224
plot(t,z,'--')
hold on
line([pi/2 3*(pi/2)-0.5],[1 -1*sin(3*(pi/2)-
0.5)]);
line([3*pi/2 5*(pi/2)-0.5],[1 1*sin(5*(pi/2)-
0.5)]);
line([5*pi/2 7*(pi/2)-0.5],[1 -1*sin(7*(pi/2)-
0.5)]);
title('smoothed rectifier signal')
Program 2:
clc;close all;clear all;
t=0:0.1*pi:2*pi;
n=length(t);
r=0.5*ones(1,n);
r1=ones(1,n);
[x y]=pol2cart(t,r);
[x1 y1]=pol2cart(t,r1);
x2=x1+1;
e=figure(1)
set(e,'color','w');
subplot 221
plot(x,y)
title('radius=0.5m')
axis([-3 3 -3 3]);
subplot 222
plot(x1,y1)
title('radius=1m')
0 5 10 15
-1
-0.5
0
0.5
1
input:sinusoidal wave
0 5 10 15
0
0.5
1
half wave rectifier
0 5 10 15
0
0.5
1
full wave rectifier
0 5 10 15
0
0.5
1
smoothed rectifier signal
axis([-3 3 -3 3]);
subplot 223
plot(x2,y1)
title('radius=1m,shifted')
axis([-3 3 -3 3]);
for i=1:2:4
for j=1:2:4
x2=x+i;
y2=y+j;
subplot 224
plot(x2,y2)
text(1.7,2,'core')
title('pcf')
hold on;
end
end
-2 0 2
-2
0
2
radius=0.5m
-2 0 2
-2
0
2
radius=1m
-2 0 2
-2
0
2
radius=1m,shifted
0 1 2 3 4
0
1
2
3
4
core
pcf
corecorecore
Program 3:
clear all;close all;clc;
[x,y,z]=cylinder(5);
[x1,y1,z1]=cylinder;
figure(1)
subplot 221
surf(x1,y1,z1)
subplot 222
surf(x,y,z)
subplot 223
axis square
surf(x,y,z)
hold on
surf(x1,y1,z1)
-1
0
1
-1
0
1
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
Program 4:
clear all;close all;clc;
t=0:0.1*pi:2*pi;
subplot 221
cylinder(cos(t))
subplot 222
cylinder(sin(t))
subplot 223
cylinder(exp(t))
subplot 224
cylinder(log(t))
colormap gray
-1
0
1
-1
0
1
0
0.5
1
-1
0
1
-1
0
1
0
0.5
1
-1000
0
1000
-1000
0
1000
0
0.5
1
-2
0
2
-2
0
2
0
0.5
1
Program 5:
clear all;close all;clc;
t=0:0.1*pi:2*pi;
subplot 221
cylinder(cos(t))
subplot 222
cylinder(sin(t))
subplot 223
cylinder(exp(t))
subplot 224
cylinder(log(t))
colormap spring
-1
0
1
-1
0
1
0
0.5
1
-1
0
1
-1
0
1
0
0.5
1
-1000
0
1000
-1000
0
1000
0
0.5
1
-2
0
2
-2
0
2
0
0.5
1
Program 6:
clear all;close all;clc;
t=0:0.1*pi:2*pi;
subplot 321
cylinder(2+sin(t))
subplot 322
cylinder(2+cos(t))
subplot 323
cylinder(t.^4)
subplot 324
cylinder(t.^2)
subplot 325
cylinder(exp(-t)+2)
subplot 326
cylinder(t.^2)
hold on
cylinder(t)
-5
0
5
-5
0
5
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
-2000
0
2000
-2000
0
2000
0
0.5
1
-50
0
50
-50
0
50
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
-50
0
50
-50
0
50
0
0.5
1
Program 7:
clear all;close all;clc;
syms x;
y=sin(x);
subplot 211
ezplot(y)
grid on
subplot 212
ezplot(y,[0:4*pi])
-6 -4 -2 0 2 4 6
-1
-0.5
0
0.5
1
x
sin(x)
0 2 4 6 8 10 12
-1
-0.5
0
0.5
1
x
sin(x)
Program 8:
clear all;close all;clc;
syms t;
y=sin(t);
figure(1)
subplot 221
ezsurf(y,[-pi pi])
subplot 222
ezsurf(y)
z=sin(t)*cos(3*t);
subplot 223
ezpolar(z)
subplot 224
ezpolar(z,[0 pi]);
-2
0
2
-2
0
2
-1
0
1
t
sin(t)
y -5
0
5
-5
0
5
-1
0
1
t
sin(t)
y
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
r = cos(3 t) sin(t)
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
r = cos(3 t) sin(t)
Program 9:
clear all;close all;clc;
syms t;
y=t^3;
subplot 221
ezplot(y)
y1=diff(y);
y2=diff(y,2);
y3=diff(y,3);
subplot 222
ezplot(y1)
subplot 223
ezplot(y2)
subplot 224
ezplot(y3)
-5 0 5
-200
-100
0
100
200
t
t3
-5 0 5
0
50
100
t
3 t2
-5 0 5
-40
-20
0
20
40
t
6 t
-5 0 5
5
5.5
6
6.5
7
x
6
Program 10:
clear all;close all;clc;
t=1:0.1:5;
y=t.^2;
dy1=diff(y)./diff(t);
td1=t(2:length(t));
figure(1)
subplot 121
plot(t,y)
grid on
title('using numerical')
subplot 122
plot(td1,dy1)
title('numerical diff')
1 2 3 4 5
0
5
10
15
20
25
using numerical
1 2 3 4 5
2
3
4
5
6
7
8
9
10
numerical diff
Program 11:
clear all;close all;clc;
t=1:0.1:5;
y=rand(1,length(t));
dy1=diff(y)./diff(t);
td1=t(2:length(t));
subplot 211
plot(t,y)
title('noise signal over 5 second')
subplot 212
plot(td1,dy1)
title('the rate of change of the noise w.r.t
time')
1 1.5 2 2.5 3 3.5 4 4.5 5
0
0.5
1
noise signal over 5 second
1 1.5 2 2.5 3 3.5 4 4.5 5
-10
-5
0
5
10
the rate of change of the noise w.r.t time
:12Program
clear all;close all;clc;
x=0:0.1:10;
y=0:0.1:10;
[x1 y1]=meshgrid(x,y);
for i=1:length(x)
for j=1:length(y)
if (y1(i,j)>=0 && y1(i,j)<2)
z1(i,j)=0;
elseif (y1(i,j)>=2 && y1(i,j)<4)
z1(i,j)=2;
elseif (y1(i,j)>=4 && y1(i,j)<6)
z1(i,j)=4;
elseif (y1(i,j)>=6 && y1(i,j)<8)
z1(i,j)=6;
else
z1(i,j)=8;
end
end
end
surf(x1,y1,z1)
0
2
4
6
8
10
0
5
10
0
2
4
6
8
:13Program
clear all;close all;clc;
phi=0:0.01*pi:2*pi;
n=length(phi);
r=ones(1,n);
a=figure(1);
set(a,'color','g')
subplot 121
e=polar(phi,r);
set(e,'linewidth',4)
subplot 122
[x y]=pol2cart(phi,r);
plot(x,y,'k')
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
:14Program
clear all;close all;clc;
phi=0:0.01*pi:2*pi;
n=length(phi);
r=ones(1,n);
a=figure(1);
set(a,'color','g')
subplot 121
e=polar(phi,r);
set(e,'linewidth',4)
subplot 122
[x y]=pol2cart(phi,r);
plot(x,y,'k')
hold on
for i=1:length(x)/4;
if (sqrt(x(i).^2+y(i).^2)<=1)
line([ 0 x(i)],[0 y(i)])
end
end
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
:15Program
clear all;close all;clc;
a=[50 0;0 50];
b=repmat(a,[3 3]);
e=figure(1)
set(e,'color','m')
image(b)
colormap gray
axis off
Program 16:
clear all;close all;clc;
t=0:0.1*pi:4*pi;
y=sin(t);
n=length(t);
noise=0.1*randn(1,n);
ynoise=y+noise;
r=figure(1);
set(r,'color','g')
subplot 221
plot(t,y,'r')
title('signal')
subplot 222
plot(t,noise,'k')
title('noise')
subplot 223
plot(t,ynoise,'color','b')
title('ynoise')
0 5 10 15
-1
-0.5
0
0.5
1
signal
0 5 10 15
-0.4
-0.2
0
0.2
0.4
noise
0 5 10 15
-2
-1
0
1
2
ynoise
:17Program
clear all;close all;clc;
t=0:0.1*pi:4*pi;
n=length(t);
y1=2*sin(0.5*t);%first input
y2=2*cos(0.5*t);%second input
y3=cos(5*t); %carrier
ya=y1.*y3;
yb=y2.*y3;
subplot 221
plot(t,y1,'-.',t,y2,'-')
subplot 222
plot(t,y3)
title('carrier')
subplot 223
plot(t,ya)
title('carrier * sin')
subplot 224
plot(t,yb)
title('carrier *cos')
0 5 10 15
-2
-1
0
1
2
0 5 10 15
-1
-0.5
0
0.5
1
carrier
0 5 10 15
-2
-1
0
1
2
carrier * sin
0 5 10 15
-2
-1
0
1
2
carrier *cos
Program 18:
clear all;close all;clc;
t=0:0.01*pi:4*pi;
x=cos(4*pi*t)+cos(8*pi*t)+cos(12*pi*t);
fx=fft(x,512);
w=1/(0.01*pi*2)*linspace(0,1,256);
subplot 421
plot(t,x)
xlabel('time')
ylabel('amplitude')
subplot 422
plot(w,abs(fx(1:256)))
xlabel('frequency HZ')
ylabel('amplitude')
axis([0 20 0 200])
filter=ones(1,256);
filter(1,90:256)=0;
subplot 423
plot(w,filter)
xlabel('frequency HZ')
ylabel('amplitude')
axis([0 20 0 2])
subplot 424
result=abs(fx(1:256)).*filter;
plot(w,result)
xlabel('frequency HZ')
ylabel('amplitude')
axis([0 20 0 200])
subplot 413
plot(w,result)
xlabel('frequency')
ylabel('amplitude')
axis([0 16 0 200])
iresult=ifft((fx),length(t));
subplot 414
plot(t,iresult)
xlabel('time')
ylabel('amplitude')
axis([0 14 -2 2])
Program 19:
z=[10 4 6 9 3];
subplot 221
pie(z)
subplot 222
pie(z,[0 0 0 1 0]);
subplot 223
pie(z,[1 1 1 1 1])
subplot 224
pie3(z,[0 0 0 1 0]);
0 2 4 6 8 10 12 14
-2
0
2
4
time
amplitude
0 5 10 15 20
0
100
200
frequency HZ
amplitude
0 5 10 15 20
0
1
2
frequency HZ
amplitude
0 5 10 15 20
0
100
200
frequency HZ
amplitude
0 2 4 6 8 10 12 14 16
0
100
200
frequency
amplitude
0 2 4 6 8 10 12 14
-2
0
2
time
amplitude
Program 20:
clear all ;close all; clc
x=-3:3;
y=x.^2;
bar(x,y)
31%
13%
19%
28%
9%
31%
13%
19%
28%
9%
31%
13%
19%
28%
9%
28%
19%
13%
9%
31%
Program 21:
clear all ;close all; clc
y=round(rand(2,3)*10);
subplot 221
bar(y)
subplot 222
barh(y)
subplot 223
bar(y,'stacked')
subplot 224
bar(y,1)
-3 -2 -1 0 1 2 3
0
1
2
3
4
5
6
7
8
9
Program 22:
clear all;close all;clc
t=0:0.1*pi:2*pi;
x=sin(t);
subplot 221
plot(t,x,'*r')
subplot 222
stem(t,x)
subplot 223
stairs(t,x)
subplot 224
fill(t,x,'g')
1 2
0
2
4
6
8
10
0 5 10
1
2
1 2
0
5
10
15
20
25
1 2
0
2
4
6
8
10
Program 23:
clear all ;close all;clc;
syms x t w a
f1=heaviside(x);
f2=heaviside(x-2);
f3=heaviside(x+2);
f4=heaviside(x+2)-heaviside(x-2);
subplot 221
ezplot(f1,[-5 5])
subplot 222
ezplot(f2,[-5 5])
subplot 223
ezplot(f3,[-5 5])
subplot 224
ezplot(f4,[-5 5])
0 2 4 6 8
-1
-0.5
0
0.5
1
0 2 4 6 8
-1
-0.5
0
0.5
1
0 2 4 6 8
-1
-0.5
0
0.5
1
0 2 4 6 8
-1
-0.5
0
0.5
1
Program 24:
clear all ;close all;clc;clf
t=0:0.01*pi:4*pi;
vint=cos(2*pi*4*t);
fvint=fft(vint,512);
w=1/(0.01*pi*2)*linspace(0,1,256);
subplot 211
plot(t,vint)
xlabel('time')
ylabel('amplitude')
subplot 212
plot(w,abs(fvint(1:256)))
xlabel('frequency')
ylabel('magnitude')
-5 0 5
0
0.5
1
x
heaviside(x)
-5 0 5
0
0.5
1
x
heaviside(x - 2)
-5 0 5
0
0.5
1
x
heaviside(x + 2)
-5 0 5
0
0.5
1
x
heaviside(x + 2) - heaviside(x - 2)
Program 25:
clear all ;close all;clc;clf
t=0:0.01*pi:4*pi;
x=cos(t);
y=sin(t);
plot(t,x,'-r',t,y,'.g')
legend('cos','sin')
title('sinusoidal signals')
xlabel('time')
ylabel('amplitude')
0 2 4 6 8 10 12 14
-1
-0.5
0
0.5
1
time
amplitude
0 2 4 6 8 10 12 14 16
0
50
100
150
200
frequency
magnitude
0 2 4 6 8 10 12 14
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
time
amplitude
sinusoidal signals
cos
sin
Program 26:
z=magic(3);
subplot 221
bar(z)
subplot 222
bar(z,'stacked')
subplot 223
bar(z,'grouped')
subplot 224
barh(z,'stacked')
1 2 3
0
2
4
6
8
10
1 2 3
0
5
10
15
1 2 3
0
2
4
6
8
10
0 5 10 15
1
2
3
Program 27:
z=magic(2);
subplot 221
bar(z)
subplot 222
bar(z,'c')
subplot 223
bar(z,'histic')
subplot 224
barh(z,'histic')
1 2
0
1
2
3
4
1 2
0
1
2
3
4
1 2
0
1
2
3
4
0 1 2 3 4
1
2
Program 28:
z=round(10.*rand(1,10));
figure(4)
subplot 211
hist(z,5)
subplot 212
hist(z,7)
1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
0 2 4 6 8 10 12
0
1
2
3
4
Program 29:
t=0:0.01*pi:2*pi;
y=sin(2*t).*cos(2*t);
figure(8)
subplot 221
polar(t,y,'--g')
subplot 222
polar(t,y,'bs')
subplot 223
polar(t,y,'dr')
subplot 224
f=polar(t,y);
set(f,'color','m')
set(f,'linewidth',2)
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
Program 30:
x=[1:10];
y=2.*rand(1,10);
figure(1)
set(figure(1),'color','yellow');
subplot 221
scatter(x,y)
subplot 222
scatter(x,y,'r')
subplot 223
scatter(x,y,3,'g')
subplot 224
stem(x,y)
0 5 10
0
0.5
1
1.5
2
0 5 10
0
0.5
1
1.5
2
0 5 10
0
0.5
1
1.5
2
0 5 10
0
0.5
1
1.5
2
Program 31:
clear all;close all;clc
[x,y,z]=sphere(100);
x1=x(:);
y1=y(:);
z1=z(:);
figure(1)
set(figure(1),'color','y')
scatter3(x1,y1,z1)
-1
-0.5
0
0.5
1
-1
-0.5
0
0.5
1
-1
-0.5
0
0.5
1
Program 32:
clear all;close all;clc
[x,y,z]=sphere(100);
x1=x(:);
y1=y(:);
z1=z(:);
figure(1)
set(figure(1),'color','y')
subplot 211
scatter3(x1,y1,z1,2,'k')
subplot 212
scatter3(x1,y1,z1,10,'g')
-1
-0.5
0 0.5
1
-1
-0.5
0
0.5
1
-1
0
1
-1
-0.5
0 0.5
1
-1
-0.5
0
0.5
1
-1
0
1
Program 32:
x=0:10;
y=0:10;
[xm ym]=meshgrid(x,y);
z=xm.^2/2+ym.^2/4;
figure(1)
subplot 221
mesh(z)
subplot 222
contour(x,y,z)
subplot 223
surf(x,y,z)
subplot 224
surfc(x,y,z)
0
10
20
0
10
20
0
50
100
0 5 10
0
2
4
6
8
10
0
5
10
0
5
10
0
50
100
0
5
10
0
5
10
0
50
100
Program 33:
%system of linear equation
%cramer method
a=[1 2 3;2 3 4;4 2 5];
b=[4;5;1];
d1=a;
d1(:,1)=b;
x(1)=det(d1)/det(a)
d2=a;
d2(:,2)=b;
x(2)=det(d2)/det(a)
d3=a;
d3(:,3)=b;
x(3)=det(d3)/det(a)
command window:
x =
-1.4000 1.8000 0.6000
Program 34:
%system of linear equation
%Gass elimination
a=[1 2 3;2 3 4;4 2 5];
b=[4;5;1];
x=inv(a)*b
x =
-1.4000
1.8000
0.6000
x=ab
x =
-1.4000
1.8000
0.6000
Program 35:
Program 36:
>> y=logspace(1,5);
>> size(y)
ans =
1 50
>> plot(y)
>> z=logspace(1,5,5);
>> area(z)
1 1.5 2 2.5 3 3.5 4 4.5 5
0
1
2
3
4
5
6
7
8
9
10
x 10
4
0 5 10 15 20 25 30 35 40 45 50
0
1
2
3
4
5
6
7
8
9
10
x 10
4
Program 37:
x=ones(10,10);
x(3,3)=10;
x(3,7)=10;
x(6,5)=10;
x(8,4:6)=10;
image(x)
colormap copper(2)
%colormap spring(2)
%colormap hsv
%colormap summer
1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10
Matlab plotting

More Related Content

DOC
Công thức tích phân
PDF
Phương pháp lực 14-8-20-
DOC
32764905 vektor
PPT
16 partial derivatives
PDF
Modul 6-garis pengaruh
PPT
Metode numerik
PPTX
Analisa statik ekuivalen
PPTX
Thomas algorithm
Công thức tích phân
Phương pháp lực 14-8-20-
32764905 vektor
16 partial derivatives
Modul 6-garis pengaruh
Metode numerik
Analisa statik ekuivalen
Thomas algorithm

What's hot (20)

PDF
Bài tập cơ học đất
PPTX
Partial Derivatives
PDF
Modul 6-sesi-3-jembatan-komposit
PPTX
Perencanaan Kolom
PDF
Deret fourier
PPTX
STRUKTUR STATIS TAK TENTU METODE CLAPEYRON- CONTINUOUS BEAM-2
PDF
Do tin cay cac cong trinh tren bien_Nguyen Vi
PDF
Bài tập kết cấu thép 1 UTC có giải
DOCX
Tugas 1 PSDA
PDF
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
PDF
MATERI PERTEMUAN 12.pdf
DOCX
Báo cáo-thí-nghiệm-công-trình
DOCX
đáP án 24 đề tin
PDF
Bai3 cotlieuchetaobetong
PDF
Kioti Daedong CK25 Tractor Service Repair Manual
PPTX
Linearisasi
TXT
Regula falsi MATLAB Code
PDF
Cơ học kết cấu t.2 - hệ siêu tĩnh - lều thọ trình
PPTX
weddle's rule
Bài tập cơ học đất
Partial Derivatives
Modul 6-sesi-3-jembatan-komposit
Perencanaan Kolom
Deret fourier
STRUKTUR STATIS TAK TENTU METODE CLAPEYRON- CONTINUOUS BEAM-2
Do tin cay cac cong trinh tren bien_Nguyen Vi
Bài tập kết cấu thép 1 UTC có giải
Tugas 1 PSDA
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
MATERI PERTEMUAN 12.pdf
Báo cáo-thí-nghiệm-công-trình
đáP án 24 đề tin
Bai3 cotlieuchetaobetong
Kioti Daedong CK25 Tractor Service Repair Manual
Linearisasi
Regula falsi MATLAB Code
Cơ học kết cấu t.2 - hệ siêu tĩnh - lều thọ trình
weddle's rule
Ad

Viewers also liked (6)

PDF
Manual for the MATLAB program to solve the 2D truss
PDF
solution for 2D truss1
PDF
Fem in matlab
PDF
Isoparametric mapping
PDF
MATLAB Programs For Beginners. | Abhi Sharma
PPTX
Matlab Introduction
Manual for the MATLAB program to solve the 2D truss
solution for 2D truss1
Fem in matlab
Isoparametric mapping
MATLAB Programs For Beginners. | Abhi Sharma
Matlab Introduction
Ad

Similar to Matlab plotting (20)

DOCX
DSP LAB COMPLETE CODES.docx
PDF
Gilat_ch05.pdf
PPTX
Vatwnvrjnavaunwv3h255d36gds4d4644892.pptx
PPTX
Digital Signal Processing
DOCX
Newton two Equation method
PDF
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
DOCX
Fourier series example
PDF
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
PDF
Notes and guide for matlab coding and excersie
PDF
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
PDF
Crib Sheet AP Calculus AB and BC exams
PDF
Matlab file
PDF
ME_541_HW_04
PDF
Solution Manual : Chapter - 05 Integration
PDF
Ecg programa simulado
PDF
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
PDF
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
DOCX
Numerical Method Assignment
PDF
Matlab fair-record-model
DSP LAB COMPLETE CODES.docx
Gilat_ch05.pdf
Vatwnvrjnavaunwv3h255d36gds4d4644892.pptx
Digital Signal Processing
Newton two Equation method
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Fourier series example
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Notes and guide for matlab coding and excersie
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Crib Sheet AP Calculus AB and BC exams
Matlab file
ME_541_HW_04
Solution Manual : Chapter - 05 Integration
Ecg programa simulado
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Numerical Method Assignment
Matlab fair-record-model

More from Amr Rashed (20)

PDF
Introduction to Deep Learning: Concepts, Architectures, and Applications
PPTX
Introduction to Autoencoders: Types and Applications
PPTX
Introduction to the Fundamentals of Computer Networks
PPTX
Introduction to analog communication system
PPTX
introduction to embedded system presentation
PPT
Discrete Math Ch5 counting + proofs
PPTX
Discrete Math Chapter: 8 Relations
PPTX
Discrete Math Chapter 1 :The Foundations: Logic and Proofs
PPTX
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
PPTX
Introduction to deep learning
PPTX
Discrete Structure Mathematics lecture 1
PPTX
Implementation of DNA sequence alignment algorithms using Fpga ,ML,and CNN
PPTX
امن نظم المعلومات وامن الشبكات
PPTX
Machine learning workshop using Orange datamining framework
PPTX
مقدمة عن الفيجوال بيسك 9-2019
PPTX
Deep learning tutorial 9/2019
PPTX
Deep Learning Tutorial
PPT
License Plate Recognition
PDF
Introduction to FPGA, VHDL
PDF
Introduction to Matlab
Introduction to Deep Learning: Concepts, Architectures, and Applications
Introduction to Autoencoders: Types and Applications
Introduction to the Fundamentals of Computer Networks
Introduction to analog communication system
introduction to embedded system presentation
Discrete Math Ch5 counting + proofs
Discrete Math Chapter: 8 Relations
Discrete Math Chapter 1 :The Foundations: Logic and Proofs
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Introduction to deep learning
Discrete Structure Mathematics lecture 1
Implementation of DNA sequence alignment algorithms using Fpga ,ML,and CNN
امن نظم المعلومات وامن الشبكات
Machine learning workshop using Orange datamining framework
مقدمة عن الفيجوال بيسك 9-2019
Deep learning tutorial 9/2019
Deep Learning Tutorial
License Plate Recognition
Introduction to FPGA, VHDL
Introduction to Matlab

Recently uploaded (20)

DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Current and future trends in Computer Vision.pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
OOP with Java - Java Introduction (Basics)
PPT
Mechanical Engineering MATERIALS Selection
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PDF
Well-logging-methods_new................
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PDF
PPT on Performance Review to get promotions
PDF
composite construction of structures.pdf
PPTX
Safety Seminar civil to be ensured for safe working.
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Current and future trends in Computer Vision.pptx
R24 SURVEYING LAB MANUAL for civil enggi
Automation-in-Manufacturing-Chapter-Introduction.pdf
OOP with Java - Java Introduction (Basics)
Mechanical Engineering MATERIALS Selection
III.4.1.2_The_Space_Environment.p pdffdf
Well-logging-methods_new................
Operating System & Kernel Study Guide-1 - converted.pdf
PPT on Performance Review to get promotions
composite construction of structures.pdf
Safety Seminar civil to be ensured for safe working.
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Model Code of Practice - Construction Work - 21102022 .pdf
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
bas. eng. economics group 4 presentation 1.pptx
Foundation to blockchain - A guide to Blockchain Tech
Fundamentals of safety and accident prevention -final (1).pptx

Matlab plotting

  • 1. Program 1: clear all;close all;clc;clf; t=0:0.01*pi:4*pi; x=sin(t); y=x; z=x; n=length(y); for i=1:n if (x(i)<0) y(i)=0; z(i)=-1*z(i); end end u=figure(1); set(u,'color','w') subplot 221 plot(t,x) title('input:sinusoidal wave') subplot 222 plot(t,y) title('half wave rectifier') subplot 223 plot(t,z) title('full wave rectifier') subplot 224 plot(t,z,'--') hold on line([pi/2 3*(pi/2)-0.5],[1 -1*sin(3*(pi/2)- 0.5)]); line([3*pi/2 5*(pi/2)-0.5],[1 1*sin(5*(pi/2)- 0.5)]); line([5*pi/2 7*(pi/2)-0.5],[1 -1*sin(7*(pi/2)- 0.5)]); title('smoothed rectifier signal')
  • 2. Program 2: clc;close all;clear all; t=0:0.1*pi:2*pi; n=length(t); r=0.5*ones(1,n); r1=ones(1,n); [x y]=pol2cart(t,r); [x1 y1]=pol2cart(t,r1); x2=x1+1; e=figure(1) set(e,'color','w'); subplot 221 plot(x,y) title('radius=0.5m') axis([-3 3 -3 3]); subplot 222 plot(x1,y1) title('radius=1m') 0 5 10 15 -1 -0.5 0 0.5 1 input:sinusoidal wave 0 5 10 15 0 0.5 1 half wave rectifier 0 5 10 15 0 0.5 1 full wave rectifier 0 5 10 15 0 0.5 1 smoothed rectifier signal
  • 3. axis([-3 3 -3 3]); subplot 223 plot(x2,y1) title('radius=1m,shifted') axis([-3 3 -3 3]); for i=1:2:4 for j=1:2:4 x2=x+i; y2=y+j; subplot 224 plot(x2,y2) text(1.7,2,'core') title('pcf') hold on; end end -2 0 2 -2 0 2 radius=0.5m -2 0 2 -2 0 2 radius=1m -2 0 2 -2 0 2 radius=1m,shifted 0 1 2 3 4 0 1 2 3 4 core pcf corecorecore
  • 4. Program 3: clear all;close all;clc; [x,y,z]=cylinder(5); [x1,y1,z1]=cylinder; figure(1) subplot 221 surf(x1,y1,z1) subplot 222 surf(x,y,z) subplot 223 axis square surf(x,y,z) hold on surf(x1,y1,z1) -1 0 1 -1 0 1 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1
  • 5. Program 4: clear all;close all;clc; t=0:0.1*pi:2*pi; subplot 221 cylinder(cos(t)) subplot 222 cylinder(sin(t)) subplot 223 cylinder(exp(t)) subplot 224 cylinder(log(t)) colormap gray -1 0 1 -1 0 1 0 0.5 1 -1 0 1 -1 0 1 0 0.5 1 -1000 0 1000 -1000 0 1000 0 0.5 1 -2 0 2 -2 0 2 0 0.5 1
  • 6. Program 5: clear all;close all;clc; t=0:0.1*pi:2*pi; subplot 221 cylinder(cos(t)) subplot 222 cylinder(sin(t)) subplot 223 cylinder(exp(t)) subplot 224 cylinder(log(t)) colormap spring -1 0 1 -1 0 1 0 0.5 1 -1 0 1 -1 0 1 0 0.5 1 -1000 0 1000 -1000 0 1000 0 0.5 1 -2 0 2 -2 0 2 0 0.5 1
  • 7. Program 6: clear all;close all;clc; t=0:0.1*pi:2*pi; subplot 321 cylinder(2+sin(t)) subplot 322 cylinder(2+cos(t)) subplot 323 cylinder(t.^4) subplot 324 cylinder(t.^2) subplot 325 cylinder(exp(-t)+2) subplot 326 cylinder(t.^2) hold on cylinder(t) -5 0 5 -5 0 5 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1 -2000 0 2000 -2000 0 2000 0 0.5 1 -50 0 50 -50 0 50 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1 -50 0 50 -50 0 50 0 0.5 1
  • 8. Program 7: clear all;close all;clc; syms x; y=sin(x); subplot 211 ezplot(y) grid on subplot 212 ezplot(y,[0:4*pi]) -6 -4 -2 0 2 4 6 -1 -0.5 0 0.5 1 x sin(x) 0 2 4 6 8 10 12 -1 -0.5 0 0.5 1 x sin(x)
  • 9. Program 8: clear all;close all;clc; syms t; y=sin(t); figure(1) subplot 221 ezsurf(y,[-pi pi]) subplot 222 ezsurf(y) z=sin(t)*cos(3*t); subplot 223 ezpolar(z) subplot 224 ezpolar(z,[0 pi]); -2 0 2 -2 0 2 -1 0 1 t sin(t) y -5 0 5 -5 0 5 -1 0 1 t sin(t) y 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 r = cos(3 t) sin(t) 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 r = cos(3 t) sin(t)
  • 10. Program 9: clear all;close all;clc; syms t; y=t^3; subplot 221 ezplot(y) y1=diff(y); y2=diff(y,2); y3=diff(y,3); subplot 222 ezplot(y1) subplot 223 ezplot(y2) subplot 224 ezplot(y3) -5 0 5 -200 -100 0 100 200 t t3 -5 0 5 0 50 100 t 3 t2 -5 0 5 -40 -20 0 20 40 t 6 t -5 0 5 5 5.5 6 6.5 7 x 6
  • 11. Program 10: clear all;close all;clc; t=1:0.1:5; y=t.^2; dy1=diff(y)./diff(t); td1=t(2:length(t)); figure(1) subplot 121 plot(t,y) grid on title('using numerical') subplot 122 plot(td1,dy1) title('numerical diff') 1 2 3 4 5 0 5 10 15 20 25 using numerical 1 2 3 4 5 2 3 4 5 6 7 8 9 10 numerical diff
  • 12. Program 11: clear all;close all;clc; t=1:0.1:5; y=rand(1,length(t)); dy1=diff(y)./diff(t); td1=t(2:length(t)); subplot 211 plot(t,y) title('noise signal over 5 second') subplot 212 plot(td1,dy1) title('the rate of change of the noise w.r.t time') 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 noise signal over 5 second 1 1.5 2 2.5 3 3.5 4 4.5 5 -10 -5 0 5 10 the rate of change of the noise w.r.t time
  • 13. :12Program clear all;close all;clc; x=0:0.1:10; y=0:0.1:10; [x1 y1]=meshgrid(x,y); for i=1:length(x) for j=1:length(y) if (y1(i,j)>=0 && y1(i,j)<2) z1(i,j)=0; elseif (y1(i,j)>=2 && y1(i,j)<4) z1(i,j)=2; elseif (y1(i,j)>=4 && y1(i,j)<6) z1(i,j)=4; elseif (y1(i,j)>=6 && y1(i,j)<8) z1(i,j)=6; else z1(i,j)=8; end end end surf(x1,y1,z1) 0 2 4 6 8 10 0 5 10 0 2 4 6 8
  • 14. :13Program clear all;close all;clc; phi=0:0.01*pi:2*pi; n=length(phi); r=ones(1,n); a=figure(1); set(a,'color','g') subplot 121 e=polar(phi,r); set(e,'linewidth',4) subplot 122 [x y]=pol2cart(phi,r); plot(x,y,'k') 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 -1 -0.5 0 0.5 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
  • 15. :14Program clear all;close all;clc; phi=0:0.01*pi:2*pi; n=length(phi); r=ones(1,n); a=figure(1); set(a,'color','g') subplot 121 e=polar(phi,r); set(e,'linewidth',4) subplot 122 [x y]=pol2cart(phi,r); plot(x,y,'k') hold on for i=1:length(x)/4; if (sqrt(x(i).^2+y(i).^2)<=1) line([ 0 x(i)],[0 y(i)]) end end 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 -1 -0.5 0 0.5 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
  • 16. :15Program clear all;close all;clc; a=[50 0;0 50]; b=repmat(a,[3 3]); e=figure(1) set(e,'color','m') image(b) colormap gray axis off
  • 17. Program 16: clear all;close all;clc; t=0:0.1*pi:4*pi; y=sin(t); n=length(t); noise=0.1*randn(1,n); ynoise=y+noise; r=figure(1); set(r,'color','g') subplot 221 plot(t,y,'r') title('signal') subplot 222 plot(t,noise,'k') title('noise') subplot 223 plot(t,ynoise,'color','b') title('ynoise') 0 5 10 15 -1 -0.5 0 0.5 1 signal 0 5 10 15 -0.4 -0.2 0 0.2 0.4 noise 0 5 10 15 -2 -1 0 1 2 ynoise
  • 18. :17Program clear all;close all;clc; t=0:0.1*pi:4*pi; n=length(t); y1=2*sin(0.5*t);%first input y2=2*cos(0.5*t);%second input y3=cos(5*t); %carrier ya=y1.*y3; yb=y2.*y3; subplot 221 plot(t,y1,'-.',t,y2,'-') subplot 222 plot(t,y3) title('carrier') subplot 223 plot(t,ya) title('carrier * sin') subplot 224 plot(t,yb) title('carrier *cos') 0 5 10 15 -2 -1 0 1 2 0 5 10 15 -1 -0.5 0 0.5 1 carrier 0 5 10 15 -2 -1 0 1 2 carrier * sin 0 5 10 15 -2 -1 0 1 2 carrier *cos
  • 19. Program 18: clear all;close all;clc; t=0:0.01*pi:4*pi; x=cos(4*pi*t)+cos(8*pi*t)+cos(12*pi*t); fx=fft(x,512); w=1/(0.01*pi*2)*linspace(0,1,256); subplot 421 plot(t,x) xlabel('time') ylabel('amplitude') subplot 422 plot(w,abs(fx(1:256))) xlabel('frequency HZ') ylabel('amplitude') axis([0 20 0 200]) filter=ones(1,256); filter(1,90:256)=0; subplot 423 plot(w,filter) xlabel('frequency HZ') ylabel('amplitude') axis([0 20 0 2]) subplot 424 result=abs(fx(1:256)).*filter; plot(w,result) xlabel('frequency HZ') ylabel('amplitude') axis([0 20 0 200]) subplot 413 plot(w,result) xlabel('frequency') ylabel('amplitude') axis([0 16 0 200]) iresult=ifft((fx),length(t)); subplot 414
  • 20. plot(t,iresult) xlabel('time') ylabel('amplitude') axis([0 14 -2 2]) Program 19: z=[10 4 6 9 3]; subplot 221 pie(z) subplot 222 pie(z,[0 0 0 1 0]); subplot 223 pie(z,[1 1 1 1 1]) subplot 224 pie3(z,[0 0 0 1 0]); 0 2 4 6 8 10 12 14 -2 0 2 4 time amplitude 0 5 10 15 20 0 100 200 frequency HZ amplitude 0 5 10 15 20 0 1 2 frequency HZ amplitude 0 5 10 15 20 0 100 200 frequency HZ amplitude 0 2 4 6 8 10 12 14 16 0 100 200 frequency amplitude 0 2 4 6 8 10 12 14 -2 0 2 time amplitude
  • 21. Program 20: clear all ;close all; clc x=-3:3; y=x.^2; bar(x,y) 31% 13% 19% 28% 9% 31% 13% 19% 28% 9% 31% 13% 19% 28% 9% 28% 19% 13% 9% 31%
  • 22. Program 21: clear all ;close all; clc y=round(rand(2,3)*10); subplot 221 bar(y) subplot 222 barh(y) subplot 223 bar(y,'stacked') subplot 224 bar(y,1) -3 -2 -1 0 1 2 3 0 1 2 3 4 5 6 7 8 9
  • 23. Program 22: clear all;close all;clc t=0:0.1*pi:2*pi; x=sin(t); subplot 221 plot(t,x,'*r') subplot 222 stem(t,x) subplot 223 stairs(t,x) subplot 224 fill(t,x,'g') 1 2 0 2 4 6 8 10 0 5 10 1 2 1 2 0 5 10 15 20 25 1 2 0 2 4 6 8 10
  • 24. Program 23: clear all ;close all;clc; syms x t w a f1=heaviside(x); f2=heaviside(x-2); f3=heaviside(x+2); f4=heaviside(x+2)-heaviside(x-2); subplot 221 ezplot(f1,[-5 5]) subplot 222 ezplot(f2,[-5 5]) subplot 223 ezplot(f3,[-5 5]) subplot 224 ezplot(f4,[-5 5]) 0 2 4 6 8 -1 -0.5 0 0.5 1 0 2 4 6 8 -1 -0.5 0 0.5 1 0 2 4 6 8 -1 -0.5 0 0.5 1 0 2 4 6 8 -1 -0.5 0 0.5 1
  • 25. Program 24: clear all ;close all;clc;clf t=0:0.01*pi:4*pi; vint=cos(2*pi*4*t); fvint=fft(vint,512); w=1/(0.01*pi*2)*linspace(0,1,256); subplot 211 plot(t,vint) xlabel('time') ylabel('amplitude') subplot 212 plot(w,abs(fvint(1:256))) xlabel('frequency') ylabel('magnitude') -5 0 5 0 0.5 1 x heaviside(x) -5 0 5 0 0.5 1 x heaviside(x - 2) -5 0 5 0 0.5 1 x heaviside(x + 2) -5 0 5 0 0.5 1 x heaviside(x + 2) - heaviside(x - 2)
  • 26. Program 25: clear all ;close all;clc;clf t=0:0.01*pi:4*pi; x=cos(t); y=sin(t); plot(t,x,'-r',t,y,'.g') legend('cos','sin') title('sinusoidal signals') xlabel('time') ylabel('amplitude') 0 2 4 6 8 10 12 14 -1 -0.5 0 0.5 1 time amplitude 0 2 4 6 8 10 12 14 16 0 50 100 150 200 frequency magnitude
  • 27. 0 2 4 6 8 10 12 14 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 time amplitude sinusoidal signals cos sin
  • 28. Program 26: z=magic(3); subplot 221 bar(z) subplot 222 bar(z,'stacked') subplot 223 bar(z,'grouped') subplot 224 barh(z,'stacked') 1 2 3 0 2 4 6 8 10 1 2 3 0 5 10 15 1 2 3 0 2 4 6 8 10 0 5 10 15 1 2 3
  • 29. Program 27: z=magic(2); subplot 221 bar(z) subplot 222 bar(z,'c') subplot 223 bar(z,'histic') subplot 224 barh(z,'histic') 1 2 0 1 2 3 4 1 2 0 1 2 3 4 1 2 0 1 2 3 4 0 1 2 3 4 1 2
  • 30. Program 28: z=round(10.*rand(1,10)); figure(4) subplot 211 hist(z,5) subplot 212 hist(z,7) 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 0 2 4 6 8 10 12 0 1 2 3 4
  • 31. Program 29: t=0:0.01*pi:2*pi; y=sin(2*t).*cos(2*t); figure(8) subplot 221 polar(t,y,'--g') subplot 222 polar(t,y,'bs') subplot 223 polar(t,y,'dr') subplot 224 f=polar(t,y); set(f,'color','m') set(f,'linewidth',2) 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0
  • 32. Program 30: x=[1:10]; y=2.*rand(1,10); figure(1) set(figure(1),'color','yellow'); subplot 221 scatter(x,y) subplot 222 scatter(x,y,'r') subplot 223 scatter(x,y,3,'g') subplot 224 stem(x,y) 0 5 10 0 0.5 1 1.5 2 0 5 10 0 0.5 1 1.5 2 0 5 10 0 0.5 1 1.5 2 0 5 10 0 0.5 1 1.5 2
  • 33. Program 31: clear all;close all;clc [x,y,z]=sphere(100); x1=x(:); y1=y(:); z1=z(:); figure(1) set(figure(1),'color','y') scatter3(x1,y1,z1) -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
  • 34. Program 32: clear all;close all;clc [x,y,z]=sphere(100); x1=x(:); y1=y(:); z1=z(:); figure(1) set(figure(1),'color','y') subplot 211 scatter3(x1,y1,z1,2,'k') subplot 212 scatter3(x1,y1,z1,10,'g') -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 0 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 0 1
  • 35. Program 32: x=0:10; y=0:10; [xm ym]=meshgrid(x,y); z=xm.^2/2+ym.^2/4; figure(1) subplot 221 mesh(z) subplot 222 contour(x,y,z) subplot 223 surf(x,y,z) subplot 224 surfc(x,y,z) 0 10 20 0 10 20 0 50 100 0 5 10 0 2 4 6 8 10 0 5 10 0 5 10 0 50 100 0 5 10 0 5 10 0 50 100
  • 36. Program 33: %system of linear equation %cramer method a=[1 2 3;2 3 4;4 2 5]; b=[4;5;1]; d1=a; d1(:,1)=b; x(1)=det(d1)/det(a) d2=a; d2(:,2)=b; x(2)=det(d2)/det(a) d3=a; d3(:,3)=b; x(3)=det(d3)/det(a) command window: x = -1.4000 1.8000 0.6000 Program 34: %system of linear equation %Gass elimination a=[1 2 3;2 3 4;4 2 5]; b=[4;5;1]; x=inv(a)*b x = -1.4000 1.8000 0.6000
  • 38. Program 36: >> y=logspace(1,5); >> size(y) ans = 1 50 >> plot(y) >> z=logspace(1,5,5); >> area(z) 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1 2 3 4 5 6 7 8 9 10 x 10 4 0 5 10 15 20 25 30 35 40 45 50 0 1 2 3 4 5 6 7 8 9 10 x 10 4
  • 39. Program 37: x=ones(10,10); x(3,3)=10; x(3,7)=10; x(6,5)=10; x(8,4:6)=10; image(x) colormap copper(2) %colormap spring(2) %colormap hsv %colormap summer 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10