SlideShare a Scribd company logo
WELCOME
TO THE
PRESENTATION
Presented By
Exam Roll: 1820
Registration No: 2010-712-250
Department Of Mathematics
University Of Dhaka
A SHORT STUDY OF GALOIS FIELD
 Objectives Of The Project
 To introduce Galois Field.
 To discuss related theorems.
 Computational approach of Galois Field.
 Applications of Galois Field.
 What is Galois field ?
A Galois field(so-named in honor of Évariste Galois) is a
field in which the number of elements is always a
positive integer power of a prime number.
That is, the number of elements of a
Galois field is of the form pn , where p is
a prime and n is a positive integer.
Generally it is denoted by GF(pn ).
Évariste Galois(1811-1832)
 Examples
1. GF(31)={0,1,2} forms a Galois field.
Addition table
Where 0 is the additive identity element and
0 is the additive inverse of 0
1 is the additive inverse of 2
2 is the additive inverse of 1
Addition 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1
Multiplication 1 2
1 1 2
2 2 1
Multiplication Table
Where 1 is the multiplicative identity element and
1 is the multiplicative inverse of 1
2 is the multiplicative inverse of 2
2. GF-13:The elements are 0,1,2,3,4,5,6,7,8,9,a,b and c.
Here a=10, b=11, c =12.
Addition Table
Additi
on
0 1 2 3 4 5 6 7 8 9 a b c
0 0 1 2 3 4 5 6 7 8 9 a b c
1 1 2 3 4 5 6 7 8 9 a b c 0
2 2 3 4 5 6 7 8 9 a b c 0 1
3 3 4 5 6 7 8 9 a b c 0 1 2
4 4 5 6 7 8 9 a b c 0 1 2 3
5 5 6 7 8 9 a b c 0 1 2 3 4
6 6 7 8 9 a b c 0 1 2 3 4 5
7 7 8 9 a b c 0 1 2 3 4 5 6
8 8 9 a b c 0 1 2 3 4 5 6 7
9 9 a b c 0 1 2 3 4 5 6 7 8
a a b c 0 1 2 3 4 5 6 7 8 9
b b c 0 1 2 3 4 5 6 7 8 9 a
c c 0 1 2 3 4 5 6 7 8 9 a b
Multipl
ication
1 2 3 4 5 6 7 8 9 a b c
1 1 2 3 4 5 6 7 8 9 a b c
2 2 4 6 8 a c 1 3 5 7 9 b
3 3 6 9 c 2 5 8 b 1 4 7 a
4 4 8 c 3 7 b 2 6 a 1 5 9
5 5 a 2 7 c 4 9 1 6 b 3 8
6 6 c 5 b 4 a 3 9 2 8 1 7
7 7 1 8 2 9 3 a 4 b 5 c 6
8 8 3 b 6 1 9 4 c 7 2 a 5
9 9 5 1 a 6 2 b 7 3 c 8 4
a a 7 4 1 b 8 5 2 c 9 6 3
b b 9 7 5 3 1 c a 8 6 4 2
c c b a 9 8 7 6 5 4 3 2 1
Multiplication Table
THEOREMS ON GALOIS FIELD
Theorem 1: A multiplicative group of GF(Pn) is cyclic.
Theorem 2: Let F be a finite field with Pn elements and let
 F. Then there exists elements  and  in F such that
= 2+ 2.
Theorem 3: GF( pn) has a subfield F′ with pm elements if
and only if m | n. Moreover, F' is unique.
Theorem 4: The number of elements in a finite field of
characteristic p is of the form Pn, n being some positive
integer.
Theorem 5: Each element of a finite field with p elements
satisfies the equation 𝑥𝑝𝑛
− 𝑥 = 0.
Theorem 6: lf a finite field F has pn elements , then F is
the decomposition field of the polynomial 𝑥𝑝𝑛
− 𝑥.
Computational approach of Galois Field
CHECKING
Now we illustrate the example GF-17 by a programming
language MATHEMATICA 5.2.We know that
𝑍17={0, 1,2,3,4,5,…….14, 15, 16 } is a field. By using this
program we can check any GF-n, where n is any prime
number.
Here we start with EXIT to avoid the disturbance of those
symbols which was used in previous time and to show all
the input and output of every line.
Mathematica program for Addition Table
In[1]:= Exit
In[2]:= n=17
Out[2]= 17
In[3]:= v=Table[i,{i,0,n-1}]
Out[3]= {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}
In[4]:= For[i=1,i<= n,i++,
For[j=1,j<= n,j++,
p=v[[i]]+v[[j]];
If[p>= n,r[j]=p-n,r[j]=p]];
q[i]=Table[r[k],{k,1,n}]];
rslt=Table[q[l],{l,1,n}];
In[5]:= TableForm[rslt,TableHeadings->
{{"0","1","2","3","4","5","6","7","8","9","10","11","12","13
","14","15","16"},{"0","1","2","3","4","5","6","7","8","9","
10","11","12","13","14","15","16"}},TableSpacing->{1,1}]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0
2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1
3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2
4 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3
5 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4
6 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5
7 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6
8 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7
9 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8
10 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9
11 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10
12 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11
13 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12
14 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13
15 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
16 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Out[5]=
Mathematica program for Multiplication Table
In[1]:= Exit
In[1]:= n=17
In[2]:= 17
In[3]:= v=Table[i,{i,0,n-1}]
In[3]:= {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}
In[4]:= For[i=2,i<=n,i++,
For[j=2,j<=n,j++,
p=v[[i]]*v[[j]];
If[p>n,r[j]=Mod[p,n],r[j]=p]];
q[i]=Table[r[k],{k,2,n}]];
rslt=Table[q[l],{l,2,n}];
In[5]:= TableForm[rslt,TableHeadings-
>Automatic,TableSpacing->{1,1}]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15
3 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14
4 4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13
5 5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12
6 6 12 1 7 13 2 8 14 3 9 15 4 10 16 5 11
7 7 14 4 11 1 8 15 5 12 2 9 16 6 13 3 10
8 8 16 7 15 6 14 5 13 4 12 3 11 2 10 1 9
9 9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8
10 10 3 13 6 16 9 2 12 5 15 8 1 11 4 14 7
11 11 5 16 10 4 15 9 3 14 8 2 13 7 1 12 6
12 12 7 2 14 9 4 16 11 6 1 13 8 3 15 10 5
13 13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4
14 14 11 8 5 2 16 13 10 7 4 1 15 12 9 6 3
15 15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2
16 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Out[5]:=
VERIFICATION:
We verify the theorem 2 for p=23, n=1, i.e. for Galois field
GF(23).
We know that 𝑍23={0, 1,2,3,4,5,…….22} is a field. Thus we
may consider GF(23)=𝑍23.
Now using the following computer program, we verify that
for every αGF(23),there exists µ, GF(23) satisfying
α=µ2
+𝜐2
.Here we use MATHEMATICA 5.2 programming
tools.
In[1]:= Exit
In[1]:= n=23;
In[2]:= v=Table[i,{i,0,n-1}];
In[3]:= For[i=1,i<= n,i++,
For[j=0,j<= n,j++,
For[k=0,k<= n,k++,
mat=v[[j]]^2+v[[k]]^2;
rem=Mod[mat,n];
If[v[[i]]==Š
rem,
p[i]=v[[i]];q[i]=v[[j]];r[i]=v[[k]]]]]
Print[p[i],"=",q[i],"^2 +",r[i],"^2"]]
Out[3]:=
0 = 0 ^2 + 0 ^2
1 = 22 ^2 + 0 ^2
2 = 22 ^2 + 22 ^2
3 = 22 ^2 + 18 ^2
4 = 22 ^2 + 16 ^2
5 = 22 ^2 + 21 ^2
6 = 21 ^2 + 18 ^2
7 = 22 ^2 + 12 ^2
8 = 21 ^2 + 21 ^2
9 = 22 ^2 + 13 ^2
10 = 22 ^2 + 20 ^2
11 = 20 ^2 + 18 ^2
12 = 21 ^2 + 13 ^2
13 = 22 ^2 + 14 ^2
14 = 22 ^2 + 17 ^2
15 = 20 ^2 + 12 ^2
16 = 21 ^2 + 14 ^2
17 = 22 ^2 + 19 ^2
18 = 20 ^2 + 20 ^2
19 = 22 ^2 + 15 ^2
20 = 21 ^2 + 19 ^2
21 = 20 ^2 + 14 ^2
22 = 21 ^2 + 15 ^2
Since it is possible to write α=µ2
+𝜐2
where α, µ,  𝑍23
then we conclude that every root can be expressed as the
sum of two squares.
APPLICATIONS OF GALOIS FIELD
1. Galois field is used in Cryptography
2. Galois field is used in Coding theory and Combinatorial
design and Quantum error correction.
3. The most commonly used Galois Field is GF(256) i.e
GF(28
).
4. All CD and DVD players use computation in Galois
Field, as do many disk storage system.
5. Galois Field is used to develop some Mathematical
Theories , which have a lot of real life application.
REFERENCES
[1] Hiram Palely and Paul M. Weichsel: “A First Course in Abstract Algebra”
New York, Holt, 1996.
[2] J.S. Milne:,”Fields and Galois Theory”, The photograph is of Sabre Peak,
Moraine Creek, New Zealand
[3] R. S. Aggarwal: A text book on modern algebra.
[4] Mary Gray: “A radical approach to algebra”, Addison-Wesley publishing
Co. London,1970.
[5] Professor Abdur Rahman : “ Abstract Algebra”,Dhaka,1995.
[6] Bhattacharya, P.B. adds Jain, S.K., and Naipaul: “A first course in rings,
fields and vector spaces, Halsted Press, New York, 1977.
[7] John.B Fraleigh , “A First Course in Abstract Algebra”. Copyright by
Pearson Education, Inc
Website : www.mathworld.wolfarm.com
www.google.com
www.encyclopedia.com
http://members.aol.com/gmtsgibbs/galois.html
https://en.wikipedia.org
THANK YOU

More Related Content

PPTX
A Short Study of Galois Field
PDF
Overview of sparse and low-rank matrix / tensor techniques
PDF
Application of parallel hierarchical matrices and low-rank tensors in spatial...
PDF
Quantum mechanics 1st edition mc intyre solutions manual
PDF
Identification of unknown parameters and prediction with hierarchical matrice...
PPTX
CMSC 56 | Lecture 8: Growth of Functions
A Short Study of Galois Field
Overview of sparse and low-rank matrix / tensor techniques
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Quantum mechanics 1st edition mc intyre solutions manual
Identification of unknown parameters and prediction with hierarchical matrice...
CMSC 56 | Lecture 8: Growth of Functions

Similar to newmicrosoftofficepowerpointpresentation-150826055944-lva1-app6891.pdf (20)

PDF
Application of parallel hierarchical matrices for parameter inference and pre...
PDF
Identification of unknown parameters and prediction of missing values. Compar...
PPTX
Algorithms required for data structures(basics like Arrays, Stacks ,Linked Li...
PPTX
Causal Inference in R
PPTX
MODULAR ARITHADSAFAFSFFAFAFAFAFASMETIC.pptx
DOCX
Project Management and Statistical Process Control Homework Assign.docx
PDF
"SSumM: Sparse Summarization of Massive Graphs", KDD 2020
PDF
A NEW RANKING ON HEXAGONAL FUZZY NUMBERS
PDF
A NEW RANKING ON HEXAGONAL FUZZY NUMBER
PPT
Algorithm.ppt
PPTX
Multiplication The Complement Method
PDF
An efficient algorithm for the computation of Bernoulli numbers
PDF
Ncert solutions for class 9 maths
PPTX
Factors of polynomial
PPTX
Chapter 12 Dynamic programming.pptx
PPT
Analysis Of Algorithms I
PPTX
Control charts
PPTX
Iterations FOR LOOP AND WHILE LOOP .pptx
PDF
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
PDF
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
Application of parallel hierarchical matrices for parameter inference and pre...
Identification of unknown parameters and prediction of missing values. Compar...
Algorithms required for data structures(basics like Arrays, Stacks ,Linked Li...
Causal Inference in R
MODULAR ARITHADSAFAFSFFAFAFAFAFASMETIC.pptx
Project Management and Statistical Process Control Homework Assign.docx
"SSumM: Sparse Summarization of Massive Graphs", KDD 2020
A NEW RANKING ON HEXAGONAL FUZZY NUMBERS
A NEW RANKING ON HEXAGONAL FUZZY NUMBER
Algorithm.ppt
Multiplication The Complement Method
An efficient algorithm for the computation of Bernoulli numbers
Ncert solutions for class 9 maths
Factors of polynomial
Chapter 12 Dynamic programming.pptx
Analysis Of Algorithms I
Control charts
Iterations FOR LOOP AND WHILE LOOP .pptx
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
Ad

Recently uploaded (20)

PPTX
perinatal infections 2-171220190027.pptx
PPTX
Pharmacology of Autonomic nervous system
PDF
An interstellar mission to test astrophysical black holes
PDF
The Land of Punt — A research by Dhani Irwanto
PDF
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PDF
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
PPTX
Overview of calcium in human muscles.pptx
PPTX
Hypertension_Training_materials_English_2024[1] (1).pptx
PPTX
Application of enzymes in medicine (2).pptx
PPT
6.1 High Risk New Born. Padetric health ppt
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PPTX
Biomechanics of the Hip - Basic Science.pptx
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PDF
The scientific heritage No 166 (166) (2025)
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PDF
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
PDF
Sciences of Europe No 170 (2025)
PDF
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
PPTX
Introduction to Cardiovascular system_structure and functions-1
perinatal infections 2-171220190027.pptx
Pharmacology of Autonomic nervous system
An interstellar mission to test astrophysical black holes
The Land of Punt — A research by Dhani Irwanto
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
Overview of calcium in human muscles.pptx
Hypertension_Training_materials_English_2024[1] (1).pptx
Application of enzymes in medicine (2).pptx
6.1 High Risk New Born. Padetric health ppt
TOTAL hIP ARTHROPLASTY Presentation.pptx
Biomechanics of the Hip - Basic Science.pptx
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
The scientific heritage No 166 (166) (2025)
Biophysics 2.pdffffffffffffffffffffffffff
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
Sciences of Europe No 170 (2025)
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
Introduction to Cardiovascular system_structure and functions-1
Ad

newmicrosoftofficepowerpointpresentation-150826055944-lva1-app6891.pdf

  • 2. Presented By Exam Roll: 1820 Registration No: 2010-712-250 Department Of Mathematics University Of Dhaka A SHORT STUDY OF GALOIS FIELD
  • 3.  Objectives Of The Project  To introduce Galois Field.  To discuss related theorems.  Computational approach of Galois Field.  Applications of Galois Field.
  • 4.  What is Galois field ? A Galois field(so-named in honor of Évariste Galois) is a field in which the number of elements is always a positive integer power of a prime number. That is, the number of elements of a Galois field is of the form pn , where p is a prime and n is a positive integer. Generally it is denoted by GF(pn ). Évariste Galois(1811-1832)
  • 5.  Examples 1. GF(31)={0,1,2} forms a Galois field. Addition table Where 0 is the additive identity element and 0 is the additive inverse of 0 1 is the additive inverse of 2 2 is the additive inverse of 1 Addition 0 1 2 0 0 1 2 1 1 2 0 2 2 0 1
  • 6. Multiplication 1 2 1 1 2 2 2 1 Multiplication Table Where 1 is the multiplicative identity element and 1 is the multiplicative inverse of 1 2 is the multiplicative inverse of 2
  • 7. 2. GF-13:The elements are 0,1,2,3,4,5,6,7,8,9,a,b and c. Here a=10, b=11, c =12. Addition Table Additi on 0 1 2 3 4 5 6 7 8 9 a b c 0 0 1 2 3 4 5 6 7 8 9 a b c 1 1 2 3 4 5 6 7 8 9 a b c 0 2 2 3 4 5 6 7 8 9 a b c 0 1 3 3 4 5 6 7 8 9 a b c 0 1 2 4 4 5 6 7 8 9 a b c 0 1 2 3 5 5 6 7 8 9 a b c 0 1 2 3 4 6 6 7 8 9 a b c 0 1 2 3 4 5 7 7 8 9 a b c 0 1 2 3 4 5 6 8 8 9 a b c 0 1 2 3 4 5 6 7 9 9 a b c 0 1 2 3 4 5 6 7 8 a a b c 0 1 2 3 4 5 6 7 8 9 b b c 0 1 2 3 4 5 6 7 8 9 a c c 0 1 2 3 4 5 6 7 8 9 a b
  • 8. Multipl ication 1 2 3 4 5 6 7 8 9 a b c 1 1 2 3 4 5 6 7 8 9 a b c 2 2 4 6 8 a c 1 3 5 7 9 b 3 3 6 9 c 2 5 8 b 1 4 7 a 4 4 8 c 3 7 b 2 6 a 1 5 9 5 5 a 2 7 c 4 9 1 6 b 3 8 6 6 c 5 b 4 a 3 9 2 8 1 7 7 7 1 8 2 9 3 a 4 b 5 c 6 8 8 3 b 6 1 9 4 c 7 2 a 5 9 9 5 1 a 6 2 b 7 3 c 8 4 a a 7 4 1 b 8 5 2 c 9 6 3 b b 9 7 5 3 1 c a 8 6 4 2 c c b a 9 8 7 6 5 4 3 2 1 Multiplication Table
  • 10. Theorem 1: A multiplicative group of GF(Pn) is cyclic. Theorem 2: Let F be a finite field with Pn elements and let  F. Then there exists elements  and  in F such that = 2+ 2. Theorem 3: GF( pn) has a subfield F′ with pm elements if and only if m | n. Moreover, F' is unique. Theorem 4: The number of elements in a finite field of characteristic p is of the form Pn, n being some positive integer. Theorem 5: Each element of a finite field with p elements satisfies the equation 𝑥𝑝𝑛 − 𝑥 = 0. Theorem 6: lf a finite field F has pn elements , then F is the decomposition field of the polynomial 𝑥𝑝𝑛 − 𝑥.
  • 12. CHECKING Now we illustrate the example GF-17 by a programming language MATHEMATICA 5.2.We know that 𝑍17={0, 1,2,3,4,5,…….14, 15, 16 } is a field. By using this program we can check any GF-n, where n is any prime number. Here we start with EXIT to avoid the disturbance of those symbols which was used in previous time and to show all the input and output of every line.
  • 13. Mathematica program for Addition Table In[1]:= Exit In[2]:= n=17 Out[2]= 17 In[3]:= v=Table[i,{i,0,n-1}] Out[3]= {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} In[4]:= For[i=1,i<= n,i++, For[j=1,j<= n,j++, p=v[[i]]+v[[j]]; If[p>= n,r[j]=p-n,r[j]=p]]; q[i]=Table[r[k],{k,1,n}]]; rslt=Table[q[l],{l,1,n}]; In[5]:= TableForm[rslt,TableHeadings-> {{"0","1","2","3","4","5","6","7","8","9","10","11","12","13 ","14","15","16"},{"0","1","2","3","4","5","6","7","8","9"," 10","11","12","13","14","15","16"}},TableSpacing->{1,1}]
  • 14. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 4 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 6 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 7 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 8 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 9 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 10 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 11 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 12 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 13 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 14 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Out[5]=
  • 15. Mathematica program for Multiplication Table In[1]:= Exit In[1]:= n=17 In[2]:= 17 In[3]:= v=Table[i,{i,0,n-1}] In[3]:= {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} In[4]:= For[i=2,i<=n,i++, For[j=2,j<=n,j++, p=v[[i]]*v[[j]]; If[p>n,r[j]=Mod[p,n],r[j]=p]]; q[i]=Table[r[k],{k,2,n}]]; rslt=Table[q[l],{l,2,n}]; In[5]:= TableForm[rslt,TableHeadings- >Automatic,TableSpacing->{1,1}]
  • 16. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15 3 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14 4 4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13 5 5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12 6 6 12 1 7 13 2 8 14 3 9 15 4 10 16 5 11 7 7 14 4 11 1 8 15 5 12 2 9 16 6 13 3 10 8 8 16 7 15 6 14 5 13 4 12 3 11 2 10 1 9 9 9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8 10 10 3 13 6 16 9 2 12 5 15 8 1 11 4 14 7 11 11 5 16 10 4 15 9 3 14 8 2 13 7 1 12 6 12 12 7 2 14 9 4 16 11 6 1 13 8 3 15 10 5 13 13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4 14 14 11 8 5 2 16 13 10 7 4 1 15 12 9 6 3 15 15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2 16 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Out[5]:=
  • 17. VERIFICATION: We verify the theorem 2 for p=23, n=1, i.e. for Galois field GF(23). We know that 𝑍23={0, 1,2,3,4,5,…….22} is a field. Thus we may consider GF(23)=𝑍23. Now using the following computer program, we verify that for every αGF(23),there exists µ, GF(23) satisfying α=µ2 +𝜐2 .Here we use MATHEMATICA 5.2 programming tools.
  • 18. In[1]:= Exit In[1]:= n=23; In[2]:= v=Table[i,{i,0,n-1}]; In[3]:= For[i=1,i<= n,i++, For[j=0,j<= n,j++, For[k=0,k<= n,k++, mat=v[[j]]^2+v[[k]]^2; rem=Mod[mat,n]; If[v[[i]]==Š rem, p[i]=v[[i]];q[i]=v[[j]];r[i]=v[[k]]]]] Print[p[i],"=",q[i],"^2 +",r[i],"^2"]]
  • 19. Out[3]:= 0 = 0 ^2 + 0 ^2 1 = 22 ^2 + 0 ^2 2 = 22 ^2 + 22 ^2 3 = 22 ^2 + 18 ^2 4 = 22 ^2 + 16 ^2 5 = 22 ^2 + 21 ^2 6 = 21 ^2 + 18 ^2 7 = 22 ^2 + 12 ^2 8 = 21 ^2 + 21 ^2 9 = 22 ^2 + 13 ^2 10 = 22 ^2 + 20 ^2 11 = 20 ^2 + 18 ^2 12 = 21 ^2 + 13 ^2 13 = 22 ^2 + 14 ^2 14 = 22 ^2 + 17 ^2 15 = 20 ^2 + 12 ^2
  • 20. 16 = 21 ^2 + 14 ^2 17 = 22 ^2 + 19 ^2 18 = 20 ^2 + 20 ^2 19 = 22 ^2 + 15 ^2 20 = 21 ^2 + 19 ^2 21 = 20 ^2 + 14 ^2 22 = 21 ^2 + 15 ^2 Since it is possible to write α=µ2 +𝜐2 where α, µ,  𝑍23 then we conclude that every root can be expressed as the sum of two squares.
  • 22. 1. Galois field is used in Cryptography 2. Galois field is used in Coding theory and Combinatorial design and Quantum error correction. 3. The most commonly used Galois Field is GF(256) i.e GF(28 ). 4. All CD and DVD players use computation in Galois Field, as do many disk storage system. 5. Galois Field is used to develop some Mathematical Theories , which have a lot of real life application.
  • 23. REFERENCES [1] Hiram Palely and Paul M. Weichsel: “A First Course in Abstract Algebra” New York, Holt, 1996. [2] J.S. Milne:,”Fields and Galois Theory”, The photograph is of Sabre Peak, Moraine Creek, New Zealand [3] R. S. Aggarwal: A text book on modern algebra. [4] Mary Gray: “A radical approach to algebra”, Addison-Wesley publishing Co. London,1970. [5] Professor Abdur Rahman : “ Abstract Algebra”,Dhaka,1995. [6] Bhattacharya, P.B. adds Jain, S.K., and Naipaul: “A first course in rings, fields and vector spaces, Halsted Press, New York, 1977. [7] John.B Fraleigh , “A First Course in Abstract Algebra”. Copyright by Pearson Education, Inc Website : www.mathworld.wolfarm.com www.google.com www.encyclopedia.com http://members.aol.com/gmtsgibbs/galois.html https://en.wikipedia.org