SlideShare a Scribd company logo
Operations in Digital Image
Processing + Convolution by Example
MENOUFIA UNIVERSITY
FACULTY OF COMPUTERS AND INFORMATION
ALL DEPARTMENTS
‫المنوفية‬ ‫جامعة‬
‫والمعلومات‬ ‫الحاسبات‬ ‫كلية‬
‫جميع‬‫األقسام‬
‫المنوفية‬ ‫جامعة‬
Ahmed Fawzy Gad
ahmed.fawzy@ci.menofia.edu.eg
Image Processing Operations
Operations
Point Group
Point Operations
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42
Arithmetic
Operations
+ - * /
Add 2
Point Operations
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42
Arithmetic
Operations
+ - * /
Add 2
Point Operations
60 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42
Arithmetic
Operations
+ - * /
Add 2
Point Operations
60 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42
Arithmetic
Operations
+ - * /
Add 2
Point Operations
60 5 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42
Arithmetic
Operations
+ - * /
Add 2
Point Operations
60 5 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42
Arithmetic
Operations
+ - * /
Add 2
Point Operations
60 5 215 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42
Arithmetic
Operations
+ - * /
Add 2
Point Operations
60 5 215 83 80
187 89 34 29 13
72 68 62 4 21
63 93 131 91 40
16 9 60 16 44
Arithmetic
Operations
+ - * /
Add 2
Group Operations
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42Mode
Median
Mean
Group Operations
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42Mode
Median
Mean
Group Operations
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42Mode
Median
Mean
58 + 3 + 213 + 185 + 87 + 32 + 70 + 66 + 60
9
= 𝟖𝟔
Group Operations – Template Operations
1 Operation 2 Template
Mode
Median
Mean
7x7
5x5
3x3
ODD
Why odd?
Group Operations
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42Mode
Median
Mean
58 + 3 + 213 + 185 + 87 + 32 + 70 + 66 + 60
9
= 𝟖𝟔
Put the results in the center.
Group Operations
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42Mode
Median
Mean
58 + 3 + 213 + 185 + 87 + 32 + 70 + 66 + 60
9
= 𝟖𝟔
Put the results in the center.
𝟖𝟔
Group Operations – Even Template Size
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42Mode
Median
Mean
58 + 3 + 185 + 87
4
= 𝟖𝟑. 𝟐𝟓 ≅ 𝟖𝟒
Even template sizes has no center.
E.g. 2x3, 2x2, 5x6, …
𝟖𝟒
Group Operations – Even Template Size
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42Mode
Median
Mean
Even template sizes has no center.
E.g. 2x3, 2x2, 5x6, …
𝟖𝟒
???
58 + 3 + 185 + 87
4
= 𝟖𝟑. 𝟐𝟓 ≅ 𝟖𝟒
What is Convolution?
• It is a mathematical way to combine two signals to generate a third
signal. Convolution is not limited on digital image processing and it is
a broad term that works on signals.
Input Signal
Impulse Response
Output Signal
System
Convolution
What is Convolution?
• It is a mathematical way to combine two signals to generate a third
signal. Convolution is not limited on digital image processing and it is
a broad term that works on signals.
Input Signal
Impulse Response
Output Signal
System
Convolution
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42
Convolution for 2D Image Signal
1 3 4 3 10
2 7 4 1 11
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8Template – 3x3
2 1 -4
3 2 5
-1 8 1
Convolution for 2D Image Signal
Template – 3x3
2 1 -4
3 2 5
-1 8 1
1 3 4 3 10
2 7 4 1 11
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8
Convolution for 2D Image Signal
Template – 3x3
2 1 -4
3 2 5
-1 8 1
1 3 4 3 10
2 7 4 1 11
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8
Convolution for 2D Image Signal
1 3 4 3 10
2 44 4 1 11
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8
2 ∗ 1 + 1 ∗ 3 − 4 ∗ 4 + 3 ∗ 2 + 2 ∗ 7 + 5 ∗ 4
− 1 ∗ 6 + 8 ∗ 2 + 1 ∗ 5
= 𝟒𝟒
1 3 4 3 10
2 44 4 1 11
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8
Convolution for 2D Image Signal
2 1 -4
3 2 5
-1 8 1
Convolution for 2D Image Signal
2 ∗ 3 + 1 ∗ 4 − 4 ∗ 3 + 3 ∗ 7 + 2 ∗ 4 + 5 ∗ 1
− 1 ∗ 2 + 8 ∗ 5 + 1 ∗ 2
= 𝟕𝟐
1 3 4 3 10
2 44 72 1 11
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8
1 3 4 3 10
2 44 72 1 11
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8
Convolution for 2D Image Signal
2 1 -4
3 2 5
-1 8 1
1 3 4 3 10
2 44 72 2 11
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8
Convolution for 2D Image Signal
2 ∗ 4 + 1 ∗ 3 − 4 ∗ 10 + 3 ∗ 4 + 2 ∗ 1 + 5
∗ 11 − 1 ∗ 5 + 8 ∗ 2 + 1 ∗ 5
= 𝟐
1 3 4 3 10
2 44 72 2 11
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8
Convolution for 2D Image Signal
2 1 -4
3 2 5
-1 8 1
1 3 4 3 10
2 44 72 2 11
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8
Convolution for 2D Image Signal
2 1 -4
3 2 5
-1 8 1
1 3 4 3 10
2 44 72 2 82
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8
Convolution for 2D Image Signal
2 ∗ 3 + 1 ∗ 10 − 4 ∗ 0 + 3 ∗ 2 + 2 ∗ 11 + 5
∗ 0 − 1 ∗ 2 + 8 ∗ 5 + 1 ∗ 0
= 𝟖𝟐
1 3 4 3 10
2 44 72 2 82
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8
Convolution for 2D Image Signal
1 3 4 3 10
2 44 72 2 82
6 2 5 2 5
13 6 8 9 1
2 7 12 14 8
Convolution for 2D Image Signal
2 1 -4
3 2 5
-1 8 1
1 3 4 3 10
2 44 72 2 82
6 2 5 2 5
13 6 8 9 1
2 80 12 14 8
Convolution for 2D Image Signal
2 ∗ 13 + 1 ∗ 6 − 4 ∗ 8 + 3 ∗ 2 + 2 ∗ 7 + 5
∗ 12 − 1 ∗ 0 + 8 ∗ 0 + 1 ∗ 0
= 𝟖𝟎
1 3 4 3 10
2 44 72 2 82
6 2 5 2 5
13 6 8 9 1
2 80 12 14 8
Convolution for 2D Image Signal
2 1 -4
3 2 5
-1 8 1
1 3 4 3 10
2 44 72 2 82
6 2 5 2 5
13 6 8 9 1
2 80 12 14 77
Convolution for 2D Image Signal
2 ∗ 9 + 1 ∗ 1 − 4 ∗ 0 + 3 ∗ 14 + 2 ∗ 8 + 5
∗ 0 − 1 ∗ 0 + 8 ∗ 0 + 1 ∗ 0
= 𝟕𝟕
Convolution for 2D Signal
•Continue. 1 3 4 3 10
2 44 72 2 82
6 2 5 2 5
13 6 8 9 1
2 80 12 14 77
Convolution for 2D Signal
•Template for Mean.𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
𝟏
𝟗
58 3 213 81 78
185 87 32 27 11
70 66 60 2 19
61 91 129 89 38
14 7 58 14 42
𝟏
𝟗
∗ 58 +
𝟏
𝟗
∗ 3 +
𝟏
𝟗
∗ 213 +
𝟏
𝟗
∗ 185 +
𝟏
𝟗
∗ 87 +
𝟏
𝟗
∗ 32
+
𝟏
𝟗
∗ 70 +
𝟏
𝟗
∗ 66 +
𝟏
𝟗
∗ 60
= 86

More Related Content

PPTX
Psuedo color
PPTX
Fourier descriptors & moments
PDF
Noise Models
PPT
Image enhancement
PPT
Chapter10 image segmentation
PDF
Computer Vision: Correlation, Convolution, and Gradient
PPT
Image segmentation
PPTX
Image Enhancement - Point Processing
Psuedo color
Fourier descriptors & moments
Noise Models
Image enhancement
Chapter10 image segmentation
Computer Vision: Correlation, Convolution, and Gradient
Image segmentation
Image Enhancement - Point Processing

What's hot (20)

PPTX
Image Filtering in the Frequency Domain
PPTX
Color Image Processing
PPTX
Image restoration and degradation model
PPTX
Region based segmentation
PPT
Spatial filtering using image processing
PPTX
Image Sensing and Acquisition.pptx
PPTX
Histogram Processing
PPT
Segmentation
PPTX
Image compression in digital image processing
PDF
Fast Fourier Transform
PDF
Lecture 15 DCT, Walsh and Hadamard Transform
PPTX
Convolution&Correlation
PDF
DIGITAL IMAGE PROCESSING - LECTURE NOTES
PPSX
Image Processing: Spatial filters
PPTX
Lossless predictive coding in Digital Image Processing
PPTX
Color image processing Presentation
PPTX
Log Transformation in Image Processing with Example
PPSX
Image Processing Basics
PPSX
Image processing on matlab presentation
PPTX
Smoothing Filters in Spatial Domain
Image Filtering in the Frequency Domain
Color Image Processing
Image restoration and degradation model
Region based segmentation
Spatial filtering using image processing
Image Sensing and Acquisition.pptx
Histogram Processing
Segmentation
Image compression in digital image processing
Fast Fourier Transform
Lecture 15 DCT, Walsh and Hadamard Transform
Convolution&Correlation
DIGITAL IMAGE PROCESSING - LECTURE NOTES
Image Processing: Spatial filters
Lossless predictive coding in Digital Image Processing
Color image processing Presentation
Log Transformation in Image Processing with Example
Image Processing Basics
Image processing on matlab presentation
Smoothing Filters in Spatial Domain
Ad

Similar to Operations in Digital Image Processing + Convolution by Example (20)

PDF
Video Compression, Part 2-Section 2, Video Coding Concepts
PDF
VARIATION-FREE WATERMARKING TECHNIQUE BASED ON SCALE RELATIONSHIP
PDF
Chapter 7: Matrix Multiplication
PPTX
E1_Pghjhjklkgggjghkgufkh est JC ghjjjjjj kg du kg duL.pptx
PDF
slide9_short.pdf
PDF
VARIATION-FREE WATERMARKING TECHNIQUE BASED ON SCALE RELATIONSHIP
PPTX
Dda line algorithm presentatiion
PDF
Blur Filter - Hanpo
PDF
Precalculus 6th edition blitzer test bank
PPT
Mathematics in everyday life
PPT
Mathematics in everyday life
PDF
W13JPEGCompression techinques detail.pdf
PDF
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
PDF
Sol mat haeussler_by_priale
PDF
Solucionario de matemáticas para administación y economia
PDF
31350052 introductory-mathematical-analysis-textbook-solution-manual
PDF
電路學 - [第二章] 電路分析方法
PDF
Steganography Part 2
PPT
Discrete cosine Transform and Digital Image compression.ppt
PDF
Fast and accurate metrics. Is it actually possible?
Video Compression, Part 2-Section 2, Video Coding Concepts
VARIATION-FREE WATERMARKING TECHNIQUE BASED ON SCALE RELATIONSHIP
Chapter 7: Matrix Multiplication
E1_Pghjhjklkgggjghkgufkh est JC ghjjjjjj kg du kg duL.pptx
slide9_short.pdf
VARIATION-FREE WATERMARKING TECHNIQUE BASED ON SCALE RELATIONSHIP
Dda line algorithm presentatiion
Blur Filter - Hanpo
Precalculus 6th edition blitzer test bank
Mathematics in everyday life
Mathematics in everyday life
W13JPEGCompression techinques detail.pdf
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Sol mat haeussler_by_priale
Solucionario de matemáticas para administación y economia
31350052 introductory-mathematical-analysis-textbook-solution-manual
電路學 - [第二章] 電路分析方法
Steganography Part 2
Discrete cosine Transform and Digital Image compression.ppt
Fast and accurate metrics. Is it actually possible?
Ad

More from Ahmed Gad (20)

PPTX
ICEIT'20 Cython for Speeding-up Genetic Algorithm
PDF
NumPyCNNAndroid: A Library for Straightforward Implementation of Convolutiona...
PDF
Python for Computer Vision - Revision 2nd Edition
PDF
Multi-Objective Optimization using Non-Dominated Sorting Genetic Algorithm wi...
PDF
M.Sc. Thesis - Automatic People Counting in Crowded Scenes
PDF
Derivation of Convolutional Neural Network from Fully Connected Network Step-...
PDF
Introduction to Optimization with Genetic Algorithm (GA)
PDF
Derivation of Convolutional Neural Network (ConvNet) from Fully Connected Net...
PDF
Avoid Overfitting with Regularization
PDF
Genetic Algorithm (GA) Optimization - Step-by-Step Example
PDF
ICCES 2017 - Crowd Density Estimation Method using Regression Analysis
PDF
Backpropagation: Understanding How to Update ANNs Weights Step-by-Step
PDF
Python for Computer Vision - Revision
PDF
Anime Studio Pro 10 Tutorial as Part of Multimedia Course
PDF
Brief Introduction to Deep Learning + Solving XOR using ANNs
PDF
MATLAB Code + Description : Real-Time Object Motion Detection and Tracking
PDF
MATLAB Code + Description : Very Simple Automatic English Optical Character R...
PDF
Graduation Project - Face Login : A Robust Face Identification System for Sec...
PDF
Introduction to MATrices LABoratory (MATLAB) as Part of Digital Signal Proces...
PDF
Introduction to Digital Signal Processing (DSP) - Course Notes
ICEIT'20 Cython for Speeding-up Genetic Algorithm
NumPyCNNAndroid: A Library for Straightforward Implementation of Convolutiona...
Python for Computer Vision - Revision 2nd Edition
Multi-Objective Optimization using Non-Dominated Sorting Genetic Algorithm wi...
M.Sc. Thesis - Automatic People Counting in Crowded Scenes
Derivation of Convolutional Neural Network from Fully Connected Network Step-...
Introduction to Optimization with Genetic Algorithm (GA)
Derivation of Convolutional Neural Network (ConvNet) from Fully Connected Net...
Avoid Overfitting with Regularization
Genetic Algorithm (GA) Optimization - Step-by-Step Example
ICCES 2017 - Crowd Density Estimation Method using Regression Analysis
Backpropagation: Understanding How to Update ANNs Weights Step-by-Step
Python for Computer Vision - Revision
Anime Studio Pro 10 Tutorial as Part of Multimedia Course
Brief Introduction to Deep Learning + Solving XOR using ANNs
MATLAB Code + Description : Real-Time Object Motion Detection and Tracking
MATLAB Code + Description : Very Simple Automatic English Optical Character R...
Graduation Project - Face Login : A Robust Face Identification System for Sec...
Introduction to MATrices LABoratory (MATLAB) as Part of Digital Signal Proces...
Introduction to Digital Signal Processing (DSP) - Course Notes

Recently uploaded (20)

PDF
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PPTX
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
climate analysis of Dhaka ,Banglades.pptx
PDF
Business Analytics and business intelligence.pdf
PPTX
IB Computer Science - Internal Assessment.pptx
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
Computer network topology notes for revision
PDF
Introduction to the R Programming Language
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPT
ISS -ESG Data flows What is ESG and HowHow
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PDF
Mega Projects Data Mega Projects Data
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
IBA_Chapter_11_Slides_Final_Accessible.pptx
climate analysis of Dhaka ,Banglades.pptx
Business Analytics and business intelligence.pdf
IB Computer Science - Internal Assessment.pptx
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
STERILIZATION AND DISINFECTION-1.ppthhhbx
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
Computer network topology notes for revision
Introduction to the R Programming Language
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
oil_refinery_comprehensive_20250804084928 (1).pptx
ISS -ESG Data flows What is ESG and HowHow
Miokarditis (Inflamasi pada Otot Jantung)
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
Mega Projects Data Mega Projects Data

Operations in Digital Image Processing + Convolution by Example

  • 1. Operations in Digital Image Processing + Convolution by Example MENOUFIA UNIVERSITY FACULTY OF COMPUTERS AND INFORMATION ALL DEPARTMENTS ‫المنوفية‬ ‫جامعة‬ ‫والمعلومات‬ ‫الحاسبات‬ ‫كلية‬ ‫جميع‬‫األقسام‬ ‫المنوفية‬ ‫جامعة‬ Ahmed Fawzy Gad [email protected]
  • 3. Point Operations 58 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42 Arithmetic Operations + - * / Add 2
  • 4. Point Operations 58 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42 Arithmetic Operations + - * / Add 2
  • 5. Point Operations 60 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42 Arithmetic Operations + - * / Add 2
  • 6. Point Operations 60 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42 Arithmetic Operations + - * / Add 2
  • 7. Point Operations 60 5 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42 Arithmetic Operations + - * / Add 2
  • 8. Point Operations 60 5 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42 Arithmetic Operations + - * / Add 2
  • 9. Point Operations 60 5 215 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42 Arithmetic Operations + - * / Add 2
  • 10. Point Operations 60 5 215 83 80 187 89 34 29 13 72 68 62 4 21 63 93 131 91 40 16 9 60 16 44 Arithmetic Operations + - * / Add 2
  • 11. Group Operations 58 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42Mode Median Mean
  • 12. Group Operations 58 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42Mode Median Mean
  • 13. Group Operations 58 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42Mode Median Mean 58 + 3 + 213 + 185 + 87 + 32 + 70 + 66 + 60 9 = 𝟖𝟔
  • 14. Group Operations – Template Operations 1 Operation 2 Template Mode Median Mean 7x7 5x5 3x3 ODD Why odd?
  • 15. Group Operations 58 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42Mode Median Mean 58 + 3 + 213 + 185 + 87 + 32 + 70 + 66 + 60 9 = 𝟖𝟔 Put the results in the center.
  • 16. Group Operations 58 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42Mode Median Mean 58 + 3 + 213 + 185 + 87 + 32 + 70 + 66 + 60 9 = 𝟖𝟔 Put the results in the center. 𝟖𝟔
  • 17. Group Operations – Even Template Size 58 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42Mode Median Mean 58 + 3 + 185 + 87 4 = 𝟖𝟑. 𝟐𝟓 ≅ 𝟖𝟒 Even template sizes has no center. E.g. 2x3, 2x2, 5x6, … 𝟖𝟒
  • 18. Group Operations – Even Template Size 58 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42Mode Median Mean Even template sizes has no center. E.g. 2x3, 2x2, 5x6, … 𝟖𝟒 ??? 58 + 3 + 185 + 87 4 = 𝟖𝟑. 𝟐𝟓 ≅ 𝟖𝟒
  • 19. What is Convolution? • It is a mathematical way to combine two signals to generate a third signal. Convolution is not limited on digital image processing and it is a broad term that works on signals. Input Signal Impulse Response Output Signal System Convolution
  • 20. What is Convolution? • It is a mathematical way to combine two signals to generate a third signal. Convolution is not limited on digital image processing and it is a broad term that works on signals. Input Signal Impulse Response Output Signal System Convolution 58 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42
  • 21. Convolution for 2D Image Signal 1 3 4 3 10 2 7 4 1 11 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8Template – 3x3 2 1 -4 3 2 5 -1 8 1
  • 22. Convolution for 2D Image Signal Template – 3x3 2 1 -4 3 2 5 -1 8 1 1 3 4 3 10 2 7 4 1 11 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8
  • 23. Convolution for 2D Image Signal Template – 3x3 2 1 -4 3 2 5 -1 8 1 1 3 4 3 10 2 7 4 1 11 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8
  • 24. Convolution for 2D Image Signal 1 3 4 3 10 2 44 4 1 11 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8 2 ∗ 1 + 1 ∗ 3 − 4 ∗ 4 + 3 ∗ 2 + 2 ∗ 7 + 5 ∗ 4 − 1 ∗ 6 + 8 ∗ 2 + 1 ∗ 5 = 𝟒𝟒
  • 25. 1 3 4 3 10 2 44 4 1 11 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8 Convolution for 2D Image Signal 2 1 -4 3 2 5 -1 8 1
  • 26. Convolution for 2D Image Signal 2 ∗ 3 + 1 ∗ 4 − 4 ∗ 3 + 3 ∗ 7 + 2 ∗ 4 + 5 ∗ 1 − 1 ∗ 2 + 8 ∗ 5 + 1 ∗ 2 = 𝟕𝟐 1 3 4 3 10 2 44 72 1 11 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8
  • 27. 1 3 4 3 10 2 44 72 1 11 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8 Convolution for 2D Image Signal 2 1 -4 3 2 5 -1 8 1
  • 28. 1 3 4 3 10 2 44 72 2 11 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8 Convolution for 2D Image Signal 2 ∗ 4 + 1 ∗ 3 − 4 ∗ 10 + 3 ∗ 4 + 2 ∗ 1 + 5 ∗ 11 − 1 ∗ 5 + 8 ∗ 2 + 1 ∗ 5 = 𝟐
  • 29. 1 3 4 3 10 2 44 72 2 11 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8 Convolution for 2D Image Signal 2 1 -4 3 2 5 -1 8 1
  • 30. 1 3 4 3 10 2 44 72 2 11 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8 Convolution for 2D Image Signal 2 1 -4 3 2 5 -1 8 1
  • 31. 1 3 4 3 10 2 44 72 2 82 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8 Convolution for 2D Image Signal 2 ∗ 3 + 1 ∗ 10 − 4 ∗ 0 + 3 ∗ 2 + 2 ∗ 11 + 5 ∗ 0 − 1 ∗ 2 + 8 ∗ 5 + 1 ∗ 0 = 𝟖𝟐
  • 32. 1 3 4 3 10 2 44 72 2 82 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8 Convolution for 2D Image Signal
  • 33. 1 3 4 3 10 2 44 72 2 82 6 2 5 2 5 13 6 8 9 1 2 7 12 14 8 Convolution for 2D Image Signal 2 1 -4 3 2 5 -1 8 1
  • 34. 1 3 4 3 10 2 44 72 2 82 6 2 5 2 5 13 6 8 9 1 2 80 12 14 8 Convolution for 2D Image Signal 2 ∗ 13 + 1 ∗ 6 − 4 ∗ 8 + 3 ∗ 2 + 2 ∗ 7 + 5 ∗ 12 − 1 ∗ 0 + 8 ∗ 0 + 1 ∗ 0 = 𝟖𝟎
  • 35. 1 3 4 3 10 2 44 72 2 82 6 2 5 2 5 13 6 8 9 1 2 80 12 14 8 Convolution for 2D Image Signal 2 1 -4 3 2 5 -1 8 1
  • 36. 1 3 4 3 10 2 44 72 2 82 6 2 5 2 5 13 6 8 9 1 2 80 12 14 77 Convolution for 2D Image Signal 2 ∗ 9 + 1 ∗ 1 − 4 ∗ 0 + 3 ∗ 14 + 2 ∗ 8 + 5 ∗ 0 − 1 ∗ 0 + 8 ∗ 0 + 1 ∗ 0 = 𝟕𝟕
  • 37. Convolution for 2D Signal •Continue. 1 3 4 3 10 2 44 72 2 82 6 2 5 2 5 13 6 8 9 1 2 80 12 14 77
  • 38. Convolution for 2D Signal •Template for Mean.𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 𝟏 𝟗 58 3 213 81 78 185 87 32 27 11 70 66 60 2 19 61 91 129 89 38 14 7 58 14 42 𝟏 𝟗 ∗ 58 + 𝟏 𝟗 ∗ 3 + 𝟏 𝟗 ∗ 213 + 𝟏 𝟗 ∗ 185 + 𝟏 𝟗 ∗ 87 + 𝟏 𝟗 ∗ 32 + 𝟏 𝟗 ∗ 70 + 𝟏 𝟗 ∗ 66 + 𝟏 𝟗 ∗ 60 = 86