SlideShare a Scribd company logo
1
Advanced Scikit-Learn
Andreas Mueller (NYU Center for Data Science, scikit-learn)
2
Me
3
Classification
Regression
Clustering
Semi-Supervised Learning
Feature Selection
Feature Extraction
Manifold Learning
Dimensionality Reduction
Kernel Approximation
Hyperparameter Optimization
Evaluation Metrics
Out-of-core learning
…...
4
5
Overview
● Reminder: Basic sklearn concepts
●
Model building and evaluation:
– Pipelines and Feature Unions
– Randomized Parameter Search
– Scoring Interface
● Out of Core learning
– Feature Hashing
– Kernel Approximation
● New stuff in 0.16.0
– Overview
– Calibration
6
Training Data
Training Labels
Model
Supervised Machine Learning
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
7
Training Data
Test Data
Training Labels
Model
Prediction
Supervised Machine Learning
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
8
clf.score(X_test, y_test)
Training Data
Test Data
Training Labels
Model
Prediction
Test Labels Evaluation
Supervised Machine Learning
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
9
pca = PCA(n_components=3)
pca.fit(X_train) Training Data Model
Unsupervised Transformations
10
pca = PCA(n_components=3)
pca.fit(X_train)
X_new = pca.transform(X_test)
Training Data
Test Data
Model
Transformation
Unsupervised Transformations
11
Basic API
estimator.fit(X, [y])
estimator.predict estimator.transform
Classification Preprocessing
Regression Dimensionality reduction
Clustering Feature selection
Feature extraction
12
Cross-Validation
from sklearn.cross_validation import cross_val_score
scores = cross_val_score(SVC(), X, y, cv=5)
print(scores)
>> [ 0.92 1. 1. 1. 1. ]
13
Cross-Validation
from sklearn.cross_validation import cross_val_score
scores = cross_val_score(SVC(), X, y, cv=5)
print(scores)
>> [ 0.92 1. 1. 1. 1. ]
cv_ss = ShuffleSplit(len(X_train), test_size=.3,
n_iter=10)
scores_shuffle_split = cross_val_score(SVC(), X, y,
cv=cv_ss)
14
Cross-Validation
from sklearn.cross_validation import cross_val_score
scores = cross_val_score(SVC(), X, y, cv=5)
print(scores)
>> [ 0.92 1. 1. 1. 1. ]
cv_ss = ShuffleSplit(len(X_train), test_size=.3,
n_iter=10)
scores_shuffle_split = cross_val_score(SVC(), X, y,
cv=cv_ss)
cv_labels = LeaveOneLabelOut(labels)
scores_pout = cross_val_score(SVC(), X, y, cv=cv_labels)
15
Cross -Validated Grid Search
16
Cross -Validated Grid Search
from sklearn.grid_search import GridSearchCV
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y)
param_grid = {'C': 10. ** np.arange(-3, 3),
'gamma': 10. ** np.arange(-3, 3)}
grid = GridSearchCV(SVC(), param_grid=param_grid)
grid.fit(X_train, y_train)
grid.predict(X_test)
grid.score(X_test, y_test)
17
Training DataTraining Labels
Model
18
Training DataTraining Labels
Model
19
Training DataTraining Labels
Model
Feature
Extraction
Scaling
Feature
Selection
20
Training DataTraining Labels
Model
Feature
Extraction
Scaling
Feature
Selection
Cross Validation
21
Training DataTraining Labels
Model
Feature
Extraction
Scaling
Feature
Selection
Cross Validation
22
Pipelines
from sklearn.pipeline import make_pipeline
pipe = make_pipeline(StandardScaler(), SVC())
pipe.fit(X_train, y_train)
pipe.predict(X_test)
23
Combining Pipelines and
Grid Search
Proper cross-validation
param_grid = {'svc__C': 10. ** np.arange(-3, 3),
'svc__gamma': 10. ** np.arange(-3, 3)}
scaler_pipe = make_pipeline(StandardScaler(), SVC())
grid = GridSearchCV(scaler_pipe, param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
24
Combining Pipelines and
Grid Search II
Searching over parameters of the preprocessing step
param_grid = {'selectkbest__k': [1, 2, 3, 4],
'svc__C': 10. ** np.arange(-3, 3),
'svc__gamma': 10. ** np.arange(-3, 3)}
scaler_pipe = make_pipeline(SelectKBest(), SVC())
grid = GridSearchCV(scaler_pipe, param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
25
Feature Union
Training DataTraining Labels
Model
Feature
Extraction I
Feature
Extraction II
26
Feature Union
char_and_word = make_union(CountVectorizer(analyzer="char"),
CountVectorizer(analyzer="word"))
text_pipe = make_pipeline(char_and_word, LinearSVC(dual=False))
param_grid = {'linearsvc__C': 10. ** np.arange(-3, 3)}
grid = GridSearchCV(text_pipe, param_grid=param_grid, cv=5)
27
Feature Union
char_and_word = make_union(CountVectorizer(analyzer="char"),
CountVectorizer(analyzer="word"))
text_pipe = make_pipeline(char_and_word, LinearSVC(dual=False))
param_grid = {'linearsvc__C': 10. ** np.arange(-3, 3)}
grid = GridSearchCV(text_pipe, param_grid=param_grid, cv=5)
param_grid2 = {'featureunion__countvectorizer-1__ngram_range': [(1, 3), (1, 5), (2, 5)],
'featureunion__countvectorizer-2__ngram_range': [(1, 1), (1, 2), (2, 2)],
'linearsvc__C': 10. ** np.arange(-3, 3)}
28
Randomized Parameter Search
29
Randomized Parameter Search
Source: Bergstra and Bengio
30
Randomized Parameter Search
Source: Bergstra and Bengio
Step-size free for continuous parameters
Decouples runtime from search-space size
Robust against irrelevant parameters
31
Randomized Parameter Search
params = {'featureunion__countvectorizer-1__ngram_range':
[(1, 3), (1, 5), (2, 5)],
'featureunion__countvectorizer-2__ngram_range':
[(1, 1), (1, 2), (2, 2)],
'linearsvc__C': 10. ** np.arange(-3, 3)}
32
Randomized Parameter Search
params = {'featureunion__countvectorizer-1__ngram_range':
[(1, 3), (1, 5), (2, 5)],
'featureunion__countvectorizer-2__ngram_range':
[(1, 1), (1, 2), (2, 2)],
'linearsvc__C': expon()}
33
Randomized Parameter Search
rs = RandomizedSearchCV(text_pipe,
param_distributions=param_distributins, n_iter=50)
params = {'featureunion__countvectorizer-1__ngram_range':
[(1, 3), (1, 5), (2, 5)],
'featureunion__countvectorizer-2__ngram_range':
[(1, 1), (1, 2), (2, 2)],
'linearsvc__C': expon()}
34
Randomized Parameter Search
● Always use distributions for continuous
variables.
● Don't use for low dimensional spaces.
● Future: Bayesian optimization based search.
35
Generalized Cross-Validation and Path Algorithms
36
rfe = RFE(LogisticRegression())
37
rfe = RFE(LogisticRegression())
param_grid = {'n_features_to_select': range(1, n_features)}
gridsearch = GridSearchCV(rfe, param_grid)
grid.fit(X, y)
38
rfe = RFE(LogisticRegression())
param_grid = {'n_features_to_select': range(1, n_features)}
gridsearch = GridSearchCV(rfe, param_grid)
grid.fit(X, y)
39
rfe = RFE(LogisticRegression())
param_grid = {'n_features_to_select': range(1, n_features)}
gridsearch = GridSearchCV(rfe, param_grid)
grid.fit(X, y)
rfecv = RFECV(LogisticRegression())
40
rfe = RFE(LogisticRegression())
param_grid = {'n_features_to_select': range(1, n_features)}
gridsearch = GridSearchCV(rfe, param_grid)
grid.fit(X, y)
rfecv = RFECV(LogisticRegression())
rfecv.fit(X, y)
41
42
Linear Models Feature Selection Tree-Based models [possible]
LogisticRegressionCV [new] RFECV [DecisionTreeCV]
RidgeCV [RandomForestClassifierCV]
RidgeClassifierCV [GradientBoostingClassifierCV]
LarsCV
ElasticNetCV
...
43
Scoring Functions
44
Default:
Accuracy (classification)
R2 (regression)
GridSeachCV
RandomizedSearchCV
cross_val_score
...CV
45
Scoring with imbalanced data
cross_val_score(SVC(), X_train, y_train)
>>> array([ 0.9, 0.9, 0.9])
46
Scoring with imbalanced data
cross_val_score(SVC(), X_train, y_train)
>>> array([ 0.9, 0.9, 0.9])
cross_val_score(DummyClassifier("most_frequent"), X_train, y_train)
>>> array([ 0.9, 0.9, 0.9])
47
Scoring with imbalanced data
cross_val_score(SVC(), X_train, y_train)
>>> array([ 0.9, 0.9, 0.9])
cross_val_score(DummyClassifier("most_frequent"), X_train, y_train)
>>> array([ 0.9, 0.9, 0.9])
cross_val_score(SVC(), X_train, y_train, scoring="roc_auc")
array([ 0.99961591, 0.99983498, 0.99966247])
48
Scoring with imbalanced data
cross_val_score(SVC(), X_train, y_train)
>>> array([ 0.9, 0.9, 0.9])
cross_val_score(DummyClassifier("most_frequent"), X_train, y_train)
>>> array([ 0.9, 0.9, 0.9])
cross_val_score(SVC(), X_train, y_train, scoring="roc_auc")
array([ 0.99961591, 0.99983498, 0.99966247])
49
Available metrics
print(SCORERS.keys())
>> ['adjusted_rand_score',
'f1',
'mean_absolute_error',
'r2',
'recall',
'median_absolute_error',
'precision',
'log_loss',
'mean_squared_error',
'roc_auc',
'average_precision',
'accuracy']
50
Defining your own scoring
def my_super_scoring(est, X, y):
return accuracy_scorer(est, X, y) - np.sum(est.coef_ != 0)
51
Out of Core Learning
52
Or: save ourself the effort
53
Think twice!
● Old laptop: 4GB Ram
● 1073741824 float32
● Or 1mio data points with 1000 features
● EC2 : 256 GB Ram
● 68719476736 float32
● Or 68mio data points with 1000 features
54
Supported Algorithms
● All SGDClassifier derivatives
● Naive Bayes
● MinibatchKMeans
● IncrementalPCA
● MiniBatchDictionaryLearning
55
Out of Core Learning
sgd = SGDClassifier()
for i in range(9):
X_batch, y_batch = cPickle.load(open("batch_%02d" % i))
sgd.partial_fit(X_batch, y_batch, classes=range(10))
Possibly go over the data multiple times.
56
Stateless Transformers
● Normalizer
● HashingVectorizer
● RBFSampler (and other kernel approx)
57
Text data and the hashing trick
58
Bag Of Word Representations
“You better call Kenny Loggins”
CountVectorizer / TfidfVectorizer
59
Bag Of Word Representations
“You better call Kenny Loggins”
['you', 'better', 'call', 'kenny', 'loggins']
CountVectorizer / TfidfVectorizer
tokenizer
60
Bag Of Word Representations
“You better call Kenny Loggins”
[0, …, 0, 1, 0, … , 0, 1 , 0, …, 0, 1, 0, …., 0 ]
better call youaardvak zyxst
['you', 'better', 'call', 'kenny', 'loggins']
CountVectorizer / TfidfVectorizer
tokenizer
Sparse matrix encoding
61
Hashing Trick
“You better call Kenny Loggins”
['you', 'better', 'call', 'kenny', 'loggins']
HashingVectorizer
tokenizer
hashing
[hash('you'), hash('better'), hash('call'), hash('kenny'), hash('loggins')]
= [832412, 223788, 366226, 81185, 835749]
[0, …, 0, 1, 0, … , 0, 1 , 0, …, 0, 1, 0, ... 0 ]
Sparse matrix encoding
62
Out of Core Text Classification
sgd = SGDClassifier()
hashing_vectorizer = HashingVectorizer()
for i in range(9):
text_batch, y_batch = cPickle.load(open("text_%02d" % I))
X_batch = hashing_vectorizer.transform(text_batch)
sgd.partial_fit(X_batch, y_batch, classes=range(10))
63
Kernel Approximations
64
Reminder: Kernel Trick
x
65
Reminder: Kernel Trick
66
Reminder: Kernel Trick
Classifier linear → need only
67
Reminder: Kernel Trick
Classifier linear → need only
Linear:
Polynomial:
RBF:
Sigmoid:
68
Complexity
● Solving kernelized SVM:
~O(n_samples ** 3)
● Solving linear (primal) SVM:
~O(n_samples * n_features)
n_samples large? Go primal!
69
Undoing the Kernel Trick
● Kernel approximation:
● k =
= RBFSampler
70
Usage
sgd = SGDClassifier()
kernel_approximation = RBFSampler(gamma=.001, n_components=400)
for i in range(9):
X_batch, y_batch = cPickle.load(open("batch_%02d" % i))
if i == 0:
kernel_approximation.fit(X_batch)
X_transformed = kernel_approximation.transform(X_batch)
sgd.partial_fit(X_transformed, y_batch, classes=range(10))
71
Highlights from 0.16.0
72
Highlights from 0.16.0
● Multinomial Logistic Regression,
LogisticRegressionCV.
● IncrementalPCA.
● Probability callibration of classifiers.
● Birch clustering.
● LSHForest.
● More robust integration with pandas.
73
Probability Calibration
SVC().decision_function()
→ CalibratedClassifierCV(SVC()).predict_proba()
RandomForestClassifier().predict_proba()
→ CalibratedClassifierCV(RandomForestClassifier()).predict_proba()
74
75
CDS is hiring Research Engineers
76
Thank you for your attention.
@t3kcit
@amueller
t3kcit@gmail.comx
77
Bias Variance Tradeoff
(why we do cross validation and grid searches)
78
Overfitting and Underfitting
Model complexity
Accuracy
Training
79
Overfitting and Underfitting
Model complexity
Accuracy
Training
Generalization
80
Overfitting and Underfitting
Model complexity
Accuracy
Training
Generalization
Underfitting Overfitting
Sweet spot
81
Linear SVM
82
Linear SVM
83
(RBF) Kernel SVM
84
(RBF) Kernel SVM
85
(RBF) Kernel SVM
86
(RBF) Kernel SVM
87
Decision Trees
88
Decision Trees
89
Decision Trees
90
Decision Trees
91
Decision Trees
92
Decision Trees
93
Random Forests
94
Random Forests
95
Random Forests
96
Know where you are on the bias-variance tradeoff
97
Validation Curves
train_scores, test_scores = validation_curve(SVC(), X, y,
param_name="gamma", param_range=param_range)
98
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y,train_sizes=train_sizes)
Learning Curves

More Related Content

PDF
Kaggle talk series top 0.2% kaggler on amazon employee access challenge
PDF
Kaggle Winning Solution Xgboost algorithm -- Let us learn from its author
PDF
Data mining with caret package
PPTX
Data Science Academy Student Demo day--Peggy sobolewski,analyzing transporati...
PDF
Gradient boosting in practice: a deep dive into xgboost
PPTX
Introduction of Xgboost
PDF
PDF
Kaggle talk series top 0.2% kaggler on amazon employee access challenge
Kaggle Winning Solution Xgboost algorithm -- Let us learn from its author
Data mining with caret package
Data Science Academy Student Demo day--Peggy sobolewski,analyzing transporati...
Gradient boosting in practice: a deep dive into xgboost
Introduction of Xgboost

What's hot (20)

PDF
Gradient Boosted Regression Trees in scikit-learn
PPTX
Streaming Python on Hadoop
PDF
XGBoost @ Fyber
PDF
Demystifying Xgboost
PDF
How to use SVM for data classification
PDF
Ensembling & Boosting 概念介紹
PDF
Introduction to XGBoost
PPTX
wk5ppt1_Titanic
PDF
XGBoost: the algorithm that wins every competition
PDF
Natural Language Processing (NLP)
PDF
maXbox starter65 machinelearning3
PDF
Transfer Learning
PDF
Converting Scikit-Learn to PMML
PDF
Introduction To Generative Adversarial Networks GANs
PDF
Support Vector Machines (SVM)
 
PDF
Reinforcement learning Research experiments OpenAI
PDF
Data Wrangling For Kaggle Data Science Competitions
PDF
Converting R to PMML
PDF
Build your own Convolutional Neural Network CNN
PDF
Machine Learning: Classification Concepts (Part 1)
Gradient Boosted Regression Trees in scikit-learn
Streaming Python on Hadoop
XGBoost @ Fyber
Demystifying Xgboost
How to use SVM for data classification
Ensembling & Boosting 概念介紹
Introduction to XGBoost
wk5ppt1_Titanic
XGBoost: the algorithm that wins every competition
Natural Language Processing (NLP)
maXbox starter65 machinelearning3
Transfer Learning
Converting Scikit-Learn to PMML
Introduction To Generative Adversarial Networks GANs
Support Vector Machines (SVM)
 
Reinforcement learning Research experiments OpenAI
Data Wrangling For Kaggle Data Science Competitions
Converting R to PMML
Build your own Convolutional Neural Network CNN
Machine Learning: Classification Concepts (Part 1)
Ad

Viewers also liked (20)

PDF
Winning data science competitions, presented by Owen Zhang
PPTX
Data Science Academy Student Demo day--Moyi Dang, Visualizing global public c...
PDF
Natural Language Processing(SupStat Inc)
PDF
Using Machine Learning to aid Journalism at the New York Times
PDF
Hack session for NYTimes Dialect Map Visualization( developed by R Shiny)
PDF
Bayesian models in r
PDF
Introducing natural language processing(NLP) with r
PDF
Max Kuhn's talk on R machine learning
PPTX
A Beginner's Guide to Machine Learning with Scikit-Learn
PDF
Introduction to Machine Learning with SciKit-Learn
PDF
Machine learning on Hadoop data lakes
PDF
SVM for Regression
PDF
H2O Random Grid Search - PyData Amsterdam
PDF
Nycdsa ml conference slides march 2015
PDF
THE HACK ON JERSEY CITY CONDO PRICES explore trends in public data
PDF
Spatial query tutorial for nyc subway income level along subway
PDF
Data Science Academy Student Demo day--Richard Sheng, kinvolved school attend...
PPTX
Data Science Academy Student Demo day--Chang Wang, dogs breeds in nyc
PPTX
primal and dual problem
PDF
Authorship Attribution and Forensic Linguistics with Python/Scikit-Learn/Pand...
Winning data science competitions, presented by Owen Zhang
Data Science Academy Student Demo day--Moyi Dang, Visualizing global public c...
Natural Language Processing(SupStat Inc)
Using Machine Learning to aid Journalism at the New York Times
Hack session for NYTimes Dialect Map Visualization( developed by R Shiny)
Bayesian models in r
Introducing natural language processing(NLP) with r
Max Kuhn's talk on R machine learning
A Beginner's Guide to Machine Learning with Scikit-Learn
Introduction to Machine Learning with SciKit-Learn
Machine learning on Hadoop data lakes
SVM for Regression
H2O Random Grid Search - PyData Amsterdam
Nycdsa ml conference slides march 2015
THE HACK ON JERSEY CITY CONDO PRICES explore trends in public data
Spatial query tutorial for nyc subway income level along subway
Data Science Academy Student Demo day--Richard Sheng, kinvolved school attend...
Data Science Academy Student Demo day--Chang Wang, dogs breeds in nyc
primal and dual problem
Authorship Attribution and Forensic Linguistics with Python/Scikit-Learn/Pand...
Ad

Similar to Nyc open-data-2015-andvanced-sklearn-expanded (20)

PDF
Cheat Sheet for Machine Learning in Python: Scikit-learn
PDF
Scikit learn cheat_sheet_python
PDF
Scikit-learn Cheatsheet-Python
PPTX
Classification: MNIST, training a Binary classifier, performance measure, mul...
PPTX
Building largescalepredictionsystemv1
PDF
Engineering scikit-learn
PDF
Machine Learning with Python
PDF
Mariusz Gil "Machine Learning"
PDF
General Tips for participating Kaggle Competitions
PPTX
Session 06 machine learning.pptx
PPTX
Session 06 machine learning.pptx
PDF
Scikit-Learn: Machine Learning in Python
PPTX
in5490-classification (1).pptx
PDF
Machine Learning Crash Course by Sebastian Raschka
PDF
maxbox starter60 machine learning
PPTX
[DevDay2019] Python Machine Learning with Jupyter Notebook - By Nguyen Huu Th...
PDF
Hands-on ML - CH3
PDF
Creating Your First Predictive Model In Python
PDF
BPstudy sklearn 20180925
PDF
CM UTaipei Kaggle Share
Cheat Sheet for Machine Learning in Python: Scikit-learn
Scikit learn cheat_sheet_python
Scikit-learn Cheatsheet-Python
Classification: MNIST, training a Binary classifier, performance measure, mul...
Building largescalepredictionsystemv1
Engineering scikit-learn
Machine Learning with Python
Mariusz Gil "Machine Learning"
General Tips for participating Kaggle Competitions
Session 06 machine learning.pptx
Session 06 machine learning.pptx
Scikit-Learn: Machine Learning in Python
in5490-classification (1).pptx
Machine Learning Crash Course by Sebastian Raschka
maxbox starter60 machine learning
[DevDay2019] Python Machine Learning with Jupyter Notebook - By Nguyen Huu Th...
Hands-on ML - CH3
Creating Your First Predictive Model In Python
BPstudy sklearn 20180925
CM UTaipei Kaggle Share

More from Vivian S. Zhang (12)

PDF
Why NYC DSA.pdf
PPTX
Career services workshop- Roger Ren
PDF
Nycdsa wordpress guide book
PDF
We're so skewed_presentation
PDF
Wikipedia: Tuned Predictions on Big Data
PDF
A Hybrid Recommender with Yelp Challenge Data
PDF
Kaggle Top1% Solution: Predicting Housing Prices in Moscow
PPTX
Data Science Academy Student Demo day--Divyanka Sharma, Businesses in nyc
PPTX
Data Science Academy Student Demo day--Michael blecher,the importance of clea...
PPTX
Data Science Academy Student Demo day--Shelby Ahern, An Exploration of Non-Mi...
PPTX
R003 laila restaurant sanitation report(NYC Data Science Academy, Data Scienc...
PPTX
R003 jiten south park episode popularity analysis(NYC Data Science Academy, D...
Why NYC DSA.pdf
Career services workshop- Roger Ren
Nycdsa wordpress guide book
We're so skewed_presentation
Wikipedia: Tuned Predictions on Big Data
A Hybrid Recommender with Yelp Challenge Data
Kaggle Top1% Solution: Predicting Housing Prices in Moscow
Data Science Academy Student Demo day--Divyanka Sharma, Businesses in nyc
Data Science Academy Student Demo day--Michael blecher,the importance of clea...
Data Science Academy Student Demo day--Shelby Ahern, An Exploration of Non-Mi...
R003 laila restaurant sanitation report(NYC Data Science Academy, Data Scienc...
R003 jiten south park episode popularity analysis(NYC Data Science Academy, D...

Recently uploaded (20)

PPTX
Modelling in Business Intelligence , information system
PPTX
Managing Community Partner Relationships
PDF
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
PDF
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
PPT
ISS -ESG Data flows What is ESG and HowHow
PPTX
modul_python (1).pptx for professional and student
PDF
[EN] Industrial Machine Downtime Prediction
PPTX
Leprosy and NLEP programme community medicine
PDF
annual-report-2024-2025 original latest.
PPTX
importance of Data-Visualization-in-Data-Science. for mba studnts
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PPTX
SAP 2 completion done . PRESENTATION.pptx
PPTX
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PPTX
Pilar Kemerdekaan dan Identi Bangsa.pptx
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PDF
Microsoft Core Cloud Services powerpoint
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PPTX
climate analysis of Dhaka ,Banglades.pptx
PDF
Business Analytics and business intelligence.pdf
Modelling in Business Intelligence , information system
Managing Community Partner Relationships
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
ISS -ESG Data flows What is ESG and HowHow
modul_python (1).pptx for professional and student
[EN] Industrial Machine Downtime Prediction
Leprosy and NLEP programme community medicine
annual-report-2024-2025 original latest.
importance of Data-Visualization-in-Data-Science. for mba studnts
Qualitative Qantitative and Mixed Methods.pptx
SAP 2 completion done . PRESENTATION.pptx
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
Pilar Kemerdekaan dan Identi Bangsa.pptx
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
Microsoft Core Cloud Services powerpoint
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
climate analysis of Dhaka ,Banglades.pptx
Business Analytics and business intelligence.pdf

Nyc open-data-2015-andvanced-sklearn-expanded