SlideShare a Scribd company logo
Maximizing Submodular Function
over the Integer Lattice
Tasuku Soma
(Univ. Tokyo)
Joint work with:
Yuichi Yoshida (NII, Tokyo)
1 / 22
1 Monotone Submodular Function Maximization on ZS
+
2 Algorithms
3 DR-Submodular Cover
4 Summary
2 / 22
1 Monotone Submodular Function Maximization on ZS
+
2 Algorithms
3 DR-Submodular Cover
4 Summary
3 / 22
Monotone Submodular Func Maximization
E: finite set, f : 2E
→ R ... monotone submodular
maximize f (X) subject to X ∈ F
4 / 22
Monotone Submodular Func Maximization
E: finite set, f : 2E
→ R ... monotone submodular
maximize f (X) subject to X ∈ F
|X| ≤ k, i∈X w(i) ≤ 1, etc
• NP-hard in general
• O(1)-appriximable for various constraints (cardinality,
knapsack, matroid, etc) and efficient algorithms
• Powerful model for machine learning
4 / 22
Limitation of Set Function
Some real scenarios cannot be captured by a set function.
5 / 22
Limitation of Set Function
Some real scenarios cannot be captured by a set function.
Budget Allocation [Alon–Gamzu–Tennenholtz ’13,
S.–Kakimura–Inaba–Kawarabayashi ’14]:
We want to decide how much budget set aside for each
ad source.
5 / 22
Limitation of Set Function
Some real scenarios cannot be captured by a set function.
Budget Allocation [Alon–Gamzu–Tennenholtz ’13,
S.–Kakimura–Inaba–Kawarabayashi ’14]:
We want to decide how much budget set aside for each
ad source.
Generalized Sensor Placement:
We can put more than one sensors in each spot.
5 / 22
Limitation of Set Function
Some real scenarios cannot be captured by a set function.
Budget Allocation [Alon–Gamzu–Tennenholtz ’13,
S.–Kakimura–Inaba–Kawarabayashi ’14]:
We want to decide how much budget set aside for each
ad source.
Generalized Sensor Placement:
We can put more than one sensors in each spot.
Can we generalize these set function
models?
5 / 22
Definitions of Submodularity on {0, 1}E
E: finite set
f : {0, 1}E
→ R is submodular
f (X) + f (Y) ≥ f (X ∪ Y) + f (X ∩ Y) (∀X, Y ⊆ E)
6 / 22
Definitions of Submodularity on {0, 1}E
E: finite set
f : {0, 1}E
→ R is submodular
f (X) + f (Y) ≥ f (X ∪ Y) + f (X ∩ Y) (∀X, Y ⊆ E)
Diminishing Return
f (X ∪ e) − f (X) ≥ f (Y ∪ e) − f (Y)
(X ⊆ Y ⊆ E, e ∈ E  Y)
6 / 22
Definitions of Submodularity on ZE
f : ZE
→ R is lattice submodular:
f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y) (∀x, y ∈ ZE
)
coord-wise max coord-wise min
7 / 22
Definitions of Submodularity on ZE
f : ZE
→ R is lattice submodular:
f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y) (∀x, y ∈ ZE
)
coord-wise max coord-wise min
f is diminishing return submodular (DR-submodular):
f (x + ei ) − f (x) ≥ f (y + ei ) − f (y)
(x ≤ y ∈ ZE
, i ∈ E)
7 / 22
Definitions of Submodularity on ZE
f : ZE
→ R is lattice submodular:
f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y) (∀x, y ∈ ZE
)
coord-wise max coord-wise min
⇑ ⇓
f is diminishing return submodular (DR-submodular):
f (x + ei ) − f (x) ≥ f (y + ei ) − f (y)
(x ≤ y ∈ ZE
, i ∈ E)
7 / 22
Monotone Submod Func Maximization on ZE
+
f : ZE
+ → R+ ... monotone lattice/DR-submodular func
(with f (0) = 0), r ∈ Z+
Maximize f (x)
subject to 0 ≤ x ≤ r1, x ∈ ZE
+ ∩ F
• F = {x : x(E) ≤ k} (cardinality)
• F = P(+)(ρ) (polymatroid)
• F = {x : w x ≤ 1} (knapsack)
8 / 22
Can We Reduce it to Set Function?
YES, if f is DR-submodular.
E
Can We Reduce it to Set Function?
YES, if f is DR-submodular.
E
r copies
Can We Reduce it to Set Function?
YES, if f is DR-submodular.
E
r copies
←→

2
4
0

9 / 22
Can We Reduce it to Set Function?
YES, if f is DR-submodular.
E
r copies
←→

2
4
0

Drawback:
• The new ground set has r|E| size, pseudopoly
• Does not work for lattice-submodular function
9 / 22
Our Results
Theorem (S. and Yoshida ’15)
For any > 0, (1 − 1/e − )-appriximate polytime
algorithms for various constaints.
DR-submodular lattice submodular
cardinality (deterministic) (deterministic)
polymatroid (random) open
knapsack (random) only pseudopoly
10 / 22
1 Monotone Submodular Function Maximization on ZS
+
2 Algorithms
3 DR-Submodular Cover
4 Summary
11 / 22
Algorithms
Naive Approach:
Choosing the best coordinate and step size in every
iteration?
k∗
, i∗
∈ argmax
k,i
f (kei | x)
k
,
where f (kei | x) = f (kei + x) − f (x).
12 / 22
Algorithms
Naive Approach:
Choosing the best coordinate and step size in every
iteration?
k∗
, i∗
∈ argmax
k,i
f (kei | x)
k
,
where f (kei | x) = f (kei + x) − f (x).
Idea:
• Use “Decreasing Threshold Greedy”
[Badanidiyuru–Vondrák ’14] to determine step size
12 / 22
Cardinality/DR-Submodular
DecresingThresholdGreedy
1: x := 0, d := maxi∈E f (ei ), θ := d
2: while θ ≥ d
r
:
3: for each i ∈ E :
4: Find the largest k s.t.
f (kei | x)
k
≥ θ and x + kei
feasible.
5: x := x + kei
6: θ := (1 − )θ
7: return x
13 / 22
Cardinality/DR-Submodular
f is concave along each coordinate.
i
f (· | x)
step size k
slope
θ
Such k can be found in O(log r) time with binary search.
14 / 22
Cardinality/Lattice-Submodular
Idea: Devide the range into polynomially many regions.
i
15 / 22
Cardinality/Lattice-Submodular
Idea: Devide the range into polynomially many regions.
i
fmax
(1 − )fmax
(1 − )2
fmax
15 / 22
Cardinality/Lattice-Submodular
Idea: Devide the range into polynomially many regions.
i
fmax
(1 − )fmax
(1 − )2
fmax
k
k
Lemma
If there exists k with f (kei | x) ≥ kθ, we can find k with
f (k ei | x) ≥ (1 − )k θ.
15 / 22
Polymatroid/DR-Submodular
Idea: Mimic Continuous Greedy Algorithm
Multilinear Extension of f : 2E
→ R
F(x) =
X⊆E
f (X)
i∈X
x(i)
i X
(1 − x(i)) (x ∈ [0, 1]E
)
Key Facts
• F is monotone if f is monotone
• F is concave along positive direction if f is submodular
16 / 22
Polymatroid/DR-Submodular
Idea: Gluing the multilinear extensions on each
hypercube.
17 / 22
Polymatroid/DR-Submodular
Idea: Gluing the multilinear extensions on each
hypercube.
fill by the multilinear ext of
˜f (X) = f (1 + 1X )
17 / 22
Polymatroid/DR-Submodular
Idea: Gluing the multilinear extensions on each
hypercube.
fill by the multilinear ext of
˜f (X) = f (1 + 1X )
The resulting extension shares the same property?
→ YES, if f is DR-submodular.
17 / 22
1 Monotone Submodular Function Maximization on ZS
+
2 Algorithms
3 DR-Submodular Cover
4 Summary
18 / 22
Submodular Cover [Wolsey ’82]
Somewhat “dual” problem of maximization
f, c : 2S
→ R+ monotone submodular, α > 0
minimize c(X) subject to f (X) ≥ α
c : cost, f : quality, α : worst guarantee
19 / 22
Submodular Cover [Wolsey ’82]
Somewhat “dual” problem of maximization
f, c : 2S
→ R+ monotone submodular, α > 0
minimize c(X) subject to f (X) ≥ α
c : cost, f : quality, α : worst guarantee
Examples in ML:
• Efficient Sensor Placement
[Krause&Guestrin ’05, Krause&Leskovec ’08]
• Text Summarization [Lin & Bilmes ’10]
• Object Finding [Song et al. ’14, Chen et al. ’14]
19 / 22
Submodular Cover [Wolsey ’82]
Somewhat “dual” problem of maximization
f, c : 2S
→ R+ monotone submodular, α > 0
minimize c(X) subject to f (X) ≥ α
c : cost, f : quality, α : worst guarantee
Algorithmic Results:
• For c(X) = |X|, O(log d/β)-approx [Wolsey ’82]
• For integral f, c, O(ρ log d)-approx [Wan et al. ’09]
d = maxs f (s), ρ: curvature of c,
β := min{f (s | X) : s ∈ S, X ⊆ S, f (s | X) > 0}
19 / 22
DR-Submodular Cover
f, c : ZS
→ R+ monotone DR-submodular, α > 0, r ∈ Z+
minimize c(x)
subject to f (x) ≥ α
0 ≤ x ≤ r1
20 / 22
DR-Submodular Cover
f, c : ZS
→ R+ monotone DR-submodular, α > 0, r ∈ Z+
minimize c(x)
subject to f (x) ≥ α
0 ≤ x ≤ r1
Theorem (S.–Yoshida, to appear in NIPS ’15)
An algorithm for finding a (nearly) feasible solution of
O(ρ log d/β) approx in O (n log nr log r) time.
20 / 22
1 Monotone Submodular Function Maximization on ZS
+
2 Algorithms
3 DR-Submodular Cover
4 Summary
21 / 22
Summary
Our Results
• Useful genealizations of monotone submodular func
maximization and submodular cover
• Various polytime approximation algorithms
Recent Work
• Online monotone submodular func maximization on
ZE
+ [Avigdor-Elgrabli et al. ’15]
• Nonmonotone submodular func maximization on ZE
+
[Gottschalk–Peis ’15]
22 / 22

More Related Content

PDF
Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
PDF
Nonconvex Compressed Sensing with the Sum-of-Squares Method
PDF
Regret Minimization in Multi-objective Submodular Function Maximization
PDF
The low-rank basis problem for a matrix subspace
PDF
Multicasting in Linear Deterministic Relay Network by Matrix Completion
PDF
The Definite Integral
PDF
Non-informative reparametrisation for location-scale mixtures
PDF
Summary of Integration Methods
Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Regret Minimization in Multi-objective Submodular Function Maximization
The low-rank basis problem for a matrix subspace
Multicasting in Linear Deterministic Relay Network by Matrix Completion
The Definite Integral
Non-informative reparametrisation for location-scale mixtures
Summary of Integration Methods

What's hot (20)

PDF
Lesson 25: Evaluating Definite Integrals (slides)
PDF
Lesson 30: The Definite Integral
PDF
Lesson 27: Evaluating Definite Integrals
PDF
H2O World - Consensus Optimization and Machine Learning - Stephen Boyd
PDF
Lesson 28: The Fundamental Theorem of Calculus
PDF
Recursive Compressed Sensing
PDF
HMPC for Upper Stage Attitude Control
PDF
Pseudo Random Number Generators
PDF
Distributed solution of stochastic optimal control problem on GPUs
PDF
Optimal L-shaped matrix reordering, aka graph's core-periphery
PPTX
Lesson 8 the definite integrals
PDF
Brief Introduction About Topological Interference Management (TIM)
PDF
Absorbing Random Walk Centrality
PPTX
Pseudo and Quasi Random Number Generation
PDF
Parallel Coordinate Descent Algorithms
PDF
Core–periphery detection in networks with nonlinear Perron eigenvectors
PDF
Sloshing-aware MPC for upper stage attitude control
PDF
Fast parallelizable scenario-based stochastic optimization
PDF
Lecture note4coordinatedescent
PDF
Random Number Generators 2018
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 30: The Definite Integral
Lesson 27: Evaluating Definite Integrals
H2O World - Consensus Optimization and Machine Learning - Stephen Boyd
Lesson 28: The Fundamental Theorem of Calculus
Recursive Compressed Sensing
HMPC for Upper Stage Attitude Control
Pseudo Random Number Generators
Distributed solution of stochastic optimal control problem on GPUs
Optimal L-shaped matrix reordering, aka graph's core-periphery
Lesson 8 the definite integrals
Brief Introduction About Topological Interference Management (TIM)
Absorbing Random Walk Centrality
Pseudo and Quasi Random Number Generation
Parallel Coordinate Descent Algorithms
Core–periphery detection in networks with nonlinear Perron eigenvectors
Sloshing-aware MPC for upper stage attitude control
Fast parallelizable scenario-based stochastic optimization
Lecture note4coordinatedescent
Random Number Generators 2018
Ad

Viewers also liked (7)

PDF
Site Search Analytics
PPTX
Ire final
PDF
Jokyokai20111124
PPT
Submodularity slides
PDF
Active Content-Based Crowdsourcing Task Selection
PDF
行列補完を用いた無線マルチキャスト符号構成アルゴリズム
PPTX
Graph-based KNN Algorithm for Spam SMS Detection
Site Search Analytics
Ire final
Jokyokai20111124
Submodularity slides
Active Content-Based Crowdsourcing Task Selection
行列補完を用いた無線マルチキャスト符号構成アルゴリズム
Graph-based KNN Algorithm for Spam SMS Detection
Ad

Similar to Maximizing Submodular Function over the Integer Lattice (20)

PDF
Maximizing a Nonnegative, Monotone, Submodular Function Constrained to Matchings
PPT
ijcai09submodularity.ppt
PDF
Review
PDF
A Rounding Technique For The Polymatroid Membership Problem
PDF
Reformulation of Nash Equilibrium with an Application to Interchangeability
PDF
Network Analytics - Homework 3 - Msc Business Analytics - Imperial College Lo...
PPTX
Minimax Algorithm
PDF
Submodular Functions and Optimization 2nd ed Edition Satoru Fujishige (Eds.)
PDF
EPFL workshop on sparsity
PDF
SVM-Module-3-ML-PKT.pdf machine lrearning pdf
PPTX
NP Complete Problems -- Internship
PPTX
Lenier Equation
PDF
Submodular Functions and Optimization 2nd ed Edition Satoru Fujishige (Eds.)
PDF
Optimization Approach to Nash Euilibria with Applications to Interchangeability
PDF
Optimum Engineering Design - Day 2b. Classical Optimization methods
PPTX
ICPC 2015, Tsukuba : Unofficial Commentary
PPT
Approx
PDF
A Regularized Simplex Method
PPT
Dynamic_methods_Greedy_algorithms_11.ppt
PDF
Supporting Vector Machine
Maximizing a Nonnegative, Monotone, Submodular Function Constrained to Matchings
ijcai09submodularity.ppt
Review
A Rounding Technique For The Polymatroid Membership Problem
Reformulation of Nash Equilibrium with an Application to Interchangeability
Network Analytics - Homework 3 - Msc Business Analytics - Imperial College Lo...
Minimax Algorithm
Submodular Functions and Optimization 2nd ed Edition Satoru Fujishige (Eds.)
EPFL workshop on sparsity
SVM-Module-3-ML-PKT.pdf machine lrearning pdf
NP Complete Problems -- Internship
Lenier Equation
Submodular Functions and Optimization 2nd ed Edition Satoru Fujishige (Eds.)
Optimization Approach to Nash Euilibria with Applications to Interchangeability
Optimum Engineering Design - Day 2b. Classical Optimization methods
ICPC 2015, Tsukuba : Unofficial Commentary
Approx
A Regularized Simplex Method
Dynamic_methods_Greedy_algorithms_11.ppt
Supporting Vector Machine

Recently uploaded (20)

PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPTX
famous lake in india and its disturibution and importance
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
2. Earth - The Living Planet Module 2ELS
PPTX
Production technology of seed spices,,,,
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PDF
Crime Scene Investigation: A Guide for Law Enforcement (2013 Update)
PPT
protein biochemistry.ppt for university classes
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
SCIENCE10 Q1 5 WK8 Evidence Supporting Plate Movement.pptx
Classification Systems_TAXONOMY_SCIENCE8.pptx
INTRODUCTION TO EVS | Concept of sustainability
The KM-GBF monitoring framework – status & key messages.pptx
Derivatives of integument scales, beaks, horns,.pptx
famous lake in india and its disturibution and importance
Taita Taveta Laboratory Technician Workshop Presentation.pptx
AlphaEarth Foundations and the Satellite Embedding dataset
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
neck nodes and dissection types and lymph nodes levels
2. Earth - The Living Planet Module 2ELS
Production technology of seed spices,,,,
Biophysics 2.pdffffffffffffffffffffffffff
Crime Scene Investigation: A Guide for Law Enforcement (2013 Update)
protein biochemistry.ppt for university classes
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
bbec55_b34400a7914c42429908233dbd381773.pdf
POSITIONING IN OPERATION THEATRE ROOM.ppt
7. General Toxicologyfor clinical phrmacy.pptx
SCIENCE10 Q1 5 WK8 Evidence Supporting Plate Movement.pptx

Maximizing Submodular Function over the Integer Lattice

  • 1. Maximizing Submodular Function over the Integer Lattice Tasuku Soma (Univ. Tokyo) Joint work with: Yuichi Yoshida (NII, Tokyo) 1 / 22
  • 2. 1 Monotone Submodular Function Maximization on ZS + 2 Algorithms 3 DR-Submodular Cover 4 Summary 2 / 22
  • 3. 1 Monotone Submodular Function Maximization on ZS + 2 Algorithms 3 DR-Submodular Cover 4 Summary 3 / 22
  • 4. Monotone Submodular Func Maximization E: finite set, f : 2E → R ... monotone submodular maximize f (X) subject to X ∈ F 4 / 22
  • 5. Monotone Submodular Func Maximization E: finite set, f : 2E → R ... monotone submodular maximize f (X) subject to X ∈ F |X| ≤ k, i∈X w(i) ≤ 1, etc • NP-hard in general • O(1)-appriximable for various constraints (cardinality, knapsack, matroid, etc) and efficient algorithms • Powerful model for machine learning 4 / 22
  • 6. Limitation of Set Function Some real scenarios cannot be captured by a set function. 5 / 22
  • 7. Limitation of Set Function Some real scenarios cannot be captured by a set function. Budget Allocation [Alon–Gamzu–Tennenholtz ’13, S.–Kakimura–Inaba–Kawarabayashi ’14]: We want to decide how much budget set aside for each ad source. 5 / 22
  • 8. Limitation of Set Function Some real scenarios cannot be captured by a set function. Budget Allocation [Alon–Gamzu–Tennenholtz ’13, S.–Kakimura–Inaba–Kawarabayashi ’14]: We want to decide how much budget set aside for each ad source. Generalized Sensor Placement: We can put more than one sensors in each spot. 5 / 22
  • 9. Limitation of Set Function Some real scenarios cannot be captured by a set function. Budget Allocation [Alon–Gamzu–Tennenholtz ’13, S.–Kakimura–Inaba–Kawarabayashi ’14]: We want to decide how much budget set aside for each ad source. Generalized Sensor Placement: We can put more than one sensors in each spot. Can we generalize these set function models? 5 / 22
  • 10. Definitions of Submodularity on {0, 1}E E: finite set f : {0, 1}E → R is submodular f (X) + f (Y) ≥ f (X ∪ Y) + f (X ∩ Y) (∀X, Y ⊆ E) 6 / 22
  • 11. Definitions of Submodularity on {0, 1}E E: finite set f : {0, 1}E → R is submodular f (X) + f (Y) ≥ f (X ∪ Y) + f (X ∩ Y) (∀X, Y ⊆ E) Diminishing Return f (X ∪ e) − f (X) ≥ f (Y ∪ e) − f (Y) (X ⊆ Y ⊆ E, e ∈ E Y) 6 / 22
  • 12. Definitions of Submodularity on ZE f : ZE → R is lattice submodular: f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y) (∀x, y ∈ ZE ) coord-wise max coord-wise min 7 / 22
  • 13. Definitions of Submodularity on ZE f : ZE → R is lattice submodular: f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y) (∀x, y ∈ ZE ) coord-wise max coord-wise min f is diminishing return submodular (DR-submodular): f (x + ei ) − f (x) ≥ f (y + ei ) − f (y) (x ≤ y ∈ ZE , i ∈ E) 7 / 22
  • 14. Definitions of Submodularity on ZE f : ZE → R is lattice submodular: f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y) (∀x, y ∈ ZE ) coord-wise max coord-wise min ⇑ ⇓ f is diminishing return submodular (DR-submodular): f (x + ei ) − f (x) ≥ f (y + ei ) − f (y) (x ≤ y ∈ ZE , i ∈ E) 7 / 22
  • 15. Monotone Submod Func Maximization on ZE + f : ZE + → R+ ... monotone lattice/DR-submodular func (with f (0) = 0), r ∈ Z+ Maximize f (x) subject to 0 ≤ x ≤ r1, x ∈ ZE + ∩ F • F = {x : x(E) ≤ k} (cardinality) • F = P(+)(ρ) (polymatroid) • F = {x : w x ≤ 1} (knapsack) 8 / 22
  • 16. Can We Reduce it to Set Function? YES, if f is DR-submodular. E
  • 17. Can We Reduce it to Set Function? YES, if f is DR-submodular. E r copies
  • 18. Can We Reduce it to Set Function? YES, if f is DR-submodular. E r copies ←→  2 4 0  9 / 22
  • 19. Can We Reduce it to Set Function? YES, if f is DR-submodular. E r copies ←→  2 4 0  Drawback: • The new ground set has r|E| size, pseudopoly • Does not work for lattice-submodular function 9 / 22
  • 20. Our Results Theorem (S. and Yoshida ’15) For any > 0, (1 − 1/e − )-appriximate polytime algorithms for various constaints. DR-submodular lattice submodular cardinality (deterministic) (deterministic) polymatroid (random) open knapsack (random) only pseudopoly 10 / 22
  • 21. 1 Monotone Submodular Function Maximization on ZS + 2 Algorithms 3 DR-Submodular Cover 4 Summary 11 / 22
  • 22. Algorithms Naive Approach: Choosing the best coordinate and step size in every iteration? k∗ , i∗ ∈ argmax k,i f (kei | x) k , where f (kei | x) = f (kei + x) − f (x). 12 / 22
  • 23. Algorithms Naive Approach: Choosing the best coordinate and step size in every iteration? k∗ , i∗ ∈ argmax k,i f (kei | x) k , where f (kei | x) = f (kei + x) − f (x). Idea: • Use “Decreasing Threshold Greedy” [Badanidiyuru–Vondrák ’14] to determine step size 12 / 22
  • 24. Cardinality/DR-Submodular DecresingThresholdGreedy 1: x := 0, d := maxi∈E f (ei ), θ := d 2: while θ ≥ d r : 3: for each i ∈ E : 4: Find the largest k s.t. f (kei | x) k ≥ θ and x + kei feasible. 5: x := x + kei 6: θ := (1 − )θ 7: return x 13 / 22
  • 25. Cardinality/DR-Submodular f is concave along each coordinate. i f (· | x) step size k slope θ Such k can be found in O(log r) time with binary search. 14 / 22
  • 26. Cardinality/Lattice-Submodular Idea: Devide the range into polynomially many regions. i 15 / 22
  • 27. Cardinality/Lattice-Submodular Idea: Devide the range into polynomially many regions. i fmax (1 − )fmax (1 − )2 fmax 15 / 22
  • 28. Cardinality/Lattice-Submodular Idea: Devide the range into polynomially many regions. i fmax (1 − )fmax (1 − )2 fmax k k Lemma If there exists k with f (kei | x) ≥ kθ, we can find k with f (k ei | x) ≥ (1 − )k θ. 15 / 22
  • 29. Polymatroid/DR-Submodular Idea: Mimic Continuous Greedy Algorithm Multilinear Extension of f : 2E → R F(x) = X⊆E f (X) i∈X x(i) i X (1 − x(i)) (x ∈ [0, 1]E ) Key Facts • F is monotone if f is monotone • F is concave along positive direction if f is submodular 16 / 22
  • 30. Polymatroid/DR-Submodular Idea: Gluing the multilinear extensions on each hypercube. 17 / 22
  • 31. Polymatroid/DR-Submodular Idea: Gluing the multilinear extensions on each hypercube. fill by the multilinear ext of ˜f (X) = f (1 + 1X ) 17 / 22
  • 32. Polymatroid/DR-Submodular Idea: Gluing the multilinear extensions on each hypercube. fill by the multilinear ext of ˜f (X) = f (1 + 1X ) The resulting extension shares the same property? → YES, if f is DR-submodular. 17 / 22
  • 33. 1 Monotone Submodular Function Maximization on ZS + 2 Algorithms 3 DR-Submodular Cover 4 Summary 18 / 22
  • 34. Submodular Cover [Wolsey ’82] Somewhat “dual” problem of maximization f, c : 2S → R+ monotone submodular, α > 0 minimize c(X) subject to f (X) ≥ α c : cost, f : quality, α : worst guarantee 19 / 22
  • 35. Submodular Cover [Wolsey ’82] Somewhat “dual” problem of maximization f, c : 2S → R+ monotone submodular, α > 0 minimize c(X) subject to f (X) ≥ α c : cost, f : quality, α : worst guarantee Examples in ML: • Efficient Sensor Placement [Krause&Guestrin ’05, Krause&Leskovec ’08] • Text Summarization [Lin & Bilmes ’10] • Object Finding [Song et al. ’14, Chen et al. ’14] 19 / 22
  • 36. Submodular Cover [Wolsey ’82] Somewhat “dual” problem of maximization f, c : 2S → R+ monotone submodular, α > 0 minimize c(X) subject to f (X) ≥ α c : cost, f : quality, α : worst guarantee Algorithmic Results: • For c(X) = |X|, O(log d/β)-approx [Wolsey ’82] • For integral f, c, O(ρ log d)-approx [Wan et al. ’09] d = maxs f (s), ρ: curvature of c, β := min{f (s | X) : s ∈ S, X ⊆ S, f (s | X) > 0} 19 / 22
  • 37. DR-Submodular Cover f, c : ZS → R+ monotone DR-submodular, α > 0, r ∈ Z+ minimize c(x) subject to f (x) ≥ α 0 ≤ x ≤ r1 20 / 22
  • 38. DR-Submodular Cover f, c : ZS → R+ monotone DR-submodular, α > 0, r ∈ Z+ minimize c(x) subject to f (x) ≥ α 0 ≤ x ≤ r1 Theorem (S.–Yoshida, to appear in NIPS ’15) An algorithm for finding a (nearly) feasible solution of O(ρ log d/β) approx in O (n log nr log r) time. 20 / 22
  • 39. 1 Monotone Submodular Function Maximization on ZS + 2 Algorithms 3 DR-Submodular Cover 4 Summary 21 / 22
  • 40. Summary Our Results • Useful genealizations of monotone submodular func maximization and submodular cover • Various polytime approximation algorithms Recent Work • Online monotone submodular func maximization on ZE + [Avigdor-Elgrabli et al. ’15] • Nonmonotone submodular func maximization on ZE + [Gottschalk–Peis ’15] 22 / 22