SlideShare a Scribd company logo
2
PythonForDataScience Cheat Sheet
NumPy Basics
Learn Python for Data Science Interactively at www.DataCamp.com
NumPy
DataCamp
Learn Python for Data Science Interactively
The NumPy library is the core library for scientific computing in
Python. It provides a high-performance multidimensional array
object, and tools for working with these arrays.
>>> import numpy as np
Use the following import convention:
Creating Arrays
>>> np.zeros((3,4)) Create an array of zeros
>>> np.ones((2,3,4),dtype=np.int16) Create an array of ones
>>> d = np.arange(10,25,5) Create an array of evenly
spaced values (step value)
>>> np.linspace(0,2,9) Create an array of evenly
spaced values (number of samples)
>>> e = np.full((2,2),7) Create a constant array
>>> f = np.eye(2) Create a 2X2 identity matrix
>>> np.random.random((2,2)) Create an array with random values
>>> np.empty((3,2)) Create an empty array
Array Mathematics
>>> g = a - b Subtraction
array([[-0.5, 0. , 0. ],
[-3. , -3. , -3. ]])
>>> np.subtract(a,b) Subtraction
>>> b + a Addition
array([[ 2.5, 4. , 6. ],
[ 5. , 7. , 9. ]])
>>> np.add(b,a) Addition
>>> a / b Division
array([[ 0.66666667, 1. , 1. ],
[ 0.25 , 0.4 , 0.5 ]])
>>> np.divide(a,b) Division
>>> a * b Multiplication
array([[ 1.5, 4. , 9. ],
[ 4. , 10. , 18. ]])
>>> np.multiply(a,b) Multiplication
>>> np.exp(b) Exponentiation
>>> np.sqrt(b) Square root
>>> np.sin(a) Print sines of an array
>>> np.cos(b) Element-wise cosine
>>> np.log(a) Element-wise natural logarithm
>>> e.dot(f) Dot product
array([[ 7., 7.],
[ 7., 7.]])
Subsetting, Slicing, Indexing
>>> a.sum() Array-wise sum
>>> a.min() Array-wise minimum value
>>> b.max(axis=0) Maximum value of an array row
>>> b.cumsum(axis=1) Cumulative sum of the elements
>>> a.mean() Mean
>>> b.median() Median
>>> a.corrcoef() Correlation coefficient
>>> np.std(b) Standard deviation
Comparison
>>> a == b Element-wise comparison
array([[False, True, True],
[False, False, False]], dtype=bool)
>>> a < 2 Element-wise comparison
array([True, False, False], dtype=bool)
>>> np.array_equal(a, b) Array-wise comparison
1 2 3
1D array 2D array 3D array
1.5 2 3
4 5 6
Array Manipulation
NumPy Arrays
axis 0
axis 1
axis 0
axis 1
axis 2
Arithmetic Operations
Transposing Array
>>> i = np.transpose(b) Permute array dimensions
>>> i.T Permute array dimensions
Changing Array Shape
>>> b.ravel() Flatten the array
>>> g.reshape(3,-2) Reshape, but don’t change data
Adding/Removing Elements
>>> h.resize((2,6)) Return a new array with shape (2,6)
>>> np.append(h,g) Append items to an array
>>> np.insert(a, 1, 5) Insert items in an array
>>> np.delete(a,[1]) Delete items from an array
Combining Arrays
>>> np.concatenate((a,d),axis=0) Concatenate arrays
array([ 1, 2, 3, 10, 15, 20])
>>> np.vstack((a,b)) Stack arrays vertically (row-wise)
array([[ 1. , 2. , 3. ],
[ 1.5, 2. , 3. ],
[ 4. , 5. , 6. ]])
>>> np.r_[e,f] Stack arrays vertically (row-wise)
>>> np.hstack((e,f)) Stack arrays horizontally (column-wise)
array([[ 7., 7., 1., 0.],
[ 7., 7., 0., 1.]])
>>> np.column_stack((a,d)) Create stacked column-wise arrays
array([[ 1, 10],
[ 2, 15],
[ 3, 20]])
>>> np.c_[a,d] Create stacked column-wise arrays
Splitting Arrays
>>> np.hsplit(a,3) Split the array horizontally at the 3rd
[array([1]),array([2]),array([3])] index
>>> np.vsplit(c,2) Split the array vertically at the 2nd index
[array([[[ 1.5, 2. , 1. ],
[ 4. , 5. , 6. ]]]),
array([[[ 3., 2., 3.],
[ 4., 5., 6.]]])]
Also see Lists
Subsetting
>>> a[2] Select the element at the 2nd index
3
>>> b[1,2] Select the element at row 1 column 2
6.0 (equivalent to b[1][2])
Slicing
>>> a[0:2] Select items at index 0 and 1
array([1, 2])
>>> b[0:2,1] Select items at rows 0 and 1 in column 1
array([ 2., 5.])
>>> b[:1] Select all items at row 0
array([[1.5, 2., 3.]]) (equivalent to b[0:1, :])
>>> c[1,...] Same as [1,:,:]
array([[[ 3., 2., 1.],
[ 4., 5., 6.]]])
>>> a[ : :-1] Reversed array a
array([3, 2, 1])
Boolean Indexing
>>> a[a<2] Select elements from a less than 2
array([1])
Fancy Indexing
>>> b[[1, 0, 1, 0],[0, 1, 2, 0]] Select elements (1,0),(0,1),(1,2)and (0,0)
array([ 4. , 2. , 6. , 1.5])
>>> b[[1, 0, 1, 0]][:,[0,1,2,0]] Select a subset of the matrix’s rows
array([[ 4. ,5. , 6. , 4. ], and columns
[ 1.5, 2. , 3. , 1.5],
[ 4. , 5. , 6. , 4. ],
[ 1.5, 2. , 3. , 1.5]])
>>> a = np.array([1,2,3])
>>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float)
>>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]],
dtype = float)
Initial Placeholders
Aggregate Functions
>>> np.loadtxt("myfile.txt")
>>> np.genfromtxt("my_file.csv", delimiter=',')
>>> np.savetxt("myarray.txt", a, delimiter=" ")
I/O
1 2 3
1.5 2 3
4 5 6
Copying Arrays
>>> h = a.view() Create a view of the array with the same data
>>> np.copy(a) Create a copy of the array
>>> h = a.copy() Create a deep copy of the array
Saving & Loading Text Files
Saving & Loading On Disk
>>> np.save('my_array', a)
>>> np.savez('array.npz', a, b)
>>> np.load('my_array.npy')
>>> a.shape Array dimensions
>>> len(a) Length of array
>>> b.ndim Number of array dimensions
>>> e.size Number of array elements
>>> b.dtype Data type of array elements
>>> b.dtype.name Name of data type
>>> b.astype(int) Convert an array to a different type
Inspecting Your Array
>>> np.info(np.ndarray.dtype)
Asking For Help
Sorting Arrays
>>> a.sort() Sort an array
>>> c.sort(axis=0) Sort the elements of an array's axis
Data Types
>>> np.int64 Signed 64-bit integer types
>>> np.float32 Standard double-precision floating point
>>> np.complex Complex numbers represented by 128 floats
>>> np.bool Boolean type storing TRUE and FALSE values
>>> np.object Python object type
>>> np.string_ Fixed-length string type
>>> np.unicode_ Fixed-length unicode type
1 2 3
1.5 2 3
4 5 6
1.5 2 3
4 5 6
1 2 3

More Related Content

What's hot (20)

DataFrame in Python Pandas
DataFrame in Python PandasDataFrame in Python Pandas
DataFrame in Python Pandas
Sangita Panchal
 
Datastructures in python
Datastructures in pythonDatastructures in python
Datastructures in python
hydpy
 
Python Pandas
Python PandasPython Pandas
Python Pandas
Sunil OS
 
Introduction to Pandas and Time Series Analysis [PyCon DE]
Introduction to Pandas and Time Series Analysis [PyCon DE]Introduction to Pandas and Time Series Analysis [PyCon DE]
Introduction to Pandas and Time Series Analysis [PyCon DE]
Alexander Hendorf
 
Python - Numpy/Pandas/Matplot Machine Learning Libraries
Python - Numpy/Pandas/Matplot Machine Learning LibrariesPython - Numpy/Pandas/Matplot Machine Learning Libraries
Python - Numpy/Pandas/Matplot Machine Learning Libraries
Andrew Ferlitsch
 
Python Variable Types, List, Tuple, Dictionary
Python Variable Types, List, Tuple, DictionaryPython Variable Types, List, Tuple, Dictionary
Python Variable Types, List, Tuple, Dictionary
Soba Arjun
 
Pandas
PandasPandas
Pandas
Jyoti shukla
 
SQL
SQLSQL
SQL
Reimuel Bisnar
 
Arrays
ArraysArrays
Arrays
archikabhatia
 
Arrays in python
Arrays in pythonArrays in python
Arrays in python
Lifna C.S
 
Python GUI
Python GUIPython GUI
Python GUI
LusciousLarryDas
 
PostgreSQL Tutorial for Beginners | Edureka
PostgreSQL Tutorial for Beginners | EdurekaPostgreSQL Tutorial for Beginners | Edureka
PostgreSQL Tutorial for Beginners | Edureka
Edureka!
 
Heaps
HeapsHeaps
Heaps
invertis university
 
Vector
VectorVector
Vector
Joyjit Choudhury
 
pandas - Python Data Analysis
pandas - Python Data Analysispandas - Python Data Analysis
pandas - Python Data Analysis
Andrew Henshaw
 
DataCamp Cheat Sheets 4 Python Users (2020)
DataCamp Cheat Sheets 4 Python Users (2020)DataCamp Cheat Sheets 4 Python Users (2020)
DataCamp Cheat Sheets 4 Python Users (2020)
EMRE AKCAOGLU
 
SQL
SQL SQL
SQL
Bhandari Nawaraj
 
PYTHON - TKINTER - GUI - PART 1.ppt
PYTHON - TKINTER - GUI - PART 1.pptPYTHON - TKINTER - GUI - PART 1.ppt
PYTHON - TKINTER - GUI - PART 1.ppt
PriyaSoundararajan1
 
Html frames
Html framesHtml frames
Html frames
Arslan Elahi
 
Pandas.pptx
Pandas.pptxPandas.pptx
Pandas.pptx
Ramakrishna Reddy Bijjam
 
DataFrame in Python Pandas
DataFrame in Python PandasDataFrame in Python Pandas
DataFrame in Python Pandas
Sangita Panchal
 
Datastructures in python
Datastructures in pythonDatastructures in python
Datastructures in python
hydpy
 
Python Pandas
Python PandasPython Pandas
Python Pandas
Sunil OS
 
Introduction to Pandas and Time Series Analysis [PyCon DE]
Introduction to Pandas and Time Series Analysis [PyCon DE]Introduction to Pandas and Time Series Analysis [PyCon DE]
Introduction to Pandas and Time Series Analysis [PyCon DE]
Alexander Hendorf
 
Python - Numpy/Pandas/Matplot Machine Learning Libraries
Python - Numpy/Pandas/Matplot Machine Learning LibrariesPython - Numpy/Pandas/Matplot Machine Learning Libraries
Python - Numpy/Pandas/Matplot Machine Learning Libraries
Andrew Ferlitsch
 
Python Variable Types, List, Tuple, Dictionary
Python Variable Types, List, Tuple, DictionaryPython Variable Types, List, Tuple, Dictionary
Python Variable Types, List, Tuple, Dictionary
Soba Arjun
 
Arrays in python
Arrays in pythonArrays in python
Arrays in python
Lifna C.S
 
PostgreSQL Tutorial for Beginners | Edureka
PostgreSQL Tutorial for Beginners | EdurekaPostgreSQL Tutorial for Beginners | Edureka
PostgreSQL Tutorial for Beginners | Edureka
Edureka!
 
pandas - Python Data Analysis
pandas - Python Data Analysispandas - Python Data Analysis
pandas - Python Data Analysis
Andrew Henshaw
 
DataCamp Cheat Sheets 4 Python Users (2020)
DataCamp Cheat Sheets 4 Python Users (2020)DataCamp Cheat Sheets 4 Python Users (2020)
DataCamp Cheat Sheets 4 Python Users (2020)
EMRE AKCAOGLU
 
PYTHON - TKINTER - GUI - PART 1.ppt
PYTHON - TKINTER - GUI - PART 1.pptPYTHON - TKINTER - GUI - PART 1.ppt
PYTHON - TKINTER - GUI - PART 1.ppt
PriyaSoundararajan1
 

Similar to Numpy python cheat_sheet (20)

@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf
@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf
@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf
EMERSON EDUARDO RODRIGUES
 
Numpy_Cheat_Sheet.pdf
Numpy_Cheat_Sheet.pdfNumpy_Cheat_Sheet.pdf
Numpy_Cheat_Sheet.pdf
SkyNerve
 
NUMPY LIBRARY study materials PPT 2.pptx
NUMPY LIBRARY study materials PPT 2.pptxNUMPY LIBRARY study materials PPT 2.pptx
NUMPY LIBRARY study materials PPT 2.pptx
CHETHANKUMAR274045
 
Numpy cheat-sheet
Numpy cheat-sheetNumpy cheat-sheet
Numpy cheat-sheet
Arief Kurniawan
 
Numpy in python, Array operations using numpy and so on
Numpy in python, Array operations using numpy and so onNumpy in python, Array operations using numpy and so on
Numpy in python, Array operations using numpy and so on
SherinRappai
 
Data Preprocessing Introduction for Machine Learning
Data Preprocessing Introduction for Machine LearningData Preprocessing Introduction for Machine Learning
Data Preprocessing Introduction for Machine Learning
sonali sonavane
 
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
tahirnaquash2
 
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
DineshThallapelly
 
NUMPY [Autosaved] .pptx
NUMPY [Autosaved]                    .pptxNUMPY [Autosaved]                    .pptx
NUMPY [Autosaved] .pptx
coolmanbalu123
 
Arrays with Numpy, Computer Graphics
Arrays with Numpy, Computer GraphicsArrays with Numpy, Computer Graphics
Arrays with Numpy, Computer Graphics
Prabu U
 
Essential numpy before you start your Machine Learning journey in python.pdf
Essential numpy before you start your Machine Learning journey in python.pdfEssential numpy before you start your Machine Learning journey in python.pdf
Essential numpy before you start your Machine Learning journey in python.pdf
Smrati Kumar Katiyar
 
Introduction to numpy Session 1
Introduction to numpy Session 1Introduction to numpy Session 1
Introduction to numpy Session 1
Jatin Miglani
 
CAP776Numpy (2).ppt
CAP776Numpy (2).pptCAP776Numpy (2).ppt
CAP776Numpy (2).ppt
ChhaviCoachingCenter
 
CAP776Numpy.ppt
CAP776Numpy.pptCAP776Numpy.ppt
CAP776Numpy.ppt
kdr52121
 
CE344L-200365-Lab2.pdf
CE344L-200365-Lab2.pdfCE344L-200365-Lab2.pdf
CE344L-200365-Lab2.pdf
UmarMustafa13
 
Numpy_defintion_description_usage_examples.pptx
Numpy_defintion_description_usage_examples.pptxNumpy_defintion_description_usage_examples.pptx
Numpy_defintion_description_usage_examples.pptx
VGaneshKarthikeyan
 
NUMPY-2.pptx
NUMPY-2.pptxNUMPY-2.pptx
NUMPY-2.pptx
MahendraVusa
 
lec08-numpy.pptx
lec08-numpy.pptxlec08-numpy.pptx
lec08-numpy.pptx
lekha572836
 
numpy.pdf
numpy.pdfnumpy.pdf
numpy.pdf
ssuser457188
 
Introduction-to-NumPy-in-Python (1).pptx
Introduction-to-NumPy-in-Python (1).pptxIntroduction-to-NumPy-in-Python (1).pptx
Introduction-to-NumPy-in-Python (1).pptx
disserdekabrcha
 
@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf
@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf
@Computeronic_NumPy EMERSON EDUARDO RODRIGUES.pdf
EMERSON EDUARDO RODRIGUES
 
Numpy_Cheat_Sheet.pdf
Numpy_Cheat_Sheet.pdfNumpy_Cheat_Sheet.pdf
Numpy_Cheat_Sheet.pdf
SkyNerve
 
NUMPY LIBRARY study materials PPT 2.pptx
NUMPY LIBRARY study materials PPT 2.pptxNUMPY LIBRARY study materials PPT 2.pptx
NUMPY LIBRARY study materials PPT 2.pptx
CHETHANKUMAR274045
 
Numpy in python, Array operations using numpy and so on
Numpy in python, Array operations using numpy and so onNumpy in python, Array operations using numpy and so on
Numpy in python, Array operations using numpy and so on
SherinRappai
 
Data Preprocessing Introduction for Machine Learning
Data Preprocessing Introduction for Machine LearningData Preprocessing Introduction for Machine Learning
Data Preprocessing Introduction for Machine Learning
sonali sonavane
 
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
tahirnaquash2
 
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
DineshThallapelly
 
NUMPY [Autosaved] .pptx
NUMPY [Autosaved]                    .pptxNUMPY [Autosaved]                    .pptx
NUMPY [Autosaved] .pptx
coolmanbalu123
 
Arrays with Numpy, Computer Graphics
Arrays with Numpy, Computer GraphicsArrays with Numpy, Computer Graphics
Arrays with Numpy, Computer Graphics
Prabu U
 
Essential numpy before you start your Machine Learning journey in python.pdf
Essential numpy before you start your Machine Learning journey in python.pdfEssential numpy before you start your Machine Learning journey in python.pdf
Essential numpy before you start your Machine Learning journey in python.pdf
Smrati Kumar Katiyar
 
Introduction to numpy Session 1
Introduction to numpy Session 1Introduction to numpy Session 1
Introduction to numpy Session 1
Jatin Miglani
 
CAP776Numpy.ppt
CAP776Numpy.pptCAP776Numpy.ppt
CAP776Numpy.ppt
kdr52121
 
CE344L-200365-Lab2.pdf
CE344L-200365-Lab2.pdfCE344L-200365-Lab2.pdf
CE344L-200365-Lab2.pdf
UmarMustafa13
 
Numpy_defintion_description_usage_examples.pptx
Numpy_defintion_description_usage_examples.pptxNumpy_defintion_description_usage_examples.pptx
Numpy_defintion_description_usage_examples.pptx
VGaneshKarthikeyan
 
lec08-numpy.pptx
lec08-numpy.pptxlec08-numpy.pptx
lec08-numpy.pptx
lekha572836
 
Introduction-to-NumPy-in-Python (1).pptx
Introduction-to-NumPy-in-Python (1).pptxIntroduction-to-NumPy-in-Python (1).pptx
Introduction-to-NumPy-in-Python (1).pptx
disserdekabrcha
 
Ad

More from Nishant Upadhyay (13)

Multivariate calculus
Multivariate calculusMultivariate calculus
Multivariate calculus
Nishant Upadhyay
 
Multivariate calculus
Multivariate calculusMultivariate calculus
Multivariate calculus
Nishant Upadhyay
 
Matrices1
Matrices1Matrices1
Matrices1
Nishant Upadhyay
 
Vectors2
Vectors2Vectors2
Vectors2
Nishant Upadhyay
 
Mathematics for machine learning calculus formulasheet
Mathematics for machine learning calculus formulasheetMathematics for machine learning calculus formulasheet
Mathematics for machine learning calculus formulasheet
Nishant Upadhyay
 
Pandas pythonfordatascience
Pandas pythonfordatasciencePandas pythonfordatascience
Pandas pythonfordatascience
Nishant Upadhyay
 
Maths4ml linearalgebra-formula
Maths4ml linearalgebra-formulaMaths4ml linearalgebra-formula
Maths4ml linearalgebra-formula
Nishant Upadhyay
 
Sqlcheetsheet
SqlcheetsheetSqlcheetsheet
Sqlcheetsheet
Nishant Upadhyay
 
Sql cheat-sheet
Sql cheat-sheetSql cheat-sheet
Sql cheat-sheet
Nishant Upadhyay
 
My sql installationguide_windows
My sql installationguide_windowsMy sql installationguide_windows
My sql installationguide_windows
Nishant Upadhyay
 
Company handout
Company handoutCompany handout
Company handout
Nishant Upadhyay
 
Python bokeh cheat_sheet
Python bokeh cheat_sheet Python bokeh cheat_sheet
Python bokeh cheat_sheet
Nishant Upadhyay
 
Foliumcheatsheet
FoliumcheatsheetFoliumcheatsheet
Foliumcheatsheet
Nishant Upadhyay
 
Ad

Recently uploaded (20)

Report_Government Authorities_Index_ENG_FIN.pdf
Report_Government Authorities_Index_ENG_FIN.pdfReport_Government Authorities_Index_ENG_FIN.pdf
Report_Government Authorities_Index_ENG_FIN.pdf
OlhaTatokhina1
 
apidays New York 2025 - Breaking Barriers: Lessons Learned from API Integrati...
apidays New York 2025 - Breaking Barriers: Lessons Learned from API Integrati...apidays New York 2025 - Breaking Barriers: Lessons Learned from API Integrati...
apidays New York 2025 - Breaking Barriers: Lessons Learned from API Integrati...
apidays
 
apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)
apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)
apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)
apidays
 
MEDIA_LITERACY_INDEX_OF_EDUCATORS_ENG.pdf
MEDIA_LITERACY_INDEX_OF_EDUCATORS_ENG.pdfMEDIA_LITERACY_INDEX_OF_EDUCATORS_ENG.pdf
MEDIA_LITERACY_INDEX_OF_EDUCATORS_ENG.pdf
OlhaTatokhina1
 
Mining Presentation Online Courses for Student
Mining Presentation Online Courses for StudentMining Presentation Online Courses for Student
Mining Presentation Online Courses for Student
Rizki229625
 
MICROSOFT POWERPOINT AND USES(BEST)..pdf
MICROSOFT POWERPOINT AND USES(BEST)..pdfMICROSOFT POWERPOINT AND USES(BEST)..pdf
MICROSOFT POWERPOINT AND USES(BEST)..pdf
bathyates
 
Media_Literacy_Index_of_Media_Sector_Employees.pdf
Media_Literacy_Index_of_Media_Sector_Employees.pdfMedia_Literacy_Index_of_Media_Sector_Employees.pdf
Media_Literacy_Index_of_Media_Sector_Employees.pdf
OlhaTatokhina1
 
2.5-DESPATCH-ORDINARY MAILS.pptxlminub7b7t6f7h7t6f6g7g6fg
2.5-DESPATCH-ORDINARY MAILS.pptxlminub7b7t6f7h7t6f6g7g6fg2.5-DESPATCH-ORDINARY MAILS.pptxlminub7b7t6f7h7t6f6g7g6fg
2.5-DESPATCH-ORDINARY MAILS.pptxlminub7b7t6f7h7t6f6g7g6fg
mk1227103
 
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays
 
METHODS OF DATA COLLECTION (Research methodology)
METHODS OF DATA COLLECTION (Research methodology)METHODS OF DATA COLLECTION (Research methodology)
METHODS OF DATA COLLECTION (Research methodology)
anwesha248
 
apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...
apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...
apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...
apidays
 
apidays New York 2025 - Unifying OpenAPI & AsyncAPI by Naresh Jain & Hari Kri...
apidays New York 2025 - Unifying OpenAPI & AsyncAPI by Naresh Jain & Hari Kri...apidays New York 2025 - Unifying OpenAPI & AsyncAPI by Naresh Jain & Hari Kri...
apidays New York 2025 - Unifying OpenAPI & AsyncAPI by Naresh Jain & Hari Kri...
apidays
 
apidays New York 2025 - Boost API Development Velocity with Practical AI Tool...
apidays New York 2025 - Boost API Development Velocity with Practical AI Tool...apidays New York 2025 - Boost API Development Velocity with Practical AI Tool...
apidays New York 2025 - Boost API Development Velocity with Practical AI Tool...
apidays
 
[Eddie Lee] Capstone Project - AI PM Bootcamp - DataFox.pdf
[Eddie Lee] Capstone Project - AI PM Bootcamp - DataFox.pdf[Eddie Lee] Capstone Project - AI PM Bootcamp - DataFox.pdf
[Eddie Lee] Capstone Project - AI PM Bootcamp - DataFox.pdf
Eddie Lee
 
apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)
apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)
apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)
apidays
 
apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...
apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...
apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...
apidays
 
Retort Instrumentation laboratory practi
Retort Instrumentation laboratory practiRetort Instrumentation laboratory practi
Retort Instrumentation laboratory practi
ADINDADYAHMUKHLASIN
 
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays
 
apidays Singapore 2025 - What exactly are AI Agents by Aki Ranin (Earthshots ...
apidays Singapore 2025 - What exactly are AI Agents by Aki Ranin (Earthshots ...apidays Singapore 2025 - What exactly are AI Agents by Aki Ranin (Earthshots ...
apidays Singapore 2025 - What exactly are AI Agents by Aki Ranin (Earthshots ...
apidays
 
What is FinOps as a Service and why is it Trending?
What is FinOps as a Service and why is it Trending?What is FinOps as a Service and why is it Trending?
What is FinOps as a Service and why is it Trending?
Amnic
 
Report_Government Authorities_Index_ENG_FIN.pdf
Report_Government Authorities_Index_ENG_FIN.pdfReport_Government Authorities_Index_ENG_FIN.pdf
Report_Government Authorities_Index_ENG_FIN.pdf
OlhaTatokhina1
 
apidays New York 2025 - Breaking Barriers: Lessons Learned from API Integrati...
apidays New York 2025 - Breaking Barriers: Lessons Learned from API Integrati...apidays New York 2025 - Breaking Barriers: Lessons Learned from API Integrati...
apidays New York 2025 - Breaking Barriers: Lessons Learned from API Integrati...
apidays
 
apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)
apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)
apidays New York 2025 - Computers are still dumb by Ben Morss (DeepL)
apidays
 
MEDIA_LITERACY_INDEX_OF_EDUCATORS_ENG.pdf
MEDIA_LITERACY_INDEX_OF_EDUCATORS_ENG.pdfMEDIA_LITERACY_INDEX_OF_EDUCATORS_ENG.pdf
MEDIA_LITERACY_INDEX_OF_EDUCATORS_ENG.pdf
OlhaTatokhina1
 
Mining Presentation Online Courses for Student
Mining Presentation Online Courses for StudentMining Presentation Online Courses for Student
Mining Presentation Online Courses for Student
Rizki229625
 
MICROSOFT POWERPOINT AND USES(BEST)..pdf
MICROSOFT POWERPOINT AND USES(BEST)..pdfMICROSOFT POWERPOINT AND USES(BEST)..pdf
MICROSOFT POWERPOINT AND USES(BEST)..pdf
bathyates
 
Media_Literacy_Index_of_Media_Sector_Employees.pdf
Media_Literacy_Index_of_Media_Sector_Employees.pdfMedia_Literacy_Index_of_Media_Sector_Employees.pdf
Media_Literacy_Index_of_Media_Sector_Employees.pdf
OlhaTatokhina1
 
2.5-DESPATCH-ORDINARY MAILS.pptxlminub7b7t6f7h7t6f6g7g6fg
2.5-DESPATCH-ORDINARY MAILS.pptxlminub7b7t6f7h7t6f6g7g6fg2.5-DESPATCH-ORDINARY MAILS.pptxlminub7b7t6f7h7t6f6g7g6fg
2.5-DESPATCH-ORDINARY MAILS.pptxlminub7b7t6f7h7t6f6g7g6fg
mk1227103
 
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays New York 2025 - Why I Built Another Carbon Measurement Tool for LLMs ...
apidays
 
METHODS OF DATA COLLECTION (Research methodology)
METHODS OF DATA COLLECTION (Research methodology)METHODS OF DATA COLLECTION (Research methodology)
METHODS OF DATA COLLECTION (Research methodology)
anwesha248
 
apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...
apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...
apidays New York 2025 - Building Green Software by Marissa Jasso & Katya Drey...
apidays
 
apidays New York 2025 - Unifying OpenAPI & AsyncAPI by Naresh Jain & Hari Kri...
apidays New York 2025 - Unifying OpenAPI & AsyncAPI by Naresh Jain & Hari Kri...apidays New York 2025 - Unifying OpenAPI & AsyncAPI by Naresh Jain & Hari Kri...
apidays New York 2025 - Unifying OpenAPI & AsyncAPI by Naresh Jain & Hari Kri...
apidays
 
apidays New York 2025 - Boost API Development Velocity with Practical AI Tool...
apidays New York 2025 - Boost API Development Velocity with Practical AI Tool...apidays New York 2025 - Boost API Development Velocity with Practical AI Tool...
apidays New York 2025 - Boost API Development Velocity with Practical AI Tool...
apidays
 
[Eddie Lee] Capstone Project - AI PM Bootcamp - DataFox.pdf
[Eddie Lee] Capstone Project - AI PM Bootcamp - DataFox.pdf[Eddie Lee] Capstone Project - AI PM Bootcamp - DataFox.pdf
[Eddie Lee] Capstone Project - AI PM Bootcamp - DataFox.pdf
Eddie Lee
 
apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)
apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)
apidays New York 2025 - Two tales of API Change Management by Eric Koleda (Coda)
apidays
 
apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...
apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...
apidays New York 2025 - Lessons From Two Technical Transformations by Leah Hu...
apidays
 
Retort Instrumentation laboratory practi
Retort Instrumentation laboratory practiRetort Instrumentation laboratory practi
Retort Instrumentation laboratory practi
ADINDADYAHMUKHLASIN
 
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays New York 2025 - Spring Modulith Design for Microservices by Renjith R...
apidays
 
apidays Singapore 2025 - What exactly are AI Agents by Aki Ranin (Earthshots ...
apidays Singapore 2025 - What exactly are AI Agents by Aki Ranin (Earthshots ...apidays Singapore 2025 - What exactly are AI Agents by Aki Ranin (Earthshots ...
apidays Singapore 2025 - What exactly are AI Agents by Aki Ranin (Earthshots ...
apidays
 
What is FinOps as a Service and why is it Trending?
What is FinOps as a Service and why is it Trending?What is FinOps as a Service and why is it Trending?
What is FinOps as a Service and why is it Trending?
Amnic
 

Numpy python cheat_sheet

  • 1. 2 PythonForDataScience Cheat Sheet NumPy Basics Learn Python for Data Science Interactively at www.DataCamp.com NumPy DataCamp Learn Python for Data Science Interactively The NumPy library is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays. >>> import numpy as np Use the following import convention: Creating Arrays >>> np.zeros((3,4)) Create an array of zeros >>> np.ones((2,3,4),dtype=np.int16) Create an array of ones >>> d = np.arange(10,25,5) Create an array of evenly spaced values (step value) >>> np.linspace(0,2,9) Create an array of evenly spaced values (number of samples) >>> e = np.full((2,2),7) Create a constant array >>> f = np.eye(2) Create a 2X2 identity matrix >>> np.random.random((2,2)) Create an array with random values >>> np.empty((3,2)) Create an empty array Array Mathematics >>> g = a - b Subtraction array([[-0.5, 0. , 0. ], [-3. , -3. , -3. ]]) >>> np.subtract(a,b) Subtraction >>> b + a Addition array([[ 2.5, 4. , 6. ], [ 5. , 7. , 9. ]]) >>> np.add(b,a) Addition >>> a / b Division array([[ 0.66666667, 1. , 1. ], [ 0.25 , 0.4 , 0.5 ]]) >>> np.divide(a,b) Division >>> a * b Multiplication array([[ 1.5, 4. , 9. ], [ 4. , 10. , 18. ]]) >>> np.multiply(a,b) Multiplication >>> np.exp(b) Exponentiation >>> np.sqrt(b) Square root >>> np.sin(a) Print sines of an array >>> np.cos(b) Element-wise cosine >>> np.log(a) Element-wise natural logarithm >>> e.dot(f) Dot product array([[ 7., 7.], [ 7., 7.]]) Subsetting, Slicing, Indexing >>> a.sum() Array-wise sum >>> a.min() Array-wise minimum value >>> b.max(axis=0) Maximum value of an array row >>> b.cumsum(axis=1) Cumulative sum of the elements >>> a.mean() Mean >>> b.median() Median >>> a.corrcoef() Correlation coefficient >>> np.std(b) Standard deviation Comparison >>> a == b Element-wise comparison array([[False, True, True], [False, False, False]], dtype=bool) >>> a < 2 Element-wise comparison array([True, False, False], dtype=bool) >>> np.array_equal(a, b) Array-wise comparison 1 2 3 1D array 2D array 3D array 1.5 2 3 4 5 6 Array Manipulation NumPy Arrays axis 0 axis 1 axis 0 axis 1 axis 2 Arithmetic Operations Transposing Array >>> i = np.transpose(b) Permute array dimensions >>> i.T Permute array dimensions Changing Array Shape >>> b.ravel() Flatten the array >>> g.reshape(3,-2) Reshape, but don’t change data Adding/Removing Elements >>> h.resize((2,6)) Return a new array with shape (2,6) >>> np.append(h,g) Append items to an array >>> np.insert(a, 1, 5) Insert items in an array >>> np.delete(a,[1]) Delete items from an array Combining Arrays >>> np.concatenate((a,d),axis=0) Concatenate arrays array([ 1, 2, 3, 10, 15, 20]) >>> np.vstack((a,b)) Stack arrays vertically (row-wise) array([[ 1. , 2. , 3. ], [ 1.5, 2. , 3. ], [ 4. , 5. , 6. ]]) >>> np.r_[e,f] Stack arrays vertically (row-wise) >>> np.hstack((e,f)) Stack arrays horizontally (column-wise) array([[ 7., 7., 1., 0.], [ 7., 7., 0., 1.]]) >>> np.column_stack((a,d)) Create stacked column-wise arrays array([[ 1, 10], [ 2, 15], [ 3, 20]]) >>> np.c_[a,d] Create stacked column-wise arrays Splitting Arrays >>> np.hsplit(a,3) Split the array horizontally at the 3rd [array([1]),array([2]),array([3])] index >>> np.vsplit(c,2) Split the array vertically at the 2nd index [array([[[ 1.5, 2. , 1. ], [ 4. , 5. , 6. ]]]), array([[[ 3., 2., 3.], [ 4., 5., 6.]]])] Also see Lists Subsetting >>> a[2] Select the element at the 2nd index 3 >>> b[1,2] Select the element at row 1 column 2 6.0 (equivalent to b[1][2]) Slicing >>> a[0:2] Select items at index 0 and 1 array([1, 2]) >>> b[0:2,1] Select items at rows 0 and 1 in column 1 array([ 2., 5.]) >>> b[:1] Select all items at row 0 array([[1.5, 2., 3.]]) (equivalent to b[0:1, :]) >>> c[1,...] Same as [1,:,:] array([[[ 3., 2., 1.], [ 4., 5., 6.]]]) >>> a[ : :-1] Reversed array a array([3, 2, 1]) Boolean Indexing >>> a[a<2] Select elements from a less than 2 array([1]) Fancy Indexing >>> b[[1, 0, 1, 0],[0, 1, 2, 0]] Select elements (1,0),(0,1),(1,2)and (0,0) array([ 4. , 2. , 6. , 1.5]) >>> b[[1, 0, 1, 0]][:,[0,1,2,0]] Select a subset of the matrix’s rows array([[ 4. ,5. , 6. , 4. ], and columns [ 1.5, 2. , 3. , 1.5], [ 4. , 5. , 6. , 4. ], [ 1.5, 2. , 3. , 1.5]]) >>> a = np.array([1,2,3]) >>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float) >>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]], dtype = float) Initial Placeholders Aggregate Functions >>> np.loadtxt("myfile.txt") >>> np.genfromtxt("my_file.csv", delimiter=',') >>> np.savetxt("myarray.txt", a, delimiter=" ") I/O 1 2 3 1.5 2 3 4 5 6 Copying Arrays >>> h = a.view() Create a view of the array with the same data >>> np.copy(a) Create a copy of the array >>> h = a.copy() Create a deep copy of the array Saving & Loading Text Files Saving & Loading On Disk >>> np.save('my_array', a) >>> np.savez('array.npz', a, b) >>> np.load('my_array.npy') >>> a.shape Array dimensions >>> len(a) Length of array >>> b.ndim Number of array dimensions >>> e.size Number of array elements >>> b.dtype Data type of array elements >>> b.dtype.name Name of data type >>> b.astype(int) Convert an array to a different type Inspecting Your Array >>> np.info(np.ndarray.dtype) Asking For Help Sorting Arrays >>> a.sort() Sort an array >>> c.sort(axis=0) Sort the elements of an array's axis Data Types >>> np.int64 Signed 64-bit integer types >>> np.float32 Standard double-precision floating point >>> np.complex Complex numbers represented by 128 floats >>> np.bool Boolean type storing TRUE and FALSE values >>> np.object Python object type >>> np.string_ Fixed-length string type >>> np.unicode_ Fixed-length unicode type 1 2 3 1.5 2 3 4 5 6 1.5 2 3 4 5 6 1 2 3